Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 928
Filter
1.
Biomaterials ; 313: 122767, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39216327

ABSTRACT

Peripheral artery disease is commonly treated with balloon angioplasty, a procedure involving minimally invasive, transluminal insertion of a catheter to the site of stenosis, where a balloon is inflated to open the blockage, restoring blood flow. However, peripheral angioplasty has a high rate of restenosis, limiting long-term patency. Therefore, angioplasty is sometimes paired with delivery of cytotoxic drugs like paclitaxel to reduce neointimal tissue formation. We pursue intravascular drug delivery strategies that target the underlying cause of restenosis - intimal hyperplasia resulting from stress-induced vascular smooth muscle cell switching from the healthy contractile into a pathological synthetic phenotype. We have established MAPKAP kinase 2 (MK2) as a driver of this phenotype switch and seek to establish convective and contact transfer (coated balloon) methods for MK2 inhibitory peptide delivery to sites of angioplasty. Using a flow loop bioreactor, we showed MK2 inhibition in ex vivo arteries suppresses smooth muscle cell phenotype switching while preserving vessel contractility. A rat carotid artery balloon injury model demonstrated inhibition of intimal hyperplasia following MK2i coated balloon treatment in vivo. These studies establish both convective and drug coated balloon strategies as promising approaches for intravascular delivery of MK2 inhibitory formulations to improve efficacy of balloon angioplasty.


Subject(s)
Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Rats, Sprague-Dawley , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Male , Peptides/chemistry , Peptides/pharmacology , Rats , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/cytology , Angioplasty, Balloon/methods , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Drug Delivery Systems , Hyperplasia/prevention & control , Angioplasty , Neointima/prevention & control , Neointima/pathology
2.
Acta Cir Bras ; 39: e397324, 2024.
Article in English | MEDLINE | ID: mdl-39258620

ABSTRACT

PURPOSE: To compare the endothelial coverage of different stents in porcine carotid arteries. Research problem: How effective are polyurethane stents (PU) and PU + rapamycin (PU + RAPA) compared to bare-metal stents on endothelial coverage by neointima in pigs after 28 days? METHODS: The methodology had two phases for an interventional, experimental, prospective study, with three Moura pigs, 12 weeks old and weighing between 19 and 22.5 kg. In phase I, eight stents were implanted in carotid arteries; three stents coated with PU, three coated with PU + RAPA, and two without coating. After 28 days, phase II was carried out, consisting of euthanasia, removal of the stents, to evaluate the exposed area of the stent struts, and the percentage of endothelialization through optical microscopy and scanning electron microscopy. RESULTS: The eight stents implanted with ultrasound sizing and post-dilation with a larger diameter balloon were analyzed by Doppler ultrasound, intravascular ultrasound, and angiography after 28 days. CONCLUSIONS: This study showed complete endothelial coverage by the endoluminal neointima of the stent struts, good integration and coverage with the arterial wall, with no exposed struts showing the presence of intimal hyperplasia (whitish tissue).


Subject(s)
Drug-Eluting Stents , Sirolimus , Animals , Sirolimus/administration & dosage , Sirolimus/pharmacology , Swine , Carotid Arteries/surgery , Carotid Arteries/drug effects , Neointima/pathology , Microscopy, Electron, Scanning , Polyurethanes , Prospective Studies , Endothelium, Vascular/drug effects , Reproducibility of Results , Polymers , Models, Animal , Time Factors , Coated Materials, Biocompatible
3.
Int Heart J ; 65(5): 945-955, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39261031

ABSTRACT

Excessive neointimal hyperplasia (NIH) of coronary vessels in patients is the main cause of restenosis (RS) after percutaneous coronary intervention (PCI). This study aimed to identify the regulatory genes related to NIH in a rat carotid artery balloon injury model.We established a rat model and performed RNA sequencing to identify differentially expressed long non-coding RNAs (DElncRNAs) and differentially expressed message RNAs (DEmRNAs). Immune cells were analyzed using a murine Microenvironment Cell Population counter. The Pearson correlation between DEmRNAs, DElncRNAs, and immune cells was analyzed, followed by function enrichment analysis. Core DEmRNA was identified using Cytoscape. Next, a core lncRNAs-mRNAs-immune cell regulatory network was constructed. NIH-related gene sets from the Gene Expression Omnibus and GeneCards databases were used for validation.A total of 2,165 DEmRNAs and 705 DElncRNAs were identified in rat carotid artery tissue. Four key immune cells were screened out, including mast cells, vessels, endothelial cells, and fibroblasts. Based on the Pearson correlation between DEmRNAs, DElncRNAs and 4 key immune cells, 246 DEmRNAs and 93 DElncRNAs were obtained. DEmRNAs that interact with lncRNAs were mainly involved in the cell cycle, MAPK signaling pathway, and PI3K-Akt signaling pathway. A core lncRNA-mRNA-immune cell regulatory network was constructed, including 9 mRNAs, 4 lncRNAs, and fibroblasts. External datasets validation confirmed the significant correlation of both these mRNAs and lncRNAs with NIH.In this study, an lncRNA-mRNA-immune cell regulatory network related to NIH was constructed, which provided clues for exploring the potential mechanism of RS in cardiovascular diseases.


