Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Mol Cells ; 47(6): 100075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823606

ABSTRACT

Excessive blood vessel wall thickening, known as intimal hyperplasia, can result from injury or inflammation and increase the risk of vascular diseases. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays key roles in tumor surveillance, autoimmune diseases, and apoptosis; however, its role in vascular stenosis remains controversial. Treatment with recombinant isoleucine zipper hexamerization domain soluble TRAIL (ILz(6):TRAIL) significantly inhibited the progression of neointimal hyperplasia (NH) induced by anastomosis of the carotid artery and jugular vein dose dependently, and adenovirus expressing secretable ILz(6):TRAIL also inhibited NH induced by balloon injury in the femoral artery of rats. This study demonstrated the preventive and partial regressive effects of ILz(6):TRAIL on anastomosis of the carotid artery and jugular vein- or balloon-induced NH.


Subject(s)
Hyperplasia , Neointima , Rats, Sprague-Dawley , TNF-Related Apoptosis-Inducing Ligand , Animals , Neointima/pathology , Neointima/prevention & control , Rats , Male , TNF-Related Apoptosis-Inducing Ligand/metabolism , Carotid Arteries/pathology , Carotid Arteries/surgery , Jugular Veins/pathology , Femoral Artery/injuries , Femoral Artery/pathology , Femoral Artery/surgery
2.
Biomaterials ; 306: 122507, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367300

ABSTRACT

Despite the significant progress made in recent years, clinical issues with small-diameter vascular grafts related to low mechanical strength, thrombosis, intimal hyperplasia, and insufficient endothelialization remain unresolved. This study aims to design and fabricate a core-shell fibrous small-diameter vascular graft by co-axial electrospinning process, which will mechanically and biologically meet the benchmarks for blood vessel replacement. The presented graft (PGHV) comprised polycaprolactone/gelatin (shell) loaded with heparin-VEGF and polycaprolactone (core). This study hypothesized that the shell structure of the fibers would allow rapid degradation to release heparin-VEGF, and the core would provide mechanical strength for long-term application. Physico-mechanical evaluation, in vitro biocompatibility, and hemocompatibility assays were performed to ensure safe in vivo applications. After 25 days, the PGHV group released 79.47 ± 1.54% of heparin and 86.25 ± 1.19% of VEGF, and degradation of the shell was observed but the core remained pristine. Both the control (PG) and PGHV groups demonstrated robust mechanical properties. The PGHV group showed excellent biocompatibility and hemocompatibility compared to the PG group. After four months of rat aorta implantation, PGHV exhibited smooth muscle cell regeneration and complete endothelialization with a patency rate of 100%. The novel core-shell structured graft could be pivotal in vascular tissue regeneration application.


Subject(s)
Nanofibers , Vascular Grafting , Rats , Animals , Heparin/chemistry , Vascular Endothelial Growth Factor A/chemistry , Hyperplasia/prevention & control , Nanofibers/chemistry , Blood Vessel Prosthesis , Neointima/prevention & control , Polyesters/chemistry
3.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172726

ABSTRACT

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Subject(s)
Carotid Artery Injuries , Vascular System Injuries , Animals , Rats , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Fibromodulin/metabolism , Hyperplasia/complications , Hyperplasia/metabolism , Hyperplasia/pathology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Rats, Sprague-Dawley , RNA/metabolism , RNA, Transfer/metabolism , Vascular Remodeling , Vascular System Injuries/metabolism
4.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138967

ABSTRACT

In response to injury, vascular smooth muscle cells (VSMCs) of the arterial wall dedifferentiate into a proliferative and migratory phenotype, leading to intimal hyperplasia. The ERK1/2 pathway participates in cellular proliferation and migration, while dual-specificity phosphatase 6 (DUSP6, also named MKP3) can dephosphorylate activated ERK1/2. We showed that DUSP6 was expressed in low baseline levels in normal arteries; however, arterial injury significantly increased DUSP6 levels in the vessel wall. Compared with wild-type mice, Dusp6-deficient mice had smaller neointima. In vitro, IL-1ß induced DUSP6 expression and increased VSMC proliferation and migration. Lack of DUSP6 reduced IL-1ß-induced VSMC proliferation and migration. DUSP6 deficiency did not affect IL-1ß-stimulated ERK1/2 activation. Instead, ERK1/2 inhibitor U0126 prevented DUSP6 induction by IL-1ß, indicating that ERK1/2 functions upstream of DUSP6 to regulate DUSP6 expression in VSMCs rather than downstream as a DUSP6 substrate. IL-1ß decreased the levels of cell cycle inhibitor p27 and cell-cell adhesion molecule N-cadherin in VSMCs, whereas lack of DUSP6 maintained their high levels, revealing novel functions of DUSP6 in regulating these two molecules. Taken together, our results indicate that lack of DUSP6 attenuated neointima formation following arterial injury by reducing VSMC proliferation and migration, which were likely mediated via maintaining p27 and N-cadherin levels.


