Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Biomater Adv ; 160: 213836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599042

ABSTRACT

The behavior of stem cells is regulated by mechanical cues in their niche that continuously vary due to extracellular matrix (ECM) remodeling, pulsated mechanical stress exerted by blood flow, and/or cell migration. However, it is still unclear how dynamics of mechanical cues influence stem cell lineage commitment, especially in a 3D microenvironment where mechanosensing differs from that in a 2D microenvironment. In the present study, we investigated how temporally varying mechanical signaling regulates expression of the early growth response 1 gene (Egr1), which we recently discovered to be a 3D matrix-specific mediator of mechanosensitive neural stem cell (NSC) lineage commitment. Specifically, we temporally controlled the activity of Ras homolog family member A (RhoA), which is known to have a central role in mechanotransduction, using our previously developed Arabidopsis thaliana cryptochrome-2-based optoactivation system. Interestingly, pulsed RhoA activation induced Egr1 upregulation in stiff 3D gels only, whereas static light stimulation induced an increase in Egr1 expression across a wide range of 3D gel stiffnesses. Actin assembly inhibition limited Egr1 upregulation upon RhoA activation, implying that RhoA signaling requires an actin-involved process to upregulate Egr1. Consistently, static-light RhoA activation rather than pulsed-light activation restricted neurogenesis in soft gels. Our findings indicate that the dynamics of RhoA activation influence Egr1-mediated stem cell fate within 3D matrices in a matrix stiffness-dependent manner.


Subject(s)
Mechanotransduction, Cellular , Neural Stem Cells , rhoA GTP-Binding Protein , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/radiation effects , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Light , Cell Differentiation , Humans , Extracellular Matrix/metabolism , Animals
2.
Bull Exp Biol Med ; 172(2): 228-235, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34855083

ABSTRACT

We studied the effect of neural stem cells (NSC) and mesenchymal stem cells (MSC) from mouse adipose tissue on survival, clonogenic activity, and senescence of NSC after exposure to γ-radiation. It was found that survival and clonogenic activity of NSC irradiated in doses of 1 and 2 Gy was enhanced when irradiated cells were co-cultured with non-irradiated NSC and MSC in permeable Transwell inserts. The proportion of senescent NSC (cells with high ß-galactosidase activity) increased with increasing irradiation dose. Co-culturing with non-irradiated NSC in 3 days after irradiation in a dose of 1 Gy led to a decrease in the proportion of senescent cells among irradiated NSC. Factors secreted by NSC and MSC can become the basis for the development of means for prevention and treatment of damage to brain cells resulting from radiation therapy of head and neck cancer.


Subject(s)
Gamma Rays/adverse effects , Mesenchymal Stem Cells/cytology , Neural Stem Cells/radiation effects , Adipose Tissue/cytology , Animals , Apoptosis/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Cellular Senescence/physiology , Cellular Senescence/radiation effects , Coculture Techniques , Colony-Forming Units Assay , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/physiology
3.
Mol Psychiatry ; 26(1): 322-340, 2021 01.
Article in English | MEDLINE | ID: mdl-31723242

ABSTRACT

Cranial radiotherapy in children has detrimental effects on cognition, mood, and social competence in young cancer survivors. Treatments harnessing hippocampal neurogenesis are currently of great relevance in this context. Lithium, a well-known mood stabilizer, has both neuroprotective, pro-neurogenic as well as antitumor effects, and in the current study we introduced lithium treatment 4 weeks after irradiation. Female mice received a single 4 Gy whole-brain radiation dose on postnatal day (PND) 21 and were randomized to 0.24% Li2CO3 chow or normal chow from PND 49 to 77. Hippocampal neurogenesis was assessed on PND 77, 91, and 105. We found that lithium treatment had a pro-proliferative effect on neural progenitors, but neuronal integration occurred only after it was discontinued. Also, the treatment ameliorated deficits in spatial learning and memory retention observed in irradiated mice. Gene expression profiling and DNA methylation analysis identified two novel factors related to the observed effects, Tppp, associated with microtubule stabilization, and GAD2/65, associated with neuronal signaling. Our results show that lithium treatment reverses irradiation-induced loss of hippocampal neurogenesis and cognitive impairment even when introduced long after the injury. We propose that lithium treatment should be intermittent in order to first make neural progenitors proliferate and then, upon discontinuation, allow them to differentiate. Our findings suggest that pharmacological treatment of cognitive so-called late effects in childhood cancer survivors is possible.