Subject(s)
Carotid Artery Injuries , Disease Models, Animal , Gene Regulatory Networks , Hyperplasia , Neointima , RNA, Long Noncoding , RNA, Messenger , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/immunology , Rats , Neointima/pathology , Neointima/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male , Rats, Sprague-Dawley , Carotid Arteries/pathology , Carotid Arteries/metabolism
4.
Eur J Pharmacol ; 982: 176947, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39209097

ABSTRACT

The proliferative and migratory abilities of vascular smooth muscle cells (VSMCs) play a crucial role in neointima formation following vascular injury. Skp2 facilitates proliferation and migration in cells through cell cycle regulation, presenting an important therapeutic target for atherosclerosis, pulmonary hypertension, and vascular restenosis. This study aimed to identify a natural product capable of inhibiting neointima formation post vascular injury. Here, we demonstrate that troxerutin, a flavonoid, significantly reduced viability and downregulated Skp2 in VSMCs. Moreover, troxerutin exhibited anti-proliferative effects on VSMCs and mitigated neointima formation. These findings collectively elucidate the intrinsic mechanism of troxerutin in treating atherosclerosis, pulmonary hypertension, and vascular restenosis by targeting the E3-linked enzyme Skp2.


Subject(s)
Cell Proliferation , Hydroxyethylrutoside , Muscle, Smooth, Vascular , Neointima , S-Phase Kinase-Associated Proteins , Hydroxyethylrutoside/analogs & derivatives , Hydroxyethylrutoside/pharmacology , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/antagonists & inhibitors , Neointima/drug therapy , Neointima/pathology , Neointima/metabolism , Animals , Cell Proliferation/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Proteolysis/drug effects , Cell Survival/drug effects , Humans , Cell Movement/drug effects , Down-Regulation/drug effects , Rats
5.
Nat Commun ; 15(1): 7398, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191789

ABSTRACT

Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRß signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRß and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRß signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRß and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRßY692 negatively regulates PDGFRß signaling activation. The levels of both PTPN14 and phospho-PDGFRßY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRßY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRß activation.


Subject(s)
Hyperplasia , Myocytes, Smooth Muscle , Neointima , Receptor, Platelet-Derived Growth Factor beta , Signal Transduction , Animals , Humans , Male , Mice , Coronary Vessels/pathology , Coronary Vessels/metabolism , Hyperplasia/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/metabolism , Neointima/pathology , Phosphorylation , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics
6.
Cells ; 13(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39195275

ABSTRACT

Restenosis following percutaneous revascularization is a major challenge in patients with insulin resistance and diabetes. Currently, the vascular effects of insulin are not fully understood. In vitro, insulin's effects on endothelial cells (ECs) are beneficial, whereas on vascular smooth muscle cells (SMCs), they are mitogenic. We previously demonstrated a suppressive effect of insulin on neointimal growth under insulin-sensitive conditions that was abolished in insulin-resistant conditions. Here, we aimed to determine the cell-specific effects of insulin on neointimal growth in a model of restenosis under insulin-sensitive and insulin-resistant conditions. Vascular cell-specific insulin receptor (IR)-deficient mice were fed a low-fat diet (LFD) or a high-fat, high-sucrose diet (HFSD) and implanted with an insulin pellet or vehicle prior to femoral artery wire injury. In insulin-sensitive conditions, insulin decreased neointimal growth only in controls. However, under insulin-resistant conditions, insulin had no effect in either control, EC-specific or SMC-specific IR-deficient mice. These data demonstrate that EC and SMC IRs are required for the anti-restenotic effect of insulin in insulin-sensitive conditions and that, in insulin resistance, insulin has no adverse effect on vascular SMCs in vivo.