Subject(s)
Dual-Specificity Phosphatases , Neointima , Vascular System Injuries , Animals , Mice , Cadherins , Cell Movement , Cell Proliferation , Cells, Cultured , Dual-Specificity Phosphatases/genetics , Hyperplasia , Mice, Inbred C57BL , Myocytes, Smooth Muscle , Neointima/genetics , Neointima/prevention & control , Vascular System Injuries/genetics
5.
Life Sci ; 331: 122061, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37652153

ABSTRACT

AIMS: Endothelial progenitor cells (EPCs) play an important role in vascular repair. However, they are dysfunctional in the inflammatory microenvironment during restenosis. In this study, we investigated whether omentin-1, an anti-inflammatory factor, could reduce neointima formation after carotid artery injury (CAI) in rats by improving EPC functions that were damaged by inflammation and the underlying mechanisms. MAIN METHODS: EPCs were transfected with adenoviral vectors expressing human omentin-1 or green fluorescent protein (GFP). Then, the rats received 2 × 106 EPCs expressing omentin-1 or GFP by tail vein injection directly after CAI and again 24 h later. Hematoxylin-eosin staining and immunohistochemistry were used for analyzing neointimal hyperplasia. Besides, EPCs were treated with omentin-1 and TNF-α to examine the underlying mechanism. KEY FINDINGS: Our results showed that omentin-1 could significantly improve EPC functions, including proliferation, apoptosis and tube formation. Meanwhile, EPCs overexpressed with omentin-1 could significantly reduce neointimal hyperplasia and tumor necrosis factor-α (TNF-α) expression after CAI in rats. TNF-α could notably induce EPC dysfunction, which could be markedly reversed by omentin-1 through the inhibition of the p38 MAPK/CREB pathway. Furthermore, a p38 MAPK agonist (anisomycin) significantly abrogated the protective effects of omentin-1 on EPCs damaged by TNF-α. SIGNIFICANCE: Our results indicated that genetically modifying EPC with omentin-1 could be an alternative strategy for the treatment of restenosis.


Subject(s)
Carotid Artery Injuries , Endothelial Progenitor Cells , Humans , Animals , Rats , Tumor Necrosis Factor-alpha , Hyperplasia , Neointima/prevention & control , Apoptosis , Carotid Artery Injuries/drug therapy , Constriction, Pathologic , Green Fluorescent Proteins
6.
Nucleic Acids Res ; 51(9): 4284-4301, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36864760

ABSTRACT

The transcription factor BTB and CNC homology 1(BACH1) has been linked to coronary artery disease risk by human genome-wide association studies, but little is known about the role of BACH1 in vascular smooth muscle cell (VSMC) phenotype switching and neointima formation following vascular injury. Therefore, this study aims to explore the role of BACH1 in vascular remodeling and its underlying mechanisms. BACH1 was highly expressed in human atherosclerotic plaques and has high transcriptional factor activity in VSMCs of human atherosclerotic arteries. VSMC-specific loss of Bach1 in mice inhibited the transformation of VSMC from contractile to synthetic phenotype and VSMC proliferation and attenuated the neointimal hyperplasia induced by wire injury. Mechanistically, BACH1 suppressed chromatin accessibility at the promoters of VSMC marker genes via recruiting histone methyltransferase G9a and cofactor YAP and maintaining the H3K9me2 state, thereby repressing VSMC marker genes expression in human aortic smooth muscle cells (HASMCs). BACH1-induced repression of VSMC marker genes was abolished by the silencing of G9a or YAP. Thus, these findings demonstrate a crucial regulatory role of BACH1 in VSMC phenotypic transition and vascular homeostasis and shed light on potential future protective vascular disease intervention via manipulation of BACH1.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Chromatin , Muscle, Smooth, Vascular , Neointima , Phenotype , Animals , Humans , Mice , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Homeostasis , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Neointima/genetics , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Plaque, Atherosclerotic
7.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834717