Subject(s)
Cognition/drug effects , Lithium Compounds/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/radiation effects , Animals , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Female , Hippocampus/cytology , Hippocampus/drug effects , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects
4.
Int J Radiat Biol ; 97(3): 329-340, 2021.
Article in English | MEDLINE | ID: mdl-33332177

ABSTRACT

PURPOSE: Despite being a major treatment modality for brain cancer due to its efficiency in achieving cancer control, radiotherapy has long been known to cause long-term side effects, including radiation-induced cognitive impairment (RICI). Neurogenesis inhibition due to radiation-induced damage in neural stem cells (NSCs) has been demonstrated to be an important mechanism underlying RICI. Radiation-induced bystander effects (RIBEs) denote the biological responses in non-targeted cells after their neighboring cells are irradiated. We have previously demonstrated that RIBEs could play an important role in the skin wound healing process. Therefore, we aimed to investigate whether RIBEs contribute to RICI in this study. MATERIALS AND METHODS: The transwell co-culture method was used to investigate bystander effects in mouse NSCs induced by irradiated GL261 mouse glioma cells in vitro. The proliferation, neurosphere-forming capacity and differentiation potential of NSCs were determined as the bystander endpoints. The exosomes were extracted from the media used to culture GL261 cells and were injected into the hippocampus of C57BL/6 mice. Two months later, the neurogenesis of mice was assessed using BrdU incorporation and immunofluorescence microscopy, and cognitive function was evaluated by the Morris Water Maze. RESULTS: After co-culture with GL261 glioma cells, mouse NSCs displayed inhibited proliferation and reduced neurosphere-forming capacity and differentiation potential. The irradiated GL261 cells caused greater inhibition and reduction in NSCs than unirradiated GL261 cells. Moreover, adding the exosomes secreted by GL261 cells into the culture of NSCs inhibited NSC proliferation, suggesting that the cancer cell-derived exosomes may be critical intercellular signals. Furthermore, injection of the exosomes from GL261 cells into the hippocampus of mice caused significant neurogenesis inhibition and cognitive impairment two month later, and the exosomes from irradiated GL261 cells induced greater inhibitory effects. CONCLUSION: RIBEs mediated by the exosomes from irradiated cancer cells could contribute to RICI and, therefore, could be a novel mechanism underlying RICI.


Subject(s)
Brain Neoplasms/radiotherapy , Bystander Effect/radiation effects , Cognitive Dysfunction/etiology , Glioma/radiotherapy , Neural Stem Cells/radiation effects , Animals , Brain Neoplasms/pathology , Cell Differentiation , Cell Line, Tumor , Exosomes/physiology , Female , Glioma/pathology , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neurogenesis/radiation effects
5.
Nat Biomed Eng ; 5(1): 103-113, 2021 01.
Article in English | MEDLINE | ID: mdl-33106615

ABSTRACT

The biological effects of circularly polarized light on living cells are considered to be negligibly weak. Here, we show that the differentiation of neural stem cells into neurons can be accelerated by circularly polarized photons when DNA-bridged chiral assemblies of gold nanoparticles are entangled with the cells' cytoskeletal fibres. By using cell-culture experiments and plasmonic-force calculations, we demonstrate that the nanoparticle assemblies exert a circularly-polarized-light-dependent force on the cytoskeleton, and that the light-induced periodic mechanical deformation of actin nanofibres with a frequency of 50 Hz stimulates the differentiation of neural stem cells into the neuronal phenotype. When implanted in the hippocampus of a mouse model of Alzheimer's disease, neural stem cells illuminated following a polarity-optimized protocol reduced the formation of amyloid plaques by more than 70%. Our findings suggest that circularly polarized light can guide cellular development for biomedical use.


Subject(s)
Cell Differentiation , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Neural Stem Cells , Animals , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cells, Cultured , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/radiation effects , DNA/chemistry , Gold/chemistry , Hippocampus/cytology , Humans , Mice , Mice, Transgenic , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/radiation effects , Recombinant Fusion Proteins , Stereoisomerism
6.
Biochem Biophys Res Commun ; 531(4): 535-542, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32807492