Subject(s)
Disease Models, Animal , Endothelial Cells , Insulin Resistance , Insulin , Receptor, Insulin , Animals , Insulin/metabolism , Insulin/pharmacology , Mice , Receptor, Insulin/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Neointima/pathology , Neointima/metabolism , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Mice, Inbred C57BL
7.
Nat Commun ; 15(1): 6919, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134547

ABSTRACT

Serum response factor (SRF) controls gene transcription in vascular smooth muscle cells (VSMCs) and regulates VSMC phenotypic switch from a contractile to a synthetic state, which plays a key role in the pathogenesis of cardiovascular diseases (CVD). It is not known how post-translational SUMOylation regulates the SRF activity in CVD. Here we show that Senp1 deficiency in VSMCs increased SUMOylated SRF and the SRF-ELK complex, leading to augmented vascular remodeling and neointimal formation in mice. Mechanistically, SENP1 deficiency in VSMCs increases SRF SUMOylation at lysine 143, reducing SRF lysosomal localization concomitant with increased nuclear accumulation and switching a contractile phenotype-responsive SRF-myocardin complex to a synthetic phenotype-responsive SRF-ELK1 complex. SUMOylated SRF and phospho-ELK1 are increased in VSMCs from coronary arteries of CVD patients. Importantly, ELK inhibitor AZD6244 prevents the shift from SRF-myocardin to SRF-ELK complex, attenuating VSMC synthetic phenotypes and neointimal formation in Senp1-deficient mice. Therefore, targeting the SRF complex may have a therapeutic potential for the treatment of CVD.


Subject(s)
Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Proteins , Phenotype , Serum Response Factor , Sumoylation , Vascular Remodeling , Animals , Humans , Male , Mice , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , ets-Domain Protein Elk-1/metabolism , ets-Domain Protein Elk-1/genetics , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Serum Response Factor/metabolism , Serum Response Factor/genetics , Trans-Activators/metabolism , Trans-Activators/genetics
8.
Nat Cardiovasc Res ; 3(5): 541-557, 2024 May.
Article in English | MEDLINE | ID: mdl-39195932

ABSTRACT

Common arterial grafts used in coronary artery bypass grafting include internal thoracic artery (ITA), radial artery (RA) and right gastroepiploic artery (RGA) grafts; of these, the ITA has the best clinical outcome. Here, by analyzing the single-cell transcriptome of different arterial grafts, we suggest optimization strategies for the RA and RGA based on the ITA as a reference. Compared with the ITA, the RA had more lipid-handling-related CD36+ endothelial cells. Vascular smooth muscle cells from the RGA were more susceptible to spasm, followed by those from the RA; comparison with the ITA suggested that potassium channel openers may counteract vasospasm. Fibroblasts from the RA and RGA highly expressed GDF10 and CREB5, respectively; both GDF10 and CREB5 are associated with extracellular matrix deposition. Cell-cell communication analysis revealed high levels of macrophage migration inhibitory factor signaling in the RA. Administration of macrophage migration inhibitory factor inhibitor to mice with partial carotid artery ligation blocked neointimal hyperplasia induced by disturbed flow. Modulation of identified targets may have protective effects on arterial grafts.


Subject(s)
Mammary Arteries , Animals , Humans , Mammary Arteries/transplantation , Mammary Arteries/metabolism , Single-Cell Analysis , Radial Artery/transplantation , Radial Artery/metabolism , Gastroepiploic Artery/metabolism , Gastroepiploic Artery/transplantation , Myocytes, Smooth Muscle/metabolism , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Disease Models, Animal , Mice, Inbred C57BL , Neointima/pathology , Neointima/metabolism , Coronary Artery Bypass/methods , Cell Communication , Fibroblasts/metabolism , Endothelial Cells/metabolism , Mice , Signal Transduction , Transcriptome , Vasoconstriction/drug effects , Cells, Cultured , Hyperplasia/metabolism , Hyperplasia/pathology , Cyclic AMP Response Element-Binding Protein/metabolism
9.
Animal Model Exp Med ; 7(4): 397-407, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970173

ABSTRACT

BACKGROUND: Restenosis frequently occurs after percutaneous angioplasty in patients with vascular occlusion and seriously threatens their health. Substantial evidence has revealed that preventing vascular smooth muscle cell proliferation using a drug-eluting stent is an effective approach to improve restenosis. Cucurbitacins have been demonstrated to exert an anti-proliferation effect in various tumors and a hypotensive effect. This study aims to investigate the role of cucurbitacins extracted from Cucumis melo L. (CuECs) and cucurbitacin B (CuB) on restenosis. METHODS: C57BL/6 mice were subjected to left carotid artery ligation and subcutaneously injected with CuECs or CuB for 4 weeks. Hematoxylin-Eosin, immunofluorescence and immunohistochemistry staining were used to evaluate the effect of CuECs and CuB on neointimal hyperplasia. Western blot, real-time PCR, flow cytometry analysis, EdU staining and cellular immunofluorescence assay were employed to measure the effects of CuECs and CuB on cell proliferation and the cell cycle in vitro. The potential interactions of CuECs with cyclin A2 were performed by molecular docking. RESULTS: The results demonstrated that both CuECs and CuB exhibited significant inhibitory effects on neointimal hyperplasia and proliferation of vascular smooth muscle cells. Furthermore, CuECs and CuB mediated cell cycle arrest at the S phase. Autodocking analysis demonstrated that CuB, CuD, CuE and CuI had high binding energy for cyclin A2. Our study also showed that CuECs and CuB dramatically inhibited FBS-induced cyclin A2 expression. Moreover, the expression of cyclin A2 in CuEC- and CuB-treated neointima was downregulated. CONCLUSIONS: CuECs, especially CuB, exert an anti-proliferation effect in VSMCs and may be potential drugs to prevent restenosis.