ABSTRACT

We investigated the role of a sirolimus-embedded silk microneedle (MN) wrap as an external vascular device for drug delivery efficacy, inhibition of neointimal hyperplasia, and vascular remodeling. Using dogs, a vein graft model was developed to interpose the carotid or femoral artery with the jugular or femoral vein. The control group contained four dogs with only interposed grafts; the intervention group contained four dogs with vein grafts in which sirolimus-embedded silk-MN wraps were applied. After 12-weeks post-implantation, 15 vein grafts in each group were explanted and analyzed. Vein grafts applied with the rhodamine B-embedded silk-MN wrap showed far higher fluorescent signals than those without the wrap. The diameter of vein grafts in the intervention group decreased or remained stable without dilatation; however, it increased in the control group. The intervention group had femoral vein grafts with a significantly lower mean neointima-to-media ratio, and had vein grafts with an intima layer showing a significantly lower collagen density ratio than the control group. In conclusion, sirolimus-embedded silk-MN wrap in a vein graft model successfully delivered the drug to the intimal layer of the vein grafts. It prevented vein graft dilatation, avoiding shear stress and decreasing wall tension, and it inhibited neointimal hyperplasia.


Subject(s)
Neointima , Sirolimus , Animals , Dogs , Neointima/prevention & control , Hyperplasia , Sirolimus/pharmacology , Carotid Arteries , Drug Delivery Systems
8.
J Biomed Mater Res B Appl Biomater ; 111(3): 551-559, 2023 03.
Article in English | MEDLINE | ID: mdl-36200602

ABSTRACT

We previously showed decellularized fish swim bladder can be used as vascular patch and tube graft in rats, mesenchymal stem cells (MSCs) have showed the capability to inhibit neointimal hyperplasia in different animal models. We hypothesized that decellularized fish swim bladder patch loaded with MSCs (bioinspired patch) can inhibit neointimal hyperplasia in a rat aortic patch angioplasty model. Rat MSCs were grown in vitro and flow cytometry was used to confirm their quality. 3.6 × 105 MSCs were mixed into 100 µl of sodium alginate (SA)/hyaluronic acid (HA) hydrogel, two layers of fish swim bladders (5 mm × 5 mm) were sutured together, bioinspired patch was created by injection of hydrogel with MSCs into the space between two layers of fish swim bladder patches. Decellularized rat thoracic aorta patch was used as control. Patches were harvested at days 1 and 14 after implantation. Samples were examined by histology, immunohistochemistry, and immunofluorescence. The decellularized rat thoracic aorta patch and the fish swim bladder patch had a similar healing process after implantation. The bioinspired patch had a similar structure like native aorta. Bioinspired patch showed a decreased neointimal thickness (p = .0053), fewer macrophages infiltration (p = .0090), and lower proliferation rate (p = .0291) compared to the double layers fish swim bladder patch group. Decellularized fish swim bladder patch loaded with MSCs can inhibit neointimal hyperplasia effectively. Although this is a preliminary animal study, it may have a potential application in large animals or clinical research.


Subject(s)
Mesenchymal Stem Cells , Urinary Bladder , Rats , Animals , Hyperplasia/prevention & control , Hyperplasia/pathology , Neointima/prevention & control , Neointima/pathology , Mesenchymal Stem Cells/pathology , Hydrogels
9.
J Control Release ; 353: 96-104, 2023 01.
Article in English | MEDLINE | ID: mdl-36375620

ABSTRACT

Post-operative complications of vascular anastomosis procedures remain a significant clinical challenge and health burden globally. Each year, millions of anastomosis procedures connect arteries and/or veins in vascular bypass, vascular access, organ transplant, and reconstructive surgeries, generally via suturing. Dysfunction of these anastomoses, primarily due to neointimal hyperplasia and the resulting narrowing of the vessel lumen, results in failure rates of up to 50% and billions of dollars in costs to the healthcare system. Non-absorbable sutures are the gold standard for vessel anastomosis; however, damage from the surgical procedure and closure itself causes an inflammatory cascade that leads to neointimal hyperplasia at the anastomosis site. Here, we demonstrate the development of a novel, scalable manufacturing system for fabrication of high strength sutures with nanofiber-based coatings composed of generally regarded as safe (GRAS) polymers and either sirolimus, tacrolimus, everolimus, or pimecrolimus. These sutures provided sufficient tensile strength for maintenance of the vascular anastomosis and sustained drug delivery at the site of the anastomosis. Tacrolimus-eluting sutures provided a significant reduction in neointimal hyperplasia in rats over a period of 14 days with similar vessel endothelialization in comparison to conventional nylon sutures. In contrast, systemically delivered tacrolimus caused significant weight loss and mortality due to toxicity. Thus, drug-eluting sutures provide a promising platform to improve the outcomes of vascular interventions without modifying the clinical workflow and without the risks associated with systemic drug delivery.


Subject(s)
Nanofibers , Tacrolimus , Rats , Animals , Tacrolimus/therapeutic use , Hyperplasia/prevention & control , Neointima/prevention & control , Sutures
10.
J Cardiovasc Transl Res ; 16(1): 112-126, 2023 02.
Article in English | MEDLINE | ID: mdl-35900670

ABSTRACT

Restenosis is a severe complication after percutaneous transluminal coronary angioplasty which limits the long-term efficacy of the intervention. In this study, we investigated the efficiency of exosomes derived from AT2R-overexpressing bone mesenchymal stem cells on the prevention of restenosis after carotid artery injury. Our data showed that AT2R-EXO promoted the proliferation and migration of vascular endothelial cells and maintained the ratio of eNOS/iNOS. On the contrary, AT2R-EXO inhibited the proliferation and migration of vascular smooth muscle cells. In vivo study proved that AT2R-Exo were more effectively accumulated in the injured carotid artery than EXO and Vehicle-EXO controls. AT2R-EXO treatment could improve blood flow of the injured carotid artery site more effectively. Further analysis revealed that AT2REXO prevents restenosis after carotid artery injury by attenuating the injury-induced neointimal hyperplasia. Our study provides a novel and more efficient exosome for the treatment of restenosis diseases after intervention.


Subject(s)
Carotid Artery Injuries , Exosomes , Animals , Humans , Hyperplasia/complications , Cell Proliferation , Endothelial Cells , Cells, Cultured , Disease Models, Animal , Carotid Artery Injuries/etiology , Carotid Artery Injuries/therapy , Neointima/complications , Neointima/prevention & control
11.
Endocrinol Metab (Seoul) ; 37(5): 800-809, 2022 10.
Article in English | MEDLINE | ID: mdl-36168774

ABSTRACT

BACKGRUOUND: Excessive proliferation and migration of vascular smooth muscle cells (VSMCs), which contributes to the development of occlusive vascular diseases, requires elevated mitochondrial oxidative phosphorylation to meet the increased requirements for energy and anabolic precursors. Therefore, therapeutic strategies based on blockade of mitochondrial oxidative phosphorylation are considered promising for treatment of occlusive vascular diseases. Here, we investigated whether DN200434, an orally available estrogen receptor-related gamma inverse agonist, inhibits proliferation and migration of VSMCs and neointima formation by suppressing mitochondrial oxidative phosphorylation. METHODS: VSMCs were isolated from the thoracic aortas of 4-week-old Sprague-Dawley rats. Oxidative phosphorylation and the cell cycle were analyzed in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using a Seahorse XF-24 analyzer and flow cytometry, respectively. A model of neointimal hyperplasia was generated by ligating the left common carotid artery in male C57BL/6J mice. RESULTS: DN200434 inhibited mitochondrial respiration and mammalian target of rapamycin complex 1 activity and consequently suppressed FBS- or PDGF-stimulated proliferation and migration of VSMCs and cell cycle progression. Furthermore, DN200434 reduced carotid artery ligation-induced neointima formation in mice. CONCLUSION: Our data suggest that DN200434 is a therapeutic option to prevent the progression of atherosclerosis.