ABSTRACT

INTRODUCTION: Pre-clinical testing of small molecules for therapeutic development across many pathologies relies on the use of in-vitro and in-vivo models. When designed and implemented well, these models serve to predict the clinical outcome as well as the toxicity of the evaluated therapies. The two-dimensional (2D) reductionist approach where cells are incubated in a mono-layer on hard plastic microtiter plates is relatively inexpensive but not physiologically relevant. In contrast, well developed and applied three dimensional (3D) in vitro models could be employed to bridge the gap between 2D in vitro primary screening and expensive in vivo rodent models by incorporating key features of the tissue microenvironment to explore differentiation, cortical development, cancers and various neuronal dysfunctions. These features include an extracellular matrix, co-culture, tension and perfusion and could replace several hundred rodents in the drug screening validation cascade. METHODS: Human neural progenitor cells from middle brain (ReN VM, Merck Millipore, UK) were expanded as instructed by the supplier (Merck Millipore, UK), and then seeded in 96-well low-attachment plates (Corning, UK) to form multicellular spheroids followed by adding a Matrigel layer to mimic extracellular matrix around neural stem cell niche. ReN VM cells were then differentiated via EGF and bFGF deprivation for 7 days and were imaged at day 7. Radiotherapy was mimicked via gamma-radiation at 2Gy in the absence and presence of selected DYRK1A inhibitors Harmine, INDY and Leucettine 41 (L41). Cell viability was measured by AlamarBlue assay. Immunofluorescence staining was used to assess cell pluripotency marker SOX2 and differentiation marker GFAP. RESULTS: After 7 days of differentiation, neuron early differentiation marker (GFAP, red) started to be expressed among the cells expressing neural stem cell marker SOX2 (green). Radiation treatment caused significant morphology change including the reduced viability of the spheroids. These spheroids also revealed sensitizing potential of DYRK1A inhibitors tested in this study, including Harmine, INDY and L41. DISCUSSION & CONCLUSIONS: Combined with the benefit of greatly reducing the issues associated with in vivo rodent models, including reducing numbers of animals used in a drug screening cascade, cost, ethics, and potential animal welfare burden, we feel the well-developed and applied 3D neural spheroid model presented in this study will provide a crucial tool to evaluate combinatorial therapies, optimal drug concentrations and treatment dosages.


Subject(s)
Drug Evaluation, Preclinical/methods , Neural Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Spheroids, Cellular/drug effects , Cell Line , Collagen , Dioxoles/pharmacology , Drug Combinations , Extracellular Matrix , Gamma Rays , Harmine/pharmacology , Humans , Imidazoles/pharmacology , Laminin , Neural Stem Cells/radiation effects , Neurites/drug effects , Proteoglycans , Radiation-Sensitizing Agents/pharmacology , SOXB1 Transcription Factors/metabolism , Spheroids, Cellular/radiation effects , Dyrk Kinases
7.
Neurosurgery ; 87(1): E31-E40, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32497183

ABSTRACT

BACKGROUND: In treating glioblastoma, irradiation of the neural progenitor cell (NPC) niches is controversial. Lower hippocampal doses may limit neurocognitive toxicity, but higher doses to the subventricular zones (SVZ) may improve survival. OBJECTIVE: To prospectively evaluate the impact of limiting radiation dose to the NPC niches on tumor progression, survival, and cognition in patients with glioblastoma. METHODS: Patients with glioblastoma received resection followed by standard chemoradiation. Radiation dose to the NPC niches, including the bilateral hippocampi and SVZ, was minimized without compromising tumor coverage. The primary outcome was tumor progression in the spared NPC niches. Follow-up magnetic resonance imaging was obtained bimonthly. Neurocognitive testing was performed before treatment and at 6- and 12-mo follow-up. Cox regression evaluated predictors of overall and progression-free survival. Linear regression evaluated predictors of neurocognitive decline. RESULTS: A total of 30 patients enrolled prospectively. The median age was 58 yr. Median mean doses to the hippocampi and SVZ were 49.1 and 41.8 gray (Gy) ipsilaterally, and 16.5 and 19.9 Gy contralaterally. Median times to death and tumor progression were 16.0 and 7.6 mo, and were not significantly different compared to a matched historical control. No patients experienced tumor progression in the spared NPC-containing regions. Overall survival was associated with neurocognitive function (P ≤ .03) but not dose to the NPC niches. Higher doses to the hippocampi and SVZ predicted greater decline in verbal memory (P ≤ .01). CONCLUSION: In treating glioblastoma, limiting dose to the NPC niches may reduce cognitive toxicity while maintaining clinical outcomes. Further studies are needed to confirm these results.


Subject(s)
Brain Neoplasms/therapy , Chemoradiotherapy/methods , Cranial Irradiation/methods , Glioblastoma/therapy , Stem Cell Niche/radiation effects , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Chemoradiotherapy/adverse effects , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cohort Studies , Cranial Irradiation/adverse effects , Female , Glioblastoma/mortality , Glioblastoma/pathology , Hippocampus/radiation effects , Humans , Lateral Ventricles/radiation effects , Male , Middle Aged , Neural Stem Cells/radiation effects , Prospective Studies , Temozolomide/therapeutic use
8.
Life Sci Space Res (Amst) ; 25: 9-17, 2020 May.
Article in English | MEDLINE | ID: mdl-32414496

ABSTRACT

Space particle radiations may cause significant damage to proteins and oxidative stress in the cells within the central nervous system and pose a potential health hazard to humans in long-term manned space explorations. Dysregulation of the ubiquitin-proteasome system as evidenced by abnormal accumulation of polyubiquitin (pUb) chain linkages has been implicated in several age-related neurodegenerative disorders by mechanisms that may involve the inter-neuronal spread of toxic misfolded proteins, the induction of chronic neuroinflammation, or the inappropriate inhibition or activation of key enzymes, which could lead to dysfunction in, for example, proteolysis, or the accumulation of post-translationally-modified substrates.In this study, we employed a quantitative proteomics method to evaluate the impact of particle-radiation induced alterations in three major pUb-linked chains at lysine residues Lys-48 (K-48), Lys-63 (K-63), and Lys-11 (K-11), and probed for global proteomic changes in mouse and human neural cells that were irradiated with low doses of 250 MeV proton, 260 MeV/u silicon or 1 GeV/u iron ions. We found significant accumulation in K-48 linkage after 1 Gy protons and K-63 linkage after 0.5 Gy iron ions in human neural cells. Cells derived from different regions of the mouse brain (cortex, striatum and mesencephalon) showed differential sensitivity to particle radiation exposure. Although none of the linkages were altered after proton exposure, both K-48 and K-63 linkages in mouse striatal neuronal cells were elevated after 0.5 Gy of silicon or iron ions. Changes were also seen in proteins commonly used as markers of neural progenitor and stem cells, in DNA binding/damage repair and cellular redox pathways. In contrast, no significant changes were observed at the same time point after proton irradiation. These results suggest that the quality of the particle radiation plays a key role in the level, linkage and cell type specificity of protein homeostasis in key populations of neuronal cells.


Subject(s)
Heavy Ions/adverse effects , Polyubiquitin/radiation effects , Proteostasis/radiation effects , Protons/adverse effects , Animals , Cells, Cultured , DNA Damage , DNA Repair , Embryonic Stem Cells , Humans , Iron , Mice , Neural Stem Cells/radiation effects , Oxidation-Reduction/radiation effects , Oxidative Stress/radiation effects , Proteome/radiation effects , Radiation, Ionizing , Silicon
9.
Sci Rep ; 10(1): 6562, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32300147

ABSTRACT

Exposure of the developing or adult brain to ionizing radiation (IR) can cause cognitive impairment and/or brain cancer, by targeting neural stem/progenitor cells (NSPCs). IR effects on NSPCs include transient cell cycle arrest, permanent cell cycle exit/differentiation, or cell death, depending on the experimental conditions. In vivo studies suggest that brain age influences NSPC response to IR, but whether this is due to intrinsic NSPC changes or to niche environment modifications remains unclear. Here, we describe the dose-dependent, time-dependent effects of X-ray IR in NSPC cultures derived from the mouse foetal cerebral cortex. We show that, although cortical NSPCs are resistant to low/moderate IR doses, high level IR exposure causes cell death, accumulation of DNA double-strand breaks, activation of p53-related molecular pathways and cell cycle alterations. Irradiated NSPC cultures transiently upregulate differentiation markers, but recover control levels of proliferation, viability and gene expression in the second week post-irradiation. These results are consistent with previously described in vivo effects of IR in the developing mouse cortex, and distinct from those observed in adult NSPC niches or in vitro adult NSPC cultures, suggesting that intrinsic differences in NSPCs of different origins might determine, at least in part, their response to IR.


Subject(s)
Cerebral Cortex/cytology , Neural Stem Cells/cytology , Neural Stem Cells/radiation effects , Animals , Biomarkers/metabolism , Cell Cycle/radiation effects , Cell Death/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Dose-Response Relationship, Radiation , Histones/metabolism , Kinetics , Mice , Models, Biological , Tumor Suppressor Protein p53/metabolism , Up-Regulation/radiation effects , X-Rays
10.
Neurotoxicology ; 79: 40-47, 2020 07.
Article in English | MEDLINE | ID: mdl-32320710

ABSTRACT

Ionizing radiation (IR) is increasingly used for diagnostics and therapy of severe brain diseases. However, IR also has adverse effects on the healthy brain tissue, particularly on the neuronal network. This is true for adults but even more pronounced in the developing brain of unborn and pediatric patients. Epidemiological studies on children receiving radiotherapy showed an increased risk for cognitive decline ranging from mild deficits in academic functioning to severe late effects in intellectual ability and language as a consequence of altered neuronal development and connectivity. To provide a comprehensive approach for the analysis of radiation-induced alterations in human neuronal functionality, we developed an in vitro assay by combining microelectrode array (MEA) analyses and human embryonic stem cell (hESC) derived three-dimensional neurospheres (NS). In our proof of principle study, we irradiated hESC with 1 Gy X-rays and let them spontaneously differentiate into neurons within NS. After the onset of neuronal activity, we recorded and analyzed the activity pattern of the developing neuronal networks. The network activity in NS derived from irradiated hESC was significantly reduced, whereas no differences in molecular endpoints such as cell proliferation and transcript or protein expression analyses were found. Thus, the combination of MEA analysis with a 3D model for neuronal functionality revealed radiation sequela that otherwise would not have been detected. We therefore strongly suggest combining traditional biomolecular methods with the new functional assay presented in this work to improve the risk assessment for IR-induced effects on the developing brain.