Subject(s)
Cell Proliferation , Cyclin A2 , Hyperplasia , Mice, Inbred C57BL , Muscle, Smooth, Vascular , Neointima , Animals , Cell Proliferation/drug effects , Neointima/drug therapy , Neointima/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Cyclin A2/metabolism , Hyperplasia/drug therapy , Hyperplasia/prevention & control , Male , Mice , Cucurbitacins/pharmacology , Myocytes, Smooth Muscle/drug effects
10.
J Am Heart Assoc ; 13(15): e034203, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39023067

ABSTRACT

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS: Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS: Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.


Subject(s)
Cell Proliferation , Inositol 1,4,5-Trisphosphate Receptors , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Neointima , Animals , Male , Mice , Becaplermin/pharmacology , Becaplermin/metabolism , Calcium/metabolism , Calcium Signaling , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/genetics , Cell Movement , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
11.
Article in English | MEDLINE | ID: mdl-39008640

ABSTRACT

BACKGROUND: Hemodialysis is a prevalent treatment for the end-stage chronic kidney disease (CKD) worldwide. The primary arteriovenous fistula (AVF), widely considered the optimal hemodialysis access method, fails to mature in up to two-thirds of the cases. The etiology of the early AVF failure, defined as thrombosis or inability to use within three months post-creation remains less understood, and is influenced by various factors including patient demographics, surgical techniques, and genetic predispositions. Neointimal hyperplasia is a primary histological finding in stenotic lesions leading to the AVF failure. However, there are insufficient data on the cellular phenotypes and the impact of the preexisting CKD-related factors. This study aims to investigate the histological, morphometric, and immunohistochemical alterations in the fistula vein, pre-, peri-, and post-early failure. MATERIALS AND METHODS: Eighty-nine stage 4-5 CKD patients underwent standard preoperative assessment, including the Doppler ultrasound, before a typical radio-cephalic AVF creation. Post-failure, a new AVF was created proximally. The vein specimens were collected during the surgery, processed, and analyzed for morphometric analyses and various cellular markers, including Vimentin, TGF, and Ki 67. RESULTS: The study enrolled 89 CKD patients, analyzing various aspects of their condition and AVF failures. The histomorphometric analysis revealed substantial venous luminal stenosis and varied endothelial changes. The immunohistologic analysis showed differential marker expressions pre- and post-AVF creation. CONCLUSION: This study highlights the complexity of the early AVF failures in CKD patients. The medial hypertrophy emerged as a significant preexisting lesion, while the postoperative analyses indicated a shift towards neointimal hyperplasia. The research underscores the nuanced interplay of vascular remodeling, endothelial damage, and cellular proliferation in the AVF outcomes.


Subject(s)
Arteriovenous Shunt, Surgical , Hyperplasia , Neointima , Renal Dialysis , Humans , Arteriovenous Shunt, Surgical/adverse effects , Female , Male , Middle Aged , Aged , Neointima/pathology , Hyperplasia/pathology , Immunohistochemistry , Adult , Treatment Failure , Time Factors , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/pathology , Kidney Failure, Chronic/complications , Graft Occlusion, Vascular/pathology , Graft Occlusion, Vascular/etiology , Vascular Patency , Ki-67 Antigen/metabolism , Ki-67 Antigen/analysis , Biomarkers/analysis , Biomarkers/metabolism , Veins/pathology , Veins/diagnostic imaging , Vascular Remodeling
12.
Biomed Pharmacother ; 177: 117022, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917756

ABSTRACT

BACKGROUND: The transplantation of endothelial progenitor cells (EPCs) has been shown to reduce neointimal hyperplasia following arterial injury. However, the efficacy of this approach is hampered by limited homing of EPCs to the injury site. Additionally, the in vivo recruitment and metabolic activity of transplanted EPCs have not been continuously monitored. METHODS: EPCs were labeled with indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) and subjected to external magnetic field targeting to enhance their delivery to a carotid balloon injury (BI) model in Sprague-Dawley rats. Magnetic particle imaging (MPI)/ fluorescence imaging (FLI) multimodal in vivo imaging, 3D MPI/CT imaging and MPI/FLI ex vivo imaging was performed after injury. Carotid arteries were collected and analyzed for pathology and immunofluorescence staining. The paracrine effects were analyzed by enzyme-linked immunosorbent assay. RESULTS: The application of a magnetic field significantly enhanced the localization and retention of SPIONs@PEG-ICG-EPCs at the site of arterial injury, as evidenced by both in vivo continuous monitoring and ex vivo by observation. This targeted delivery approach effectively inhibited neointimal hyperplasia and increased the presence of CD31-positive cells at the injury site. Moreover, serum levels of SDF-1α, VEGF, IGF-1, and TGF-ß1 were significantly elevated, indicating enhanced paracrine activity. CONCLUSIONS: Our findings demonstrate that external magnetic field-directed delivery of SPIONs@PEG-ICG-EPCs to areas of arterial injury can significantly enhance their therapeutic efficacy. This enhancement is likely mediated through increased paracrine signaling. These results underscore the potential of magnetically guided SPIONs@PEG-ICG-EPCs delivery as a promising strategy for treating arterial injuries.


Subject(s)
Carotid Artery Injuries , Endothelial Progenitor Cells , Hyperplasia , Magnetic Fields , Magnetic Iron Oxide Nanoparticles , Neointima , Rats, Sprague-Dawley , Animals , Endothelial Progenitor Cells/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Neointima/pathology , Carotid Artery Injuries/pathology , Male , Rats
13.
ACS Appl Mater Interfaces ; 16(26): 33159-33168, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912610

ABSTRACT

In the context of arteriovenous fistula (AVF) failure, local delivery enables the release of higher concentrations of drugs that can suppress neointimal hyperplasia (NIH) while reducing systemic adverse effects. However, the radiolucency of polymeric delivery systems hinders long-term in vivo surveillance of safety and efficacy. We hypothesize that using a radiopaque perivascular wrap to deliver anti-NIH drugs could enhance AVF maturation. Through electrospinning, we fabricated multifunctional perivascular polycaprolactone (PCL) wraps loaded with bismuth nanoparticles (BiNPs) for enhanced radiologic visibility and drugs that can attenuate NIH─rosuvastatin (Rosu) and rapamycin (Rapa). The following groups were tested on the AVFs of a total of 24 Sprague-Dawley rats with induced chronic kidney disease: control (i.e., without wrap), PCL-Bi (i.e., wrap with BiNPs), PCL-Bi-Rosu, and PCL-Bi-Rapa. We found that BiNPs significantly improved the wraps' radiopacity without affecting biocompatibility. The drug release profiles of Rosu (hydrophilic drug) and Rapa (hydrophobic drug) differed significantly. Rosu demonstrated a burst release followed by gradual tapering over 8 weeks, while Rapa demonstrated a gradual release similar to that of the hydrophobic BiNPs. In vivo investigations revealed that both drug-loaded wraps can reduce vascular stenosis on ultrasonography and histomorphometry, as well as reduce [18F]Fluorodeoxyglucose uptake on positron emission tomography. Immunohistochemical studies revealed that PCL-Bi-Rosu primarily attenuated endothelial dysfunction and hypoxia in the neointimal layer, while PCL-Bi-Rapa modulated hypoxia, inflammation, and cellular proliferation across the whole outflow vein. In summary, the controlled delivery of drugs with different properties and mechanisms of action against NIH through a multifunctional, radiopaque perivascular wrap can improve imaging and histologic parameters of AVF maturation.


Subject(s)
Bismuth , Rats, Sprague-Dawley , Rosuvastatin Calcium , Sirolimus , Animals , Rats , Sirolimus/chemistry , Sirolimus/pharmacology , Rosuvastatin Calcium/chemistry , Rosuvastatin Calcium/pharmacology , Rosuvastatin Calcium/pharmacokinetics , Bismuth/chemistry , Bismuth/pharmacology , Polyesters/chemistry , Male , Arteriovenous Fistula/pathology , Metal Nanoparticles/chemistry , Neointima/pathology , Nanoparticles/chemistry , Humans , Drug Liberation
14.
Front Immunol ; 15: 1345199, 2024.
Article in English | MEDLINE | ID: mdl-38911855

ABSTRACT

Background: The intimal hyperplasia (IH) and vascular remodelling that follows endovascular injury, for instance after post-angioplasty re-stenosis, results in downstream ischaemia and progressive end organ damage. Interferon gamma (IFNγ) is known to play a critical role in this process. In mouse models we have previously shown that fibrocytes expressing tissue factor (TF) are recruited early to the site of injury. Through thrombin generation and protease activated receptor-1 (PAR-1) activation, fibrocytes secrete angiopoietin-2, stimulate neointimal cell proliferation, inhibit apoptosis and induce CXCL-12 production, all of which contribute to the progressive IH that then develops. In this study we investigated the relationship between TF, angiopoietin-2 and IFNγ. Methods and results: IH developing in carotid arteries of wild-type mice 4 weeks after endoluminal injury contained a significant proportion of IFNγ+ fibrocytes and macrophages, which we show, using a previously defined adoptive transfer model, were derived from circulating CD34+ cells. IH did not develop after injury in IFNγ-deficient mice, except after transplantation of WT bone marrow or adoptive transfer of WT CD34+ cells. In vitro, CD34+ cells isolated from post-injury mice did not express IFNγ, but this was induced when provided with FVIIa and FX, and enhanced when prothrombin was also provided: In both cases IFNγ secretion was TF-dependent and mediated mainly through protease activated PAR-1. IFNγ was predominantly expressed by fibrocytes. In vivo, all IFNγ+ neointimal cells in WT mice co-expressed angiopoietin-2, as did the small numbers of neointimal cells recruited in IFNγ-/- mice. Adoptively transferred WT CD34+ cells treated with either an anti-TIE-2 antibody, or with siRNA against angiopoetin-2 inhibited the expression of IFNγ and the development of IH. Conclusion: TF-dependent angiopoietin-2 production by newly recruited fibrocytes, and to a lesser extent macrophages, switches on IFNγ expression, and this is necessary for the IH to develop. These novel findings enhance our understanding of the pathophysiology of IH and expose potential targets for therapeutic intervention.


Subject(s)
Angiopoietin-2 , Hyperplasia , Interferon-gamma , Macrophages , Mice, Knockout , Neointima , Thromboplastin , Animals , Mice , Interferon-gamma/metabolism , Angiopoietin-2/metabolism , Neointima/pathology , Neointima/immunology , Macrophages/immunology , Macrophages/metabolism , Thromboplastin/metabolism , Thromboplastin/genetics , Mice, Inbred C57BL , Disease Models, Animal , Male , Fibroblasts/metabolism , Carotid Artery Injuries/immunology , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism
15.
Biomed Pharmacother ; 176: 116858, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850669

ABSTRACT

The roles and mechanisms of A-kinase anchoring protein 1 (AKAP1) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. AKAP1 is a mitochondrial PKA-anchored protein and maintains mitochondrial homeostasis. This study aimed to investigate how AKAP1/PKA signaling plays a protective role in inhibiting VSMC phenotypic transformation and neointima formation by regulating mitochondrial fission. The results showed that both PDGF-BB treatment and balloon injury reduced the transcription, expression, and mitochondrial anchoring of AKAP1. In vitro, the overexpression of AKAP1 significantly inhibited PDGF-BB mediated VSMC proliferation and migration, whereas AKAP1 knockdown further aggravated VSMC phenotypic transformation. Additionally, in the balloon injury model in vivo, AKAP1 overexpression reduced neointima formation, the muscle fiber area ratio, and rat VSMC proliferation and migration. Furthermore, PDGF-BB and balloon injury inhibited Drp1 phosphorylation at Ser637 and promoted Drp1 activity and mitochondrial midzone fission; AKAP1 overexpression reversed these effects. AKAP1 overexpression also inhibited the distribution of mitochondria at the plasma membrane and the reduction of PKARIIß expression induced by PDGF-BB, as evidenced by an increase in mitochondria-plasma membrane distance as well as PKARIIß protein levels. Moreover, the PKA agonist promoted Drp1 phosphorylation (Ser637) and inhibited PDGF-BB-mediated mitochondrial fission, cell proliferation, and migration. The PKA antagonist reversed the increase in Drp1 phosphorylation (Ser637) and the decline in mitochondrial midzone fission and VSMC phenotypic transformation caused by AKAP1 overexpression. The results of this study reveal that AKAP1 protects VSMCs against phenotypic modulation by improving Drp1 phosphorylation at Ser637 through PKA and inhibiting mitochondrial fission, thereby preventing neointima formation.