Subject(s)
Atherosclerosis , Neointima , Rats , Mice , Male , Animals , Neointima/prevention & control , Neointima/drug therapy , Neointima/metabolism , Muscle, Smooth, Vascular/metabolism , Mice, Inbred C57BL , Cell Proliferation , Rats, Sprague-Dawley , Cells, Cultured , Carotid Artery, Common/metabolism , Carotid Arteries/surgery , Carotid Arteries/metabolism , Mammals
12.
FASEB J ; 36(9): e22486, 2022 09.
Article in English | MEDLINE | ID: mdl-35929425

ABSTRACT

Neointimal hyperplasia (NIH) after revascularization is a key unsolved clinical problem. Various studies have shown that attenuation of the acute inflammatory response on the vascular wall can prevent NIH. MicroRNA146a-5p (miR146a-5p) has been reported to show anti-inflammatory effects by inhibiting the NF-κB pathway, a well-known key player of inflammation of the vascular wall. Here, a nanomedicine, which can reach the vascular injury site, based on polymeric micelles was applied to deliver miR146a-5p in a rat carotid artery balloon injury model. In vitro studies using inflammation-induced vascular smooth muscle cell (VSMC) was performed. Results showed anti-inflammatory response as an inhibitor of the NF-κB pathway and VSMC migration, suppression of reactive oxygen species production, and proinflammatory cytokine gene expression in VSMCs. A single systemic administration of miR146a-5p attenuated NIH and vessel remodeling in a carotid artery balloon injury model in both male and female rats in vivo. MiR146a-5p reduced proinflammatory cytokine gene expression in injured arteries and monocyte/macrophage infiltration into the vascular wall. Therefore, miR146a-5p delivery to the injury site demonstrated therapeutic potential against NIH after revascularization.


Subject(s)
Carotid Artery Injuries , MicroRNAs , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arteries , Carotid Artery Injuries/metabolism , Cell Proliferation , Cytokines/metabolism , Female , Hyperplasia/metabolism , Inflammation/metabolism , Male , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , NF-kappa B/metabolism , Nanomedicine , Neointima/drug therapy , Neointima/metabolism , Neointima/prevention & control , Rats
13.
J Agric Food Chem ; 70(24): 7420-7440, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35687823

ABSTRACT

The activation of platelets and proliferation of vascular smooth muscle cells (VSMCs) in the vascular intima play an essential role in the pathological mechanism of vascular restenosis (RS). Rosmarinic acid (RA) is a natural phenolic acid compound. However, its mechanism of action on platelets and VSMCs is still unclear. This study investigated the effects of RA on platelet function, VSMCs phenotypic conversion, proliferation, and migration in vascular remodeling with a specific focus on the Keap1-Nrf2-ARE signaling pathway. RA inhibited platelet aggregation and Ca2+ release and significantly reduced the release of platelet microvesicles. In addition, RA inhibited the phenotypic transition of VSMCs in vitro and in vivo. In vitro experiments showed that RA could effectively inhibit the proliferation and migration of VSMCs induced by the platelet-derived growth factor (PDGF)-BB. PDGF-BB triggered ROS generation and a decrease in mitochondrial membrane potential, which were inhibited by RA. Mechanistically, after artery injury or treatment with PDGF-BB, VSMCs presented with inhibition of the Nrf2/antioxidant response element (ARE) signaling pathway. RA treatment reversed this profile by activating the Nrf2/ARE signaling pathway; stabilizing Keap1 protein; upregulating HO-1, NQO1, GCLM, and GST protein levels; promoting typical Nrf2 nuclear translocation; and preventing VSMCs from oxidative stress damage. On the other hand, RA also inhibited the NF-κB pathway to reduce inflammation. In summary, these results indicate that RA inhibits platelet function and attenuates the proliferation, migration, and phenotypic transition of VSMCs induced by PDGF-BB in vitro and vascular remodeling in vivo. Therefore, RA treatment may be a potential therapy for preventing or treating RS.


Subject(s)
Muscle, Smooth, Vascular , NF-E2-Related Factor 2 , Antioxidant Response Elements , Antioxidants/metabolism , Antioxidants/pharmacology , Becaplermin/pharmacology , Cell Dedifferentiation , Cell Movement , Cell Proliferation , Cells, Cultured , Cinnamates , Depsides , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Myocytes, Smooth Muscle , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Platelet Aggregation , Vascular Remodeling , Rosmarinic Acid
14.
Thromb Haemost ; 122(3): 456-469, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34214997

ABSTRACT

BACKGROUND: Smooth muscle cells (SMCs) are the main driver of neointima formation and restenosis following vascular injury. In animal models, endothelial progenitor cells (EPCs) accelerate endothelial regeneration and reduce neointima formation after arterial injury; however, EPC-capture stents do not reduce target vessel failure compared with conventional stents. Here we examined the influence of EPCs on features of SMCs pivotal for their impact on injury-induced neointima formation including proliferation, migration, and phenotype switch. METHODS AND RESULTS: EPCs, their conditioned medium, and EPC-derived microparticles induced proliferation of SMCs while limiting their apoptosis. In transwell membrane experiments and scratch assays, EPCs stimulated migration of SMCs and accelerated their recovery from scratch-induced injury. Treatment of SMCs with an EPC-derived conditioned medium or microparticles triggered transformation of SMCs toward a synthetic phenotype. However, co-cultivation of EPCs and SMCs enabling direct cell-cell contacts preserved their original phenotype and protected from the transformative effect of SMC cholesterol loading. Adhesion of EPCs to SMCs was stimulated by SMC injury and reduced by blocking CXCR2 and CCR5. Interaction of EPCs with SMCs modulated their secretory products and synergistically increased the release of selected chemokines. Following carotid wire injury in athymic mice, injection of EPCs resulted not only in reduced neointima formation but also in altered cellular composition of the neointima with augmented accumulation of SMCs. CONCLUSION: EPCs stimulate proliferation and migration of SMCs and increase their neointimal accumulation following vascular injury. Furthermore, EPCs context-dependently modify the SMC phenotype with protection from the transformative effect of cholesterol when a direct cell-cell contact is established.


Subject(s)
Cell Movement/physiology , Cell Proliferation/physiology , Endothelial Progenitor Cells , Neointima , Receptors, Interleukin-8B/metabolism , Regeneration/physiology , Vascular System Injuries , Adaptation, Physiological/physiology , Animals , Apoptosis , Arteries/injuries , Arteries/metabolism , Cells, Cultured , Disease Models, Animal , Endothelial Progenitor Cells/pathology , Endothelial Progenitor Cells/physiology , Mice , Myocytes, Smooth Muscle , Neointima/etiology , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Receptors, CCR5/metabolism , Signal Transduction/physiology , Vascular System Injuries/metabolism , Vascular System Injuries/pathology
15.
Nat Commun ; 12(1): 7079, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873173

ABSTRACT

Vascular stent is viewed as one of the greatest advancements in interventional cardiology. However, current approved stents suffer from in-stent restenosis associated with neointimal hyperplasia or stent thrombosis. Herein, we develop a nitric oxide-eluting (NOE) hydrogel coating for vascular stents inspired by the biological functions of nitric oxide for cardiovascular system. Our NOE hydrogel is mechanically tough and could selectively facilitate the adhesion of endothelial cells. Besides, it is non-thrombotic and capable of inhibiting smooth muscle cells. Transcriptome analysis unravels the NOE hydrogel could modulate the inflammatory response and induce the relaxation of smooth muscle cells. In vivo study further demonstrates vascular stents coated with it promote rapid restoration of native endothelium, and persistently suppress inflammation and neointimal hyperplasia in both leporine and swine models. We expect such NOE hydrogel will open an avenue to the surface engineering of vascular implants for better clinical outcomes.


Subject(s)
Coated Materials, Biocompatible/pharmacology , Coronary Restenosis/prevention & control , Hydrogels/pharmacology , Neointima/prevention & control , Nitric Oxide/pharmacology , Stents , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Humans , Hydrogels/metabolism , Hyperplasia , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Neointima/pathology , Nitric Oxide/metabolism , Rabbits , Swine , Transcriptome/drug effects
16.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884903

ABSTRACT

Balloon angioplasty and stent implantation are standard techniques to reopen stenotic vessels. Often, balloons or stents coated with cytostatic drugs are used to prevent re-occlusion of the arteries. Resveratrol, which is known for its numerous beneficial effects on cardiovascular health, is used as an antioxidant additive on paclitaxel-coated balloon catheters. What is still unclear is whether resveratrol-only balloon coating in combination with a bare metal stent (BMS) also has positive effects on vascular healing. Here, we analyzed neointimal thickening, fibrin deposition, inflammation, vasa vasorum density, and reendothelialization after implantation of BMS via a resveratrol coated balloon approach in a porcine model. In general, resveratrol treatment did not result in significantly altered responses compared to the control group in peripheral arteries. In coronary arteries, an increase in vasa vasorum density became evident three days after resveratrol treatment compared to the control group and abolished up to day 7. Significant effects of the resveratrol treatment on the fibrin score or intima-media area were transient and restricted to either peripheral or coronary arteries. In conclusion, local single-dose resveratrol treatment via a resveratrol-only coated balloon and BMS approach did not lead to adverse systemic or local effects, but also no significant beneficial effects on vascular healing were detected in the current study.


Subject(s)
Neointima/prevention & control , Resveratrol/administration & dosage , Vasa Vasorum/drug effects , Wound Healing/drug effects , Angioplasty, Balloon/adverse effects , Animals , Coronary Vessels/drug effects , Disease Models, Animal , Drug-Eluting Stents/adverse effects , Equipment Design , Feasibility Studies , Fibrin/metabolism , Resveratrol/pharmacokinetics , Swine
17.
J Pharm Pharmacol ; 73(8): 1092-1100, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-33950246

ABSTRACT

OBJECTIVES: The aim of this study was to test whether lipid core nanoparticles loaded with paclitaxel (LDE-PTX) protect rat aortic allograft from immunological damage. METHODS: Fisher and Lewis rats were used differing in minor histocompatibility loci. Sixteen Lewis rats were allocated to four-animal groups: SYNG (syngeneic), Lewis rats receiving aorta grafts from Lewis rats; ALLO (allogeneic), Lewis rats receiving aortas from Fisher rats; ALLO+LDE (allogeneic transplant treated with LDE), Lewis rats receiving aortas from Fisher rats, treated with LDE (weekly injection for 3 weeks); ALLO+LDE-PTX (allogeneic transplant treated with LDE-PTX), Lewis rats receiving aortas from Fisher rats treated with LDE-PTX (4 mg/kg weekly for 3 weeks). Treatments began on transplantation day. RESULTS: Thirty days post-transplantation, SYNG showed intact aortas. ALLO and ALLO+LDE presented intense neointimal formation. In ALLO+LDE-PTX, treatment inhibited neointimal formation; narrowing of aortic lumen was prevented in ALLO and ALLO+LDE. LDE-PTX strongly inhibited proliferation and intimal invasion by smooth muscle cells, diminished 4-fold presence of apoptotic/dead cells in the intima, reduced the invasion of aorta by macrophages and T-cells and gene expression of pro-inflammatory tumour necrosis factor-alpha (TNFα), interferon gamma (IFNγ) and interleukin-1 beta (IL-1ß). CONCLUSIONS: LDE-PTX was effective in preventing the vasculopathy associated with rejection and may offer a potent therapeutic tool for post-transplantation.


Subject(s)
Allografts , Aorta/transplantation , Nanoparticle Drug Delivery System/pharmacology , Neointima , Paclitaxel/pharmacology , Allografts/metabolism , Allografts/pathology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis Regulatory Proteins/analysis , Graft Rejection/metabolism , Graft Rejection/pathology , Interferon-gamma/analysis , Interleukin-1beta/analysis , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Rats , Treatment Outcome , Tumor Necrosis Factor-alpha/metabolism , Vascular Grafting/methods
18.
Eur Heart J ; 42(18): 1760-1769, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33580685

ABSTRACT

AIMS: The rapid endothelialization of bare metal stents (BMS) is counterbalanced by inflammation-induced neointimal growth. Drug-eluting stents (DES) prevent leukocyte activation but impair endothelialization, delaying effective device integration into arterial walls. Previously, we have shown that engaging the vascular CD31 co-receptor is crucial for endothelial and leukocyte homeostasis and arterial healing. Furthermore, we have shown that a soluble synthetic peptide (known as P8RI) acts like a CD31 agonist. The aim of this study was to evaluate the effect of CD31-mimetic metal stent coating on the in vitro adherence of endothelial cells (ECs) and blood elements and the in vivo strut coverage and neointimal growth. METHODS AND RESULTS: We produced Cobalt Chromium discs and stents coated with a CD31-mimetic peptide through two procedures, plasma amination or dip-coating, both yielding comparable results. We found that CD31-mimetic discs significantly reduced the extent of primary human coronary artery EC and blood platelet/leukocyte activation in vitro. In vivo, CD31-mimetic stent properties were compared with those of DES and BMS by coronarography and microscopy at 7 and 28 days post-implantation in pig coronary arteries (n = 9 stents/group/timepoint). Seven days post-implantation, only CD31-mimetic struts were fully endothelialized with no activated platelets/leukocytes. At day 28, neointima development over CD31-mimetic stents was significantly reduced compared to BMS, appearing as a normal arterial media with the absence of thrombosis contrary to DES. CONCLUSION: CD31-mimetic coating favours vascular homeostasis and arterial wall healing, preventing in-stent stenosis and thrombosis. Hence, such coatings seem to improve the metal stent biocompatibility.


Subject(s)
Drug-Eluting Stents , Neointima , Animals , Coronary Vessels , Endothelial Cells , Inflammation/prevention & control , Neointima/prevention & control , Prosthesis Design , Stents , Swine
19.
J Biomed Mater Res B Appl Biomater ; 109(2): 269-278, 2021 02.
Article in English | MEDLINE | ID: mdl-32770622

ABSTRACT

Neointimal hyperplasia remains an obstacle after vascular interventions. Programmed death-1 (PD-1) antibody treatment decreases tumor cell proliferation and secretion of inflammatory factors, and several antineoplastic drugs show efficacy against neointimal hyperplasia. We hypothesized that inhibition of PD-1 inhibits neointimal hyperplasia in a rat patch angioplasty model. In a rat aorta patch angioplasty model, four groups were compared: the control group without treatment, a single dose of humanized PD-1 antibody (4 mg/kg) injected immediately after patch angioplasty, PD-1 antibody-coated patches, and BMS-1 (PD-1 inhibitor)-coated patches. Patches were harvested (Day 14) and analyzed. After patch angioplasty, PD-1-positive cells were present. Inhibition of PD-1 using both intraperitoneal injection of humanized PD1 antibody as well as using patches coated with humanized PD1 antibody significantly decreased neointimal thickness (p = 0.0199). There were significantly fewer PD-1 (p = 0.0148), CD3 (p = 0.0072), CD68 (p = 0.0001), CD45 (p = 0.001), and PCNA (p < 0.0001)-positive cells, and PCNA/α-actin dual positive cells (p = 0.0005), in the treated groups. Patches coated with BMS-1 showed similarly decreased neointimal thickness and accumulation of inflammatory cells. Inhibition of PD-1 using PD-1 antibody or its inhibitor BMS-1 can significantly decrease neointimal thickness in vascular patches. Inhibition of the PD-1 pathway may be a promising therapeutic strategy to inhibit neointimal hyperplasia.


Subject(s)
Angioplasty , Antibodies/pharmacology , Aorta/surgery , Coated Materials, Biocompatible/pharmacology , Neointima/prevention & control , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Humans , Hyperplasia , Neointima/metabolism , Neointima/pathology , Programmed Cell Death 1 Receptor/metabolism , Rats , Rats, Sprague-Dawley
20.
Sci Rep ; 10(1): 21420, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293599

ABSTRACT

Neointima hyperplasia is a crucial component of restenosis after coronary angioplasty. We have hypothesized that enhanced generation of platelet-derived thromboxane (TX)A2 in response to vascular damage plays a critical role in neointimal hyperplasia and that antiplatelet agents may mitigate it. In cocultures of human platelets and coronary artery smooth muscle cells (CASMC), we found that platelets induced morphologic changes and enhanced the migration of CASMC. The exposure of platelets to Aspirin [an inhibitor of cyclooxygenase (COX)-1] reduced the generation of TXA2 and prevented the morphological and functional changes induced by platelets in CASMC. Platelet-derived TXA2 induced COX-2 and enhanced prostaglandin (PG)E2 biosynthesis in CASMC, a known mechanism promoting neointimal hyperplasia. COX-2 induction was prevented by different antiplatelet agents, i.e., Aspirin, the TP antagonist SQ29,548, or Revacept (a dimeric soluble GPVI-Fc fusion protein). The administration of the novel antiplatelet agent Revacept to C57BL/6 mice, beginning three days before femoral artery denudation, and continuing up to seven days after injury, prevented the increase of the systemic biosynthesis di TXA2 and reduced femoral artery intima-to-media area and the levels of markers of cell proliferation and macrophage infiltration. Revacept might serve as a therapeutic agent for percutaneous coronary angioplasty and stent implantation.


Subject(s)
Blood Platelets/cytology , Coronary Vessels/cytology , Glycoproteins/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Neointima/prevention & control , Platelet Aggregation Inhibitors/pharmacology , Thromboxane A2/biosynthesis , Urine/chemistry , Adult , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Coculture Techniques , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Cyclooxygenase 2/metabolism , Humans , Hyperplasia , Male , Mice , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Neointima/metabolism , Neointima/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL