Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.386
1.
ACS Chem Biol ; 19(6): 1366-1375, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38829263

Eliciting an antihapten antibody response to vaccination typically requires the use of constructs where multiple copies of the hapten are covalently attached to a larger carrier molecule. The carrier is required to elicit T cell help via presentation of peptide epitopes on major histocompatibility complex (MHC) class II molecules; as such, attachment to full-sized proteins, alone or in a complex, is generally used to account for the significant MHC diversity in humans. While such carrier-based vaccines have proven extremely successful, particularly in protecting against bacterial diseases, they can be challenging to manufacture, and repeated use can be compromised by pre-existing immunity against the carrier. One approach to reducing these complications is to recruit help from type I natural killer T (NKT) cells, which exhibit limited diversity in their antigen receptors and respond to glycolipid antigens presented by the highly conserved presenting molecule CD1d. Synthetic vaccines for universal use can, therefore, be prepared by conjugating haptens to an NKT cell agonist such as α-galactosylceramide (αGalCer, KRN7000). An additional advantage is that the quality of NKT cell help is sufficient to overcome the need for an extra immune adjuvant. However, while initial studies with αGalCer-hapten conjugate vaccines report strong and rapid antihapten antibody responses, they can fail to generate lasting memory. Here, we show that antibody responses to the hapten 4-hydoxy-3-nitrophenyl acetyl (NP) can be improved through additional attachment of a fusion peptide containing a promiscuous helper T cell epitope (Pan DR epitope, PADRE) that binds diverse MHC class II molecules. Such αGalCer-hapten-peptide tricomponent vaccines generate strong and sustained anti-NP antibody titers with increased hapten affinity compared to vaccines without the helper epitope. The tricomponent vaccine platform is therefore suitable for further exploration in the pursuit of efficacious antihapten immunotherapies.


Haptens , Vaccines, Conjugate , Animals , Haptens/immunology , Haptens/chemistry , Mice , Vaccines, Conjugate/immunology , Peptides/immunology , Peptides/chemistry , Antibody Formation/immunology , Mice, Inbred C57BL , Galactosylceramides/immunology , Galactosylceramides/chemistry , Female , Natural Killer T-Cells/immunology , Glycolipids/immunology , Glycolipids/chemistry
2.
Front Immunol ; 15: 1402412, 2024.
Article En | MEDLINE | ID: mdl-38863694

Due to the COVID-19 pandemic, the importance of developing effective vaccines has received more attention than ever before. To maximize the effects of vaccines, it is important to select adjuvants that induce strong and rapid innate and acquired immune responses. Invariant natural killer T (iNKT) cells, which constitute a small population among lymphocytes, bypass the innate and acquired immune systems through the rapid production of cytokines after glycolipid recognition; hence, their activation could be used as a vaccine strategy against emerging infectious diseases. Additionally, the diverse functions of iNKT cells, including enhancing antibody production, are becoming more understood in recent years. In this review, we briefly describe the functional subset of iNKT cells and introduce the glycolipid antigens recognized by them. Furthermore, we also introduce novel vaccine development taking advantages of iNKT cell activation against infectious diseases.


COVID-19 , Glycolipids , Homeostasis , Natural Killer T-Cells , SARS-CoV-2 , Humans , Glycolipids/immunology , Natural Killer T-Cells/immunology , Homeostasis/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Lymphocyte Activation/immunology , COVID-19 Vaccines/immunology
3.
Int J Mol Sci ; 25(11)2024 May 28.
Article En | MEDLINE | ID: mdl-38892058