Subject(s)
A Kinase Anchor Proteins , Dynamins , Muscle, Smooth, Vascular , Neointima , Animals , Male , Rats , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , Becaplermin/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Dynamins/metabolism , Mitochondrial Dynamics/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Neointima/metabolism , Neointima/pathology , Phenotype , Phosphorylation , Rats, Sprague-Dawley , Signal Transduction
16.
Mol Cells ; 47(6): 100075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823606

ABSTRACT

Excessive blood vessel wall thickening, known as intimal hyperplasia, can result from injury or inflammation and increase the risk of vascular diseases. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays key roles in tumor surveillance, autoimmune diseases, and apoptosis; however, its role in vascular stenosis remains controversial. Treatment with recombinant isoleucine zipper hexamerization domain soluble TRAIL (ILz(6):TRAIL) significantly inhibited the progression of neointimal hyperplasia (NH) induced by anastomosis of the carotid artery and jugular vein dose dependently, and adenovirus expressing secretable ILz(6):TRAIL also inhibited NH induced by balloon injury in the femoral artery of rats. This study demonstrated the preventive and partial regressive effects of ILz(6):TRAIL on anastomosis of the carotid artery and jugular vein- or balloon-induced NH.


Subject(s)
Hyperplasia , Neointima , Rats, Sprague-Dawley , TNF-Related Apoptosis-Inducing Ligand , Animals , Neointima/pathology , Neointima/prevention & control , Rats , Male , TNF-Related Apoptosis-Inducing Ligand/metabolism , Carotid Arteries/pathology , Carotid Arteries/surgery , Jugular Veins/pathology , Femoral Artery/injuries , Femoral Artery/pathology , Femoral Artery/surgery
17.
Antioxid Redox Signal ; 41(7-9): 488-504, 2024 09.
Article in English | MEDLINE | ID: mdl-38814824

ABSTRACT

Aims: Asprosin, a newly discovered hormone, is linked to insulin resistance. This study shows the roles of asprosin in vascular smooth muscle cell (VSMC) proliferation, migration, oxidative stress, and neointima formation of vascular injury. Methods: Mouse aortic VSMCs were cultured, and platelet-derived growth factor-BB (PDGF-BB) was used to induce oxidative stress, proliferation, and migration in VSMCs. Vascular injury was induced by repeatedly moving a guidewire in the lumen of the carotid artery in mice. Results: Asprosin overexpression promoted VSMC oxidative stress, proliferation, and migration, which were attenuated by toll-like receptor 4 (TLR4) knockdown, antioxidant (N-Acetylcysteine, NAC), NADPH oxidase 1 (NOX1) inhibitor ML171, or NOX2 inhibitor GSK2795039. Asprosin overexpression increased NOX1/2 expressions, whereas asprosin knockdown increased heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) expressions. Asprosin inhibited nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. Nrf2 activator sulforaphane increased HO-1 and NQO-1 expressions and prevented asprosin-induced NOX1/2 upregulation, oxidative stress, proliferation, and migration. Exogenous asprosin protein had similar roles to asprosin overexpression. PDGF-BB increased asprosin expressions. PDGF-BB-induced oxidative stress, proliferation, and migration were enhanced by Nrf2 inhibitor ML385 but attenuated by asprosin knockdown. Vascular injury increased asprosin expression. Local asprosin knockdown in the injured carotid artery promoted HO-1 and NQO-1 expressions but attenuated the NOX1 and NOX2 upregulation, oxidative stress, neointima formation, and vascular remodeling in mice. Innovation and Conclusion: Asprosin promotes oxidative stress, proliferation, and migration of VSMCs via TLR4-Nrf2-mediated redox imbalance. Inhibition of asprosin expression attenuates VSMC proliferation and migration, oxidative stress, and neointima formation in the injured artery. Asprosin might be a promising therapeutic target for vascular injury. Antioxid. Redox Signal. 41, 488-504.


Subject(s)
Cell Movement , Cell Proliferation , Fibrillin-1 , Muscle, Smooth, Vascular , Neointima , Oxidative Stress , Vascular System Injuries , Animals , Oxidative Stress/drug effects , Neointima/metabolism , Neointima/pathology , Mice , Fibrillin-1/metabolism , Fibrillin-1/genetics , Cell Proliferation/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Cell Movement/drug effects , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , Myocytes, Smooth Muscle/metabolism , NF-E2-Related Factor 2/metabolism , Male , Toll-Like Receptor 4/metabolism , Disease Models, Animal
18.
Nat Commun ; 15(1): 3743, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702316

ABSTRACT

Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.


Subject(s)
HSP90 Heat-Shock Proteins , Hyperplasia , Kruppel-Like Transcription Factors , Myocytes, Smooth Muscle , Neointima , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , Animals , Humans , Male , Mice , Arteriovenous Fistula/metabolism , Arteriovenous Fistula/genetics , Arteriovenous Fistula/pathology , Cell Proliferation , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Neointima/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction
19.
Front Biosci (Landmark Ed) ; 29(5): 173, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38812305

ABSTRACT

BACKGROUND: Neointimal hyperplasia (NIH) is the pathological basis of vascular injury disease. Vascular cells are the dominant cells in the process of NIH, but the extent of heterogeneity amongst them is still unclear. METHODS: A mouse model of NIH was constructed by inducing carotid artery ligation. Single-cell sequencing was then used to analyze the transcriptional profile of vascular cells. Cluster features were determined by functional enrichment analysis, gene set scoring, pseudo-time analysis, and cell-cell communication analysis. Additionally, immunofluorescence staining was conducted on vascular tissues from fibroblast lineage-traced (PdgfraDreER-tdTomato) mice to validate the presence of Pecam1+Pdgfra+tdTomato+ cells. RESULTS: The left carotid arteries (ligation) were compared to right carotid arteries (sham) from ligation-induced NIH C57BL/6 mice. Integrative analyses revealed a high level of heterogeneity amongst vascular cells, including fourteen clusters and seven cell types. We focused on three dominant cell types: endothelial cells (ECs), vascular smooth muscle cells (vSMCs), and fibroblasts. The major findings were: (1) four subpopulations of ECs, including ECs4, mesenchymal-like ECs (ECs1 and ECs2), and fibro-like ECs (ECs3); (2) four subpopulations of fibroblasts, including pro-inflammatory Fibs-1, Sca1+ Fibs-2, collagen-producing Fibs-3, and mesenchymal-like Fibs-4; (3) four subpopulations of vSMCs, including vSMCs-1, vSMCs-2, vSMCs-3, and vSMCs-3-derived vSMCs; (4) ECs3 express genes related to extracellular matrix (ECM) remodeling and cell migration, and fibro-like vSMCs showed strong chemokine secretion and relatively high levels of proteases; (5) fibro-like vSMCs that secrete Vegfa interact with ECs mainly through vascular endothelial growth factor receptor 2 (Vegfr2). CONCLUSIONS: This study presents the dynamic cellular landscape within NIH arteries and reveals potential relationships between several clusters, with a specific focus on ECs3 and fibro-like vSMCs. These two subpopulations may represent potential target cells for the treatment of NIH.


Subject(s)
Gene Expression Profiling , Hyperplasia , Mice, Inbred C57BL , Muscle, Smooth, Vascular , Neointima , Single-Cell Analysis , Animals , Neointima/pathology , Neointima/metabolism , Neointima/genetics , Single-Cell Analysis/methods , Hyperplasia/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Carotid Arteries/pathology , Carotid Arteries/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Fibroblasts/metabolism , Fibroblasts/pathology , Disease Models, Animal , Single-Cell Gene Expression Analysis
20.
Thromb Res ; 238: 185-196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729030

ABSTRACT

BACKGROUND: Plaque erosion, a type of coronary atherothrombosis, involves superficial injury to smooth muscle cell (SMC)-rich plaques. Elevated levels of coagulation factor VIII (FVIII) correlate with an increased ischemic heart disease risk. FVIII may contribute to thrombus formation on eroded plaques. AIMS: We aimed to elucidate the role of elevated FVIII in arterial thrombus formation within SMC-rich neointima in rabbits. METHODS AND RESULTS: We assessed the effect of recombinant human FVIII (rFVIII) on blood coagulation in vitro and platelet aggregation ex vivo. An SMC-rich neointima was induced through balloon injury to the unilateral femoral artery. Three weeks after the first balloon injury, superficial erosive injury and thrombus formation were initiated with a second balloon injury of the bilateral femoral arteries 45 min after the administration of rFVIII (100 IU/kg) or saline. The thrombus area and contents were histologically measured 15 min after the second balloon injury. rFVIII administration reduced the activated partial thromboplastin time and augmented botrocetin-induced, but not collagen- or adenosine 5'-diphosphate-induced, platelet aggregation. While rFVIII did not influence platelet-thrombus formation in normal intima, it increased thrombus formation on SMC-rich neointima post-superficial erosive injury. Enhanced immunopositivity for glycoprotein IIb/IIIa and fibrin was observed in rFVIII-administered SMC-rich neointima. Neutrophil count in the arterial thrombus on the SMC-rich neointima correlated positively with thrombus size in the control group, unlike the rFVIII group. CONCLUSIONS: Increased FVIII contributes to thrombus propagation within erosive SMC-rich neointima, highlighting FVIII's potential role in plaque erosion-related atherothrombosis.


Subject(s)
Factor VIII , Myocytes, Smooth Muscle , Neointima , Thrombosis , Rabbits , Animals , Neointima/pathology , Neointima/blood , Thrombosis/blood , Thrombosis/pathology , Male , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Tunica Intima/pathology , Tunica Intima/drug effects , Humans , Platelet Aggregation/drug effects , Femoral Artery/pathology , Femoral Artery/injuries
SELECTION OF CITATIONS
SEARCH DETAIL