Subject(s)
Human Embryonic Stem Cells/radiation effects , Nerve Net/radiation effects , Neural Stem Cells/radiation effects , Neurogenesis/radiation effects , Action Potentials/drug effects , Cell Culture Techniques/instrumentation , Cell Proliferation/radiation effects , Cells, Cultured , Gene Expression Regulation, Developmental/radiation effects , Human Embryonic Stem Cells/metabolism , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Nerve Net/metabolism , Neural Stem Cells/metabolism , Phenotype , Proof of Concept Study , Spheroids, Cellular
11.
Gene ; 738: 144485, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32087272

ABSTRACT

Impairment of neurogenesis is thought to be one of the important mechanisms underlying radiation-induced cognitive decline. Self-renewal and differentiation of neural stem cells (NSCs) are important components of neurogenesis. It has been well established that autophagy plays an important role in neurodegenerative conditions, however, its role in radiation-induced cognitive decline remains unclear. Our previous studies have found that ionizing radiation (IR) induces autophagy in mouse neurons, and minocycline, an antibiotic that can cross the blood-brain barrier, protects neurons from radiation-induced apoptosis through promoting autophagy, thus may contribute to the improvement of mouse cognitive performance after whole-brain irradiation. In the present study, we investigated whether autophagy is involved in radiation-induced damage in self-renewal and differentiation of NSCs. We found that NSCs were extremely sensitive to IR. Irradiation induced autophagy in NSCs in a dose-dependent manner. Atg7 knockdown significantly decreased autophagy, thus increased the apoptosis levels in irradiated NSCs, suggesting that autophagy protected NSCs from radiation-induced apoptosis. Moreover, compared with the negative control NSCs, the neurosphere size was significantly reduced and the neuronal differentiation was notably inhibited in Atg7-deficient NSCs after irradiation, indicating that autophagy defect could exacerbate radiation-induced reduction in NSC self-renewal and differentiation potential. In conclusion, down-regulating autophagy by selective Atg7 knockdown in NSCs enhanced radiation-induced NSC damage, suggesting an important protective role of autophagy in maintaining neurogenesis. Along with the protective effect of autophagy on irradiated neurons, our results on NSCs not only shed the light on the involvement of autophagy in the development of radiation-induced cognitive decline, but also provided a potential target for preventing cognitive impairment after cranial radiation exposure.


Subject(s)
Autophagy-Related Protein 7/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/radiation effects , Animals , Apoptosis/radiation effects , Autophagy/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neurogenesis/radiation effects , Neurons/radiation effects , Pregnancy , Radiation, Ionizing
12.
Brain Res ; 1727: 146548, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31715143

ABSTRACT

Cranial irradiation is used in combination with other therapies as a treatment for brain tumours and is thought to contribute to long-term cognitive deficits. Several rodent models have demonstrated that these cognitive deficits may be correlated with damage to neural progenitor cells in the subventricular zone (SVZ) and dentate gyrus (DG), the two neurogenic niches of the brain. Studies in rodent models typically assess the proliferating progenitor population, but rarely investigate the effect of cranial irradiation on the neural stem cell pool. Further, few studies evaluate the effects in juveniles, an age when children typically receive this treatment. Herein, we examine the cellular and behavioural effects of juvenile cranial irradiation on stem and progenitor populations in the two neurogenic regions of the brain and assess cognitive outcomes. We found regionally distinct effects of cranial irradiation in the juvenile brain. In the SVZ, we observed a defect in the stem cell pool and a concomitant decrease in proliferating cells that were maintained for at least one week. In the DG, a similar defect in the stem cell pool and proliferating cells was observed and persisted in the stem cell population. Finally, we demonstrated that cranial irradiation resulted in late cognitive deficits. This study demonstrates that juvenile cranial irradiation leads to regionally distinct defects in the stem and progenitor populations, and late cognitive deficits, which may be important factors in determining therapeutic targets and timing of interventions following cranial irradiation.