Metformin, a medication known for its anti-glycemic properties, also demonstrates potent immune system activation. In our study, using a 4T1 breast cancer model in BALB/C WT mice, we examined metformin's impact on the functional phenotype of multiple immune cells, with a specific emphasis on natural killer T (NKT) cells due to their understudied role in this context. Metformin administration delayed the appearance and growth of carcinoma. Furthermore, metformin increased the percentage of IFN-γ+ NKT cells, and enhanced CD107a expression, as measured by MFI, while decreasing PD-1+, FoxP3+, and IL-10+ NKT cells in spleens of metformin-treated mice. In primary tumors, metformin increased the percentage of NKp46+ NKT cells and increased FasL expression, while lowering the percentages of FoxP3+, PD-1+, and IL-10-producing NKT cells and KLRG1 expression. Activation markers increased, and immunosuppressive markers declined in T cells from both the spleen and tumors. Furthermore, metformin decreased IL-10+ and FoxP3+ Tregs, along with Gr-1+ myeloid-derived suppressor cells (MDSCs) in spleens, and in tumor tissue, it decreased IL-10+ and FoxP3+ Tregs, Gr-1+, NF-κB+, and iNOS+ MDSCs, and iNOS+ dendritic cells (DCs), while increasing the DCs quantity. Additionally, increased expression levels of MIP1a, STAT4, and NFAT in splenocytes were found. These comprehensive findings illustrate metformin's broad immunomodulatory impact across a variety of immune cells, including stimulating NKT cells and T cells, while inhibiting Tregs and MDSCs. This dynamic modulation may potentiate its use in cancer immunotherapy, highlighting its potential to modulate the tumor microenvironment across a spectrum of immune cell types.


Breast Neoplasms , Metformin , Mice, Inbred BALB C , Metformin/pharmacology , Metformin/therapeutic use , Animals , Female , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Natural Killer T-Cells/immunology , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Immunomodulating Agents/pharmacology
5.
Front Immunol ; 15: 1358341, 2024.
Article En | MEDLINE | ID: mdl-38807605

Background: Higher prevalence of obesity has been observed among women compared to men, which can be explained partly by the higher consumption of sweets and physical inactivity. Obesity can alter immune cell infiltration, and therefore increase the susceptibility to develop chronic inflammation and metabolic disorders. In this study, we aimed to explore the association between free sugar intake and other unhealthy lifestyle habits in relation to the proportion of circulating iNKT cells among women with healthy weight and women experiencing overweight and obesity. Methods: A cross-sectional study was conducted on 51 Saudi women > 18 years, wherein their daily free sugar intake was assessed using the validated Food Frequency Questionnaire. Data on smoking status, physical activity, and supplement use were also collected. Anthropometric data including height, weight, waist circumference were objectively measured from each participants. The proportion of circulating iNKT cells was determined using flow cytometry. Results: Smoking, physical activity, supplement use, and weight status were not associated with proportion of circulating iNKT cells. Significant association was found between proportion of circulating iNKT cells and total free sugar intake and free sugar intake coming from solid food sources only among women experiencing overweight and obesity (Beta: -0.10: Standard Error: 0.04 [95% Confidence Interval: -0.18 to -0.01], p= 0.034) and (Beta: -0.15: Standard Error: 0.05 [95% Confidence Interval: -0.25 to -0.05], p= 0.005), respectively. Conclusion: Excessive free sugar consumption may alter iNKT cells and consequently increase the risk for chronic inflammation and metabolic disorders.


Natural Killer T-Cells , Obesity , Overweight , Humans , Female , Obesity/immunology , Obesity/blood , Adult , Natural Killer T-Cells/immunology , Cross-Sectional Studies , Overweight/immunology , Middle Aged , Dietary Sugars/adverse effects , Dietary Sugars/administration & dosage , Young Adult
6.
Nat Commun ; 15(1): 4248, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762584

The naked mole-rat (Heterocephalus glaber) is a long-lived rodent species showing resistance to the development of cancer. Although naked mole-rats have been reported to lack natural killer (NK) cells, γδ T cell-based immunity has been suggested in this species, which could represent an important arm of the immune system for antitumor responses. Here, we investigate the biology of these unconventional T cells in peripheral tissues (blood, spleen) and thymus of the naked mole-rat at different ages by TCR repertoire profiling and single-cell gene expression analysis. Using our own TCR annotation in the naked mole-rat genome, we report that the γδ TCR repertoire is dominated by a public invariant Vγ4-2/Vδ1-4 TCR, containing the complementary-determining-region-3 (CDR3)γ CTYWDSNYAKKLF / CDR3δ CALWELRTGGITAQLVF that are likely generated by short-homology-repeat-driven DNA rearrangements. This invariant TCR is specifically found in γδ T cells expressing genes associated with NK cytotoxicity and is generated in both the thoracic and cervical thymus of the naked mole-rat until adult life. Our results indicate that invariant Vγ4-2/Vδ1-4 NK-like effector T cells in the naked mole-rat can contribute to tumor immunosurveillance by γδ TCR-mediated recognition of a common molecular signal.


Mole Rats , Receptors, Antigen, T-Cell, gamma-delta , Thymus Gland , Animals , Mole Rats/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology , Thymus Gland/immunology , Thymus Gland/cytology , Killer Cells, Natural/immunology , Spleen/immunology , Complementarity Determining Regions/genetics , Natural Killer T-Cells/immunology
7.
Sci Adv ; 10(20): eadl6343, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758783

Trauma rapidly mobilizes the immune response of surrounding tissues and activates regeneration program. Manipulating immune response to promote tissue regeneration shows a broad application prospect. However, the understanding of bone healing dynamics at cellular level remains limited. Here, we characterize the landscape of immune cells after alveolar bone injury and reveal a pivotal role of infiltrating natural killer T (NKT) cells. We observe a rapid increase in NKT cells after injury, which inhibit osteogenic differentiation of mesenchymal stem cells (MSCs) and impair alveolar bone healing. Cxcl2 is up-regulated in NKT cells after injury. Systemic administration of CXCL2-neutralizing antibody or genetic deletion of Cxcl2 improves the bone healing process. In addition, we fabricate a gelatin-based porous hydrogel to deliver NK1.1 depletion antibody, which successfully promotes alveolar bone healing. In summary, our study highlights the importance of NKT cells in the early stage of bone healing and provides a potential therapeutic strategy for accelerating bone regeneration.


Bone Regeneration , Chemokine CXCL2 , Natural Killer T-Cells , Osteogenesis , Bone Regeneration/drug effects , Animals , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Mice , Osteogenesis/drug effects , Chemokine CXCL2/metabolism , Chemokine CXCL2/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation , Mice, Inbred C57BL
8.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750591

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Natural Killer T-Cells , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Female , Mice , Natural Killer T-Cells/immunology , Oncolytic Virotherapy/methods , Humans , Cell Line, Tumor , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Immunotherapy/methods , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Combined Modality Therapy , Neoplasm Metastasis , Vesiculovirus/genetics , Dendritic Cells/immunology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Models, Animal
9.
Int J Biol Macromol ; 270(Pt 1): 132258, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735613

Covalently linking an adjuvant to an antigenic protein enhances its immunogenicity by ensuring a synergistic delivery to the immune system, fostering a more robust and targeted immune response. Most adjuvant-protein conjugate vaccines incorporate only one adjuvant due to the difficulties in its synthesis. However, there is a growing interest in developing vaccines with multiple adjuvants designed to elicit a more robust and targeted immune response by engaging different aspects of the immune system for complex diseases where traditional vaccines fall short. Here, we pioneer the synthesis of a dual-adjuvants protein conjugate Vaccine 1 by assembling a toll-like receptor 7/8 (TLR7/8) agonist, an invariant natural killer T cell (iNKT) agonist with a clickable bicyclononyne (BCN). The BCN group can bio-orthogonally react with azide-modified severe acute respiratory syndrome coronavirus-2 receptor-binding domain (SARS-CoV-2 RBD) trimer antigen to give the three-component Vaccine 1. Notably, with a mere 3 µg antigen, it elicited a balanced subclass of IgG titers and 20-fold more IgG2a than control vaccines, highlighting its potential for enhancing antibody-dependent cellular cytotoxicity. This strategy provides a practicable way to synthesize covalently linked dual immunostimulants. It expands the fully synthetic self-adjuvant protein vaccine that uses a single adjuvant to include two different types of adjuvants.


Adjuvants, Immunologic , COVID-19 Vaccines , COVID-19 , Natural Killer T-Cells , SARS-CoV-2 , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/immunology , SARS-CoV-2/immunology , Animals , Natural Killer T-Cells/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/immunology , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Mice , COVID-19/prevention & control , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , Female , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/pharmacology , Immunoglobulin G/immunology
10.
Nanoscale ; 16(23): 11126-11137, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38787697

Natural killer T (NKT) cell-mediated immunotherapy shows great promise in hepatocellular carcinoma featuring an inherent immunosuppressive microenvironment. However, targeted delivery of NKT cell agonists remains challenging. Here, we developed a hyaluronic acid (HA) modified metal organic framework (zeolitic imidazolate framework-8, ZIF-8) to encapsulate α-galactosylceramide (α-Galcer), a classic NKT cell agonist, and doxorubicin (DOX) for eliminating liver cancer, denoted as α-Galcer/DOX@ZIF-8@HA. In the tumor microenvironment (TME), these pH-responsive nano-frameworks can gradually collapse to release α-Galcer for activating NKT cells and further boosting other immune cells in order to initiate an antitumor immune cascade. Along with DOX, the released α-Galcer enabled efficient NKT cell activation in TME for synergistic immunotherapy and tumor elimination, leading to evident tumor suppression and prolonged animal survival in both subcutaneous and orthotopic liver tumor models. Manipulating NKT cell agonists into functional nano-frameworks in TME may be matched with other advanced managements applied in a wider range of cancer therapies.


Carcinoma, Hepatocellular , Doxorubicin , Galactosylceramides , Hyaluronic Acid , Immunotherapy , Liver Neoplasms , Natural Killer T-Cells , Tumor Microenvironment , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Animals , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Natural Killer T-Cells/immunology , Natural Killer T-Cells/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Mice , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Galactosylceramides/chemistry , Galactosylceramides/pharmacology , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Cell Line, Tumor , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Nanoparticles/chemistry , Nanoparticles/therapeutic use
11.
Am J Physiol Cell Physiol ; 326(6): C1563-C1572, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38586879

Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.


Antigens, CD1d , Atherosclerosis , B7-1 Antigen , Hyperlipidemias , Lipoproteins, LDL , Macrophages , Natural Killer T-Cells , Animals , Humans , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Antigens, CD1d/metabolism , Antigens, CD1d/immunology , Antigens, CD1d/genetics , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Hyperlipidemias/immunology , Hyperlipidemias/metabolism , Lipoproteins, LDL/immunology , Lipoproteins, LDL/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , B7-1 Antigen/metabolism , B7-1 Antigen/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL , Female , Middle Aged
12.
Hematology ; 29(1): 2346965, 2024 Dec.
Article En | MEDLINE | ID: mdl-38687637

BACKGROUND: This study aims to investigate the correlation between NK and NKT cell proportion disparities and prognosis in patients with acute myeloid leukemia (AML). METHODS: Forty-four cases of acute myeloid leukemia patients were selected, and flow cytometry was utilized to evaluate the expression of bone marrow NK and NKT cells. Next-generation sequencing technology was employed to detect genetic mutations in these 44 AML patients, and the rates of first induction remission and overall survival were recorded. Comparisons were made to analyze the respective differences in NK and NKT cell proportions among AML patients with various genetic mutations and risk stratifications. RESULTS: The FLT-3-ITD+ group exhibited a significant increase in the proportion of NK cells compared to the normal control group and FLT3-ITD+/NPM1+ group, whereas the proportion of NKT cells was significantly decreased. Additionally, the CEBPA+ group showed an increased proportion of NKT cells compared to the TP53+ group and ASXL1+ group. The high-risk group had a higher proportion of NK cells than the intermediate-risk group, while the proportion of NKT cells was lower in the high-risk group compared to the intermediate-risk group.Patients achieving first induction remission displayed a higher proportion of NKT cells at initial diagnosis compared to those who did not achieve remission. The distribution of NK cells show significant differences among AML patients in different survival periods. CONCLUSION: This results implies that distinct genetic mutations may play a role not only in tumor initiation but also in shaping the tumor microenvironment, consequently impacting prognosis.


Killer Cells, Natural , Leukemia, Myeloid, Acute , Mutation , Natural Killer T-Cells , Nucleophosmin , Tumor Microenvironment , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/immunology , Female , Male , Middle Aged , Tumor Microenvironment/immunology , Adult , Prognosis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Natural Killer T-Cells/immunology , Aged , Young Adult , Adolescent
13.
Mol Ther ; 32(6): 1849-1874, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38584391

The clinical potential of current FDA-approved chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy is encumbered by its autologous nature, which presents notable challenges related to manufacturing complexities, heightened costs, and limitations in patient selection. Therefore, there is a growing demand for off-the-shelf universal cell therapies. In this study, we have generated universal CAR-engineered NKT (UCAR-NKT) cells by integrating iNKT TCR engineering and HLA gene editing on hematopoietic stem cells (HSCs), along with an ex vivo, feeder-free HSC differentiation culture. The UCAR-NKT cells are produced with high yield, purity, and robustness, and they display a stable HLA-ablated phenotype that enables resistance to host cell-mediated allorejection. These UCAR-NKT cells exhibit potent antitumor efficacy to blood cancers and solid tumors, both in vitro and in vivo, employing a multifaceted array of tumor-targeting mechanisms. These cells are further capable of altering the tumor microenvironment by selectively depleting immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells. In addition, UCAR-NKT cells demonstrate a favorable safety profile with low risks of graft-versus-host disease and cytokine release syndrome. Collectively, these preclinical studies underscore the feasibility and significant therapeutic potential of UCAR-NKT cell products and lay a foundation for their translational and clinical development.


Hematopoietic Stem Cells , Immunotherapy, Adoptive , Natural Killer T-Cells , Receptors, Chimeric Antigen , Humans , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Animals , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Mice , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Gene Editing , Xenograft Model Antitumor Assays , Neoplasms/therapy , Neoplasms/immunology , Cell Line, Tumor , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 469-475, 2023 Apr.
Article Zh | MEDLINE | ID: mdl-37096521

OBJECTIVE: To investigate the distribution of bone marrow lymphocyte subsets in patients with myelodysplastic syndrome(MDS),the proportion of activated T cells with immunophenotype CD3+HLA-DR+ in the lymphocytes and its clinical significance, and to understand the effects of different types of MDS, different immunophenotypes, and different expression levels of WT1 on the proportion of lymphocyte subsets and activated T cells. METHODS: The immunophenotypes of 96 MDS patients, the subsets of bone marrow lymphocytes and activated T cells were detected by flow cytometry. The relative expression of WT1 was detected by real-time fluorescent quantitative PCR, and the first induced remission rate (CR1) was calculated, the differences of lymphocyte subsets and activated T cells in MDS patients with different immunophenotype, different WT1 expression, and different course of disease were analyzed. RESULTS: The percentage of CD4+T lymphocyte in MDS-EB-2, IPSS high-risk, CD34+ cells >10%, and patients with CD34+CD7+ cell population and WT1 gene overexpression at intial diagnosis decreased significantly (P<0.05), and the percentage of NK cells and activated T cells increased significantly (P<0.05), but there was no significant difference in the ratio of B lymphocytes. Compared with the normal control group, the percentage of NK cells and activated T cells in IPSS-intermediate-2 group was significantly higher(P<0.05), but there was no significant difference in the percentage of CD3+T, CD4+T lymphocytes. The percentage of CD4+T cells in patients with complete remission after the first chemotherapy was significantly higher than in patients with incomplete remission(P<0.05), and the percentage of NK cells and activated T cells was significantly lower than that in patients with incomplete remission (P<0.05). CONCLUSION: In MDS patients, the proportion of CD3+T and CD4+T lymphocytes decreased, and the proportion of activated T cells increased, indicating that the differentiation type of MDS is more primitive and the prognosis is worse.


CD4-Positive T-Lymphocytes , Lymphocyte Activation , Myelodysplastic Syndromes , T-Lymphocyte Subsets , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/immunology , CD4-Positive T-Lymphocytes/immunology , Natural Killer T-Cells/immunology , WT1 Proteins/genetics , T-Lymphocyte Subsets/immunology , CD3 Complex/analysis , Antigens, CD7/analysis , Humans , Prognosis , Lymphocyte Count , Gene Expression , Immunophenotyping
15.
Int J Immunopathol Pharmacol ; 37: 3946320231161174, 2023.
Article En | MEDLINE | ID: mdl-36848930

Apigenin is a kind of flavonoid with many beneficial biological effects. It not only has direct cytotoxicity to tumor cells, but also can boost the antitumor effect of immune cells by modulating immune system. The purpose of this study was to investigate the proliferation of NK cells treated with apigenin and its cytotoxicity to pancreatic cancer cells in vitro, and explore its potential molecular mechanism. In this study, the effect of apigenin on NK cell proliferation and killing pancreatic cancer cells were measured by CCK-8 assay. Perforin, granzyme B (Gran B), CD107a, and NKG2D expressions of NK cells induced with apigenin were detected by flow cytometry (FCM). The mRNA expression of Bcl-2, Bax and protein expression of Bcl-2, Bax, p-ERK, and p-JNK in NK cells were evaluated by qRT-PCR and western blotting analysis, respectively. The results showed that appropriate concentration of apigenin could significantly promote the proliferation of NK cells in vitro and enhance the killing activity of NK cells against pancreatic cancer cells. The expressions of surface antigen NKG2D and intracellular antigen perforin and Gran B of NK cells were upregulated after treating with apigenin. Bcl-2 mRNA expression was increased, while Bax mRNA expression was decreased. Similarly, the expression of Bcl-2, p-JNK, and p-ERK protein was upregulated, and the expression of Bax protein was downregulated. The molecular mechanism of the immunopotentiation effects of apigenin may be that it up-regulates Bcl-2 and down-regulates Bax expression at the gene and protein levels to facilitate NK cell proliferation, and up-regulates the expression of perforin, Gran B, and NKG2D through the activation of JNK and ERK pathways to enhance NK cell cytotoxicity.


Apigenin , Pancreatic Neoplasms , Humans , Apigenin/pharmacology , bcl-2-Associated X Protein , Cell Proliferation , NK Cell Lectin-Like Receptor Subfamily K , Pancreatic Neoplasms/drug therapy , Perforin , Proto-Oncogene Proteins c-bcl-2 , RNA, Messenger , Natural Killer T-Cells/immunology , Pancreatic Neoplasms
16.
Cancer Immunol Res ; 11(2): 144, 2023 02 03.
Article En | MEDLINE | ID: mdl-36630221

Invariant natural killer T (iNKT) cells are a subset of innate-like T cells with great potential for developing cancer immunotherapies, including approaches based on chimeric antigen receptors (CAR). In this issue, Ngai and colleagues report that the transcription factor lymphoid enhancer-binding factor 1 (LEF1) optimizes functional properties of iNKT cells that promote antitumor immunity, raising enthusiasm for the development of robust cancer immunotherapies based on CAR-modified iNKT cells. See related article by Ngai et al., p. 171 (2).


Natural Killer T-Cells , Neoplasms , Humans , Natural Killer T-Cells/immunology , Lymphoid Enhancer-Binding Factor 1/immunology , Immunotherapy , Neoplasms/therapy , Neoplasms/immunology
17.
Cancer Immunol Res ; 11(2): 171-183, 2023 02 03.
Article En | MEDLINE | ID: mdl-36484736

Vα24-invariant natural killer T cells (NKT) possess innate antitumor properties that can be exploited for cancer immunotherapy. We have shown previously that the CD62L+ central memory-like subset of these cells drives the in vivo antitumor activity of NKTs, but molecular mediators of NKT central memory differentiation remain unknown. Here, we demonstrate that relative to CD62L- cells, CD62L+ NKTs express a higher level of the gene encoding the Wnt/ß-catenin transcription factor lymphoid enhancer binding factor 1 (LEF1) and maintain active Wnt/ß-catenin signaling. CRISPR/Cas9-mediated LEF1 knockout reduced CD62L+ frequency after antigenic stimulation, whereas Wnt/ß-catenin activator Wnt3a ligand increased CD62L+ frequency. LEF1 overexpression promoted NKT expansion and limited exhaustion following serial tumor challenge and was sufficient to induce a central memory-like transcriptional program in NKTs. In mice, NKTs expressing a GD2-specific chimeric-antigen receptor (CAR) with LEF1 demonstrated superior control of neuroblastoma xenograft tumors compared with control CAR-NKTs. These results identify LEF1 as a transcriptional activator of the NKT central memory program and advance development of NKT cell-based immunotherapy. See related Spotlight by Van Kaer, p. 144.


Natural Killer T-Cells , Receptors, Chimeric Antigen , Humans , Animals , Mice , Natural Killer T-Cells/immunology , beta Catenin , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphocyte Activation/immunology
18.
J Biol Chem ; 298(9): 102342, 2022 09.
Article En | MEDLINE | ID: mdl-35933014

Ess2, also known as Dgcr14, is a transcriptional co-regulator of CD4+ T cells. Ess2 is located in a chromosomal region, the loss of which has been associated with 22q11.2 deletion syndrome (22q11DS), which causes heart defects, skeletal abnormalities, and immunodeficiency. However, the specific association of Ess2 with 22q11DS remains unclear. To elucidate the role of Ess2 in T-cell development, we generated Ess2 floxed (Ess2fl/fl) and CD4+ T cell-specific Ess2 KO (Ess2ΔCD4/ΔCD4) mice using the Cre/loxP system. Interestingly, Ess2ΔCD4/ΔCD4 mice exhibited reduced naïve T-cell numbers in the spleen, while the number of thymocytes (CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+) in the thymus remained unchanged. Furthermore, Ess2ΔCD4/ΔCD4 mice had decreased NKT cells and increased γδT cells in the thymus and spleen. A genome-wide expression analysis using RNA-seq revealed that Ess2 deletion alters the expression of many genes in CD4 single-positive thymocytes, including genes related to the immune system and Myc target genes. In addition, Ess2 enhanced the transcriptional activity of c-Myc. Some genes identified as Ess2 targets in mice show expressional correlation with ESS2 in human immune cells. Moreover, Ess2ΔCD4/ΔCD4 naïve CD4+ T cells did not maintain survival in response to IL-7. Our results suggest that Ess2 plays a critical role in post-thymic T-cell survival through the Myc and IL-7 signaling pathways.


CD4-Positive T-Lymphocytes , Interleukin-7 , Nuclear Proteins , Proto-Oncogene Proteins c-myc , Transcription, Genetic , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Survival , Interleukin-7/metabolism , Mice, Knockout , Natural Killer T-Cells/immunology , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Thymus Gland/cytology , Thymus Gland/immunology
19.
FASEB J ; 36(6): e22346, 2022 06.
Article En | MEDLINE | ID: mdl-35583908

Autoimmune hepatitis is an interface hepatitis characterized by the progressive destruction of the liver parenchyma, the cause of which is still obscure. Interleukin (IL)-17A is a major driver of autoimmunity, which can be produced by innate immune cells against several intracellular pathogens. Here, we investigated the involvement of IL-17A in a mice model of immune-mediated hepatitis with the intestine exposed to Salmonella typhimurium. Our results showed more severe Concanavalin (Con) A-induced liver injury and gut microbiome dysbiosis when the mice were treated with a gavage of S. typhimurium. Then, the natural killer (NK) T cells were overactivated by the accumulated IL-17A in the liver in the Con A and S. typhimurium administration group. IL-17A could activate NKT cells by inducing CD178 expression via IL-4/STAT6 signaling. Furthermore, via the portal tract, the laminae propria mucosal-associated invariant T (MAIT)-cell-derived IL-17A could be the original driver of NKT cell overactivation in intragastric administration of S. typhimurium and Con A injection. In IL-17A-deficient mice, Con A-induced liver injury and NKT cell activation were alleviated. However, when AAV-sh-mIL-17a was used to specifically knock down IL-17A in liver, it seemed that hepatic IL-17a knock down did not significantly influence the liver injury. Our results suggested that, under Con A-induction, laminae propria MAIT-derived IL-17A activated hepatic NKT, and this axis could be a therapeutic target in autoimmune liver disease.


Chemical and Drug Induced Liver Injury, Chronic , Hepatitis, Autoimmune , Interleukin-17 , Natural Killer T-Cells , Animals , Chemical and Drug Induced Liver Injury, Chronic/immunology , Concanavalin A/toxicity , Hepatitis, Autoimmune/metabolism , Interleukin-17/immunology , Mice , Mice, Inbred C57BL , Mucous Membrane , Natural Killer T-Cells/immunology
20.
Carbohydr Res ; 513: 108527, 2022 Mar.
Article En | MEDLINE | ID: mdl-35240551

iNKT cells are a special type of T cell that acts as a link between the innate and adaptive immune systems, with the capacity to stimulate a wide range of cell types. The glycolipid α-galactosylceramide (αGC) is a robust agonist of iNKT cells and induces the secretion of Th1- and Th2-type cytokines. αGC and its analogs are widely used as adjuvants to enhance immune responses against viral, parasitic, and bacterial pathogens. This review first discusses the challenges of using free αGC as a vaccine adjuvant to treat infectious diseases. We next present strategies to realize the potential of the adjuvant effect of iNKT cell glycolipids, including (1) the use of Th1- or Th2-biasing αGC analogs, (2) covalent conjugation of glycolipid with antigen, (3) particulate vehicle-assisted delivery of glycolipid, (4) glycolipid-loaded cellular systems, (5) glycolipid combination with other immunostimulants, and (6) usage as mucosal adjuvants. Finally, we discuss future approaches for the development of iNKT cell agonists used as vaccine adjuvants against infectious diseases.


Adjuvants, Vaccine/pharmacology , Communicable Diseases/immunology , Communicable Diseases/therapy , Natural Killer T-Cells/immunology , Animals , Humans
...