Subject(s)
Cognitive Dysfunction/etiology , Cranial Irradiation , Dentate Gyrus/radiation effects , Lateral Ventricles/radiation effects , Neural Stem Cells/radiation effects , Animals , Dentate Gyrus/pathology , Lateral Ventricles/pathology , Memory/radiation effects , Mice, Inbred C57BL , Neural Stem Cells/pathology , Stem Cell Niche/radiation effects , Stem Cells/pathology , Stem Cells/radiation effects
13.
J Neuropathol Exp Neurol ; 79(3): 325-335, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31738417

ABSTRACT

The tumor suppressor p53 is an important regulator of cell fate response after DNA damage. Cell fate response following metabolic stresses has also been linked to p53-dependent pathways. In this study, we asked if 5'-adenosine monophosphate-activated protein kinase (AMPK), the master sensor of cellular energy balance, played a role in p53-dependent apoptosis of neural progenitor cells (NPCs) in the hippocampus after irradiation. Adult mice with targeted disruption of p53 or prkaa2 (gene that encodes AMPKα) in the brain were used to determine the role of p53 and AMPK, respectively, in radiation-induced apoptosis of NPCs in the hippocampus. The p53-dependent apoptosis of NPCs was associated with an increase in phospho-AMPK expression in the dentate gyrus at 8 hours after irradiation. Activation of AMPK was seen in granule neurons and subgranular NPCs. Compared with wildtype mice, apoptosis of NPCs was significantly attenuated in AMPK deficient (nestinCre: prkaa2fl/fl) mice after irradiation. AMPK deficiency did not however alter p53 activation in NPCs after irradiation. We conclude that AMPK may regulate apoptosis of hippocampal NPCs after irradiation. These findings suggest that cellular metabolism may play a role in determining cell fate response such as apoptosis after DNA damage in NPCs.


Subject(s)
Apoptosis/radiation effects , Hippocampus/metabolism , Hippocampus/radiation effects , Neural Stem Cells/metabolism , Neural Stem Cells/radiation effects , AMP-Activated Protein Kinases/metabolism , Animals , Mice, Inbred C57BL , Signal Transduction/radiation effects , Tumor Suppressor Protein p53/metabolism
14.
Biochem Biophys Res Commun ; 523(3): 555-560, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31864707

ABSTRACT

DNA damaging agents, such as ionizing radiation (IR), induce cell cycle arrest, senescence, differentiation, or cell death of stem cells, which may affect tissue homeostasis. The specific response of stem cells upon irradiation seems to vary depending on the cell type and their developmental stages. Drosophila larval brain contains neural stem cells called neuroblasts (NBs) and maintaining an appropriate number of NBs is critical to maintain brain size. Irradiation of larvae at early larval stage results in microcephaly, whereas the DNA damage response of NBs that could explain this small brain size is not clearly understood. We observed that the irradiation of larvae in the second instar retarded brain growth, accompanied by fewer NBs. The IR-induced microcephaly does not seem to result from apoptosis since the irradiated larval brain was not stained with activated Caspase nor was the microcephaly affected by the ectopic expression of the apoptosis inhibitor. When analyzed for the percentage of mitotic cells, irradiated NBs recovered their proliferative potential within 6 h post-irradiation after transient cell cycle arrest. However, IR eventually reduced the proliferation of NBs at later time points and induced the premature differentiation of NBs. In summary, IR-induced microcephaly occurs by NB loss due to premature differentiation, rather than apoptotic cell death.


Subject(s)
Drosophila/radiation effects , Neural Stem Cells/radiation effects , Neurogenesis/radiation effects , Animals , Brain/growth & development , Brain/radiation effects , Drosophila/cytology , Drosophila/growth & development , Larva/cytology , Larva/growth & development , Larva/radiation effects , Microcephaly/etiology , Neural Stem Cells/cytology , Organ Size/radiation effects , Radiation, Ionizing
15.
Neuromolecular Med ; 22(1): 139-149, 2020 03.
Article in English | MEDLINE | ID: mdl-31595404

ABSTRACT

Optogenetic stimulation of neural stem cells (NSCs) enables their activity-dependent photo-modulation. This provides a spatio-temporal tool for studying activity-dependent neurogenesis and for regulating the differentiation of the transplanted NSCs. Currently, this is mainly driven by viral transfection of channelrhodopsin-2 (ChR2) gene, which requires high irradiance and complex in vivo/vitro stimulation systems. Additionally, despite the extensive application of optogenetics in neuroscience, the transcriptome-level changes induced by optogenetic stimulation of NSCs have not been elucidated yet. Here, we made transformed NSCs (SFO-NSCs) stably expressing one of the step-function opsin (SFO)-variants of chimeric channelrhodopsins, ChRFR(C167A), which is more sensitive to blue light than native ChR2, via a non-viral transfection system using piggyBac transposon. We set up a simple low-irradiance optical stimulation (OS)-incubation system that induced c-fos mRNA expression, which is activity-dependent, in differentiating SFO-NSCs. More neuron-like SFO-NCSs, which had more elongated axons, were differentiated with daily OS than control cells without OS. This was accompanied by positive/negative changes in the transcriptome involved in axonal remodeling, synaptic plasticity, and microenvironment modulation with the up-regulation of several genes involved in the Ca2+-related functions. Our approach could be applied for stem cell transplantation studies in tissue with two strengths: lower carcinogenicity and less irradiance needed for tissue penetration.


Subject(s)
Neural Stem Cells/radiation effects , Neurogenesis/radiation effects , Optogenetics , Calcium Signaling , Cell Line, Transformed , Channelrhodopsins/biosynthesis , Channelrhodopsins/genetics , Channelrhodopsins/radiation effects , DNA Transposable Elements , Gene Expression Regulation/radiation effects , Gene Ontology , Genes, Reporter , Genes, fos , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neural Stem Cells/cytology , Neuronal Plasticity/radiation effects , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcriptome/radiation effects , Up-Regulation/radiation effects
16.
Int J Radiat Biol ; 96(2): 172-178, 2020 02.
Article in English | MEDLINE | ID: mdl-31633435

ABSTRACT

Purpose: Accumulated damage in neural stem cells (NSCs) during brain tumor radiotherapy causes cognitive dysfunction to the patients. Carbon-ion radiotherapy can reduce undesired irradiation of normal tissues more efficiently than conventional photon radiotherapy. This study elucidates the responses of NSCs to carbon-ion radiation.Methods: Human NSCs and glioblastoma A-172 cells were irradiated with carbon-ion radiation and γ-rays, which have different linear-energy-transfer (LET) values of 108 and 0.2 keV/µm, respectively. After irradiation, growth rates were measured, apoptotic cells were detected by flow cytometry, and DNA synthesizing cells were immunocytochemically visualized.Results: Growth rates of NSCs and A-172 cells were decreased after irradiation. The percentages of apoptotic cells were remarkably increased in NSCs but not in A-172 cells. In contrast, the fractions of DNA synthesizing A-172 cells were decreased in a dose-dependent manner. These results indicate that apoptosis induction and DNA synthesis inhibition contribute to the growth inhibition of NSCs and glioblastoma cells, respectively. In addition, high-LET carbon ions induced more profound effects than low-LET γ-rays.Conclusions: Apoptosis is an important clinical target to protect NSCs during brain tumor radiotherapy using carbon-ion radiation as well as conventional X-rays.


Subject(s)
Apoptosis/radiation effects , Brain Neoplasms/radiotherapy , Gamma Rays , Glioblastoma/radiotherapy , Heavy Ion Radiotherapy/methods , Neural Stem Cells/radiation effects , Biomarkers/metabolism , Carbon , Cell Division/radiation effects , Cell Line, Tumor , Cell Survival/radiation effects , DNA/radiation effects , DNA Damage , Dose-Response Relationship, Radiation , Humans , Immunohistochemistry , Ions , Linear Energy Transfer , Nestin/metabolism , Photons , SOXB1 Transcription Factors/metabolism
17.
PLoS One ; 14(11): e0224846, 2019.
Article in English | MEDLINE | ID: mdl-31710637

ABSTRACT

Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60-70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100-170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.


Subject(s)
Human Embryonic Stem Cells/cytology , Neural Stem Cells/cytology , Neurons/cytology , Optogenetics , Animals , Astrocytes/cytology , Astrocytes/radiation effects , Axons/metabolism , Axons/radiation effects , Cell Differentiation/radiation effects , Cell Lineage/radiation effects , Cell Survival/radiation effects , Channelrhodopsins/metabolism , Human Embryonic Stem Cells/radiation effects , Humans , Lentivirus/metabolism , Light , Mice, Nude , Motor Cortex/metabolism , Neural Stem Cells/radiation effects , Neuronal Plasticity/radiation effects , Neurons/radiation effects , Neurotransmitter Agents/metabolism , Phenotype , Photic Stimulation , Rats, Nude , Synaptic Transmission/radiation effects
18.
J Radiat Res ; 60(6): 719-728, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31665364

ABSTRACT

Pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have a dual capability to self-renew and differentiate into all cell types necessary to develop an entire organism. Differentiation is associated with dynamic epigenetic alteration and transcriptional change, while self-renewal depends on maintaining the genome DNA accurately. Genome stability of PSCs is strictly regulated to maintain pluripotency. However, the DNA damage response (DDR) mechanism in PSCs is still unclear. There is accumulating evidence that genome stability and pluripotency are regulated by a transcriptional change in undifferentiated and differentiated states. iPSCs are ideal for analyzing transcriptional regulation during reprogramming and differentiation. This study aimed to elucidate the transcriptional alteration surrounding genome stability maintenance, including DNA repair, cell cycle checkpoints and apoptosis in fibroblasts, iPSCs and neural progenitor cells (NPCs) derived from iPSCs as differentiated cells. After ionizing radiation exposure, foci for the DNA double-stranded break marker γ-H2AX increased, peaking at 0.5 h in all cells (>90%), decreasing after 4 h in fibroblasts (32.3%) and NPCs (22.3%), but still remaining at 52.5% (NB1RGB C2 clone) and 54.7% (201B7 cells) in iPSCs. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells were detected, indicating that iPSCs' apoptosis increases. In addition, RNA sequencing (RNA-Seq) analysis showed high expression of apoptosis genes (TP53, CASP3 and BID) in iPSCs. Results suggested that increased apoptosis activity maintains accurate, undifferentiated genome DNA in the cell population.


Subject(s)
Apoptosis/genetics , Cell Differentiation/genetics , Cellular Reprogramming/genetics , DNA Damage/genetics , Gene Expression Regulation , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Transcription, Genetic , Apoptosis/radiation effects , Cell Differentiation/radiation effects , Cell Line , Cellular Reprogramming/radiation effects , DNA Repair/genetics , DNA Repair/radiation effects , Fibroblasts/cytology , Fibroblasts/radiation effects , Gene Expression Regulation/radiation effects , Humans , Induced Pluripotent Stem Cells/radiation effects , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/radiation effects , Radiation, Ionizing , Skin/cytology
19.
Biomaterials ; 225: 119539, 2019 12.
Article in English | MEDLINE | ID: mdl-31622821

ABSTRACT

Photostimulation has been widely used in neuromodulation. However, existing optogenetics techniques require genetic alternation of the targeted cell or tissue. Here, we report that neural stem cells (NSCs) constitutionally express blue/red light-sensitive photoreceptors. The proliferation and regulation of NSCs to neuronal or glial cells are wavelength-specific. Our results showed a 4.3-fold increase in proliferation and 2.7-fold increase in astrocyte differentiation for cells under low-power blue monochromatic light exposure (455 nm, 300 µW/cm2). The melanopsin (Opn4)/transient receptor potential channel 6 (TRPC6) non-visual opsin serves as a key photoreceptor response to blue light irradiation. Two-dimensional gel electrophoresis coupled with mass spectrometry further highlighted the Jun activation domain-binding protein 1 (Jab1) as a novel and specific modulator in phototransduction pathways induced by blue light exposure. Quiescent adult NSCs reside in specific regions of the mammalian brain. Therefore, we showed that melanopsin/TRPC6 expressed in these regions and blue light stimulation through optical fibers could directly stimulate the NSCs in vivo. Upconversion nanoparticles (UCNPs) converted deep-penetrating near-infrared (NIR) light into specific wavelengths of visible light. Accordingly, we demonstrated that UCNP-mediated NIR light could be used to modulate in vivo NSC differentiation in a less invasive manner. In the future, this light-triggered system of NSCs will enable nongenetic and noninvasive neuromodulation with therapeutic potential for central nervous system diseases.


Subject(s)
Cell Differentiation , Neural Stem Cells/cytology , Neuroglia/cytology , Neurons/cytology , Optogenetics , Animals , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cell Self Renewal/radiation effects , Infrared Rays , Light Signal Transduction/radiation effects , Mice, Inbred C57BL , Nanoparticles/chemistry , Neural Stem Cells/radiation effects , Neuroglia/radiation effects , Neurons/radiation effects
20.
Int J Radiat Biol ; 95(12): 1627-1639, 2019 12.
Article in English | MEDLINE | ID: mdl-31509479

ABSTRACT

Purpose: Widespread medical use of radiation in diagnosis, imaging and treatment of different central nervous system malignancies lead to various consequences. Aim of this study was to further elucidate mechanism of cell response to radiation and possible consequence on neural differentiation.Materials and methods: NT2/D1 cells that resemble neural progenitors were used as a model system. Undifferentiated NT2/D1 cells and NT2/D1 cells in the early phase of neural differentiation were irradiated with low (0.2 Gy) and moderate (2 Gy) doses of γ radiation. The effect was analyzed on apoptosis, cell cycle, senescence, spheroid formation and the expression of genes and miRNAs involved in the regulation of pluripotency or neural differentiation.Results: Two grays of irradiation induced apoptosis, senescence and cell cycle arrest of NT2/D1 cells, accompanied with altered expression of several genes (SOX2, OCT4, SOX3, PAX6) and miRNAs (miR-219, miR-21, miR124-a). Presented results show that 2 Gy of radiation significantly affected early phase of neural differentiation in vitro.Conclusions: These results suggest that 2 Gy of radiation significantly affected early phase of neural differentiation and affect the population of neural progenitors. These findings might help in better understanding of side effects of radiotherapy in treatments of central nervous system malignancies.


Subject(s)
Cell Differentiation/radiation effects , Neural Stem Cells/cytology , Neural Stem Cells/radiation effects , Apoptosis/radiation effects , Biomarkers/metabolism , Cell Count , Cellular Senescence/radiation effects , Dose-Response Relationship, Radiation , Gene Expression Regulation/radiation effects , Humans , MicroRNAs/genetics , Neural Stem Cells/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL