Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.251
1.
Neurology ; 103(1): e209503, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38830181

BACKGROUND AND OBJECTIVES: Clinical trials in neurodegenerative diseases often encounter selective enrollment and under-representation of certain patient populations. This delays drug development and substantially limits the generalizability of clinical trial results. To inform recruitment and retention strategies, and to better understand the generalizability of clinical trial populations, we investigated which factors drive participation. METHODS: We reviewed the literature systematically to identify barriers to and facilitators of trial participation in 4 major neurodegenerative disease areas: Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease. Inclusion criteria included original research articles published in a peer-reviewed journal and evaluating barriers to and/or facilitators of participation in a clinical trial with a drug therapy (either symptomatic or disease-modifying). The Critical Appraisal Skills Program checklist for qualitative studies was used to assess and ensure the quality of the studies. Qualitative thematic analyses were employed to identify key enablers of trial participation. Subsequently, we pooled quantitative data of each enabler using meta-analytical models. RESULTS: Overall, we identified 36 studies, enrolling a cumulative sample size of 5,269 patients, caregivers, and health care professionals. In total, the thematic analysis resulted in 31 unique enablers of trial participation; the key factors were patient-related (own health benefit and altruism), study-related (treatment and study burden), and health care professional-related (information availability and patient-physician relationship). When meta-analyzed across studies, responders reported that the reason to participate was mainly driven by (1) the relationship with clinical staff (70% of the respondents; 95% CI 53%-83%), (2) the availability of study information (67%, 95% CI 38%-87%), and (3) the use or absence of a placebo or sham-control arm (53% 95% CI 32%-72%). There was, however, significant heterogeneity between studies (all p < 0.001). DISCUSSION: We have provided a comprehensive list of reasons why patients participate in clinical trials for neurodegenerative diseases. These results may help to increase participation rates, better inform patients, and facilitate patient-centric approaches, thereby potentially reducing selection mechanisms and improving generalizability of trial results.


Clinical Trials as Topic , Neurodegenerative Diseases , Patient Participation , Humans , Neurodegenerative Diseases/drug therapy , Patient Selection
2.
Prog Mol Biol Transl Sci ; 205: 111-169, 2024.
Article En | MEDLINE | ID: mdl-38789177

Despite dedicated research efforts, the absence of disease-curing remedies for neurodegenerative diseases (NDDs) continues to jeopardize human society and stands as a challenge. Drug repurposing is an attempt to find new functionality of existing drugs and take it as an opportunity to discourse the clinically unmet need to treat neurodegeneration. However, despite applying this approach to rediscover a drug, it can also be used to identify the target on which a drug could work. The primary objective of target identification is to unravel all the possibilities of detecting a new drug or repurposing an existing drug. Lately, scientists and researchers have been focusing on specific genes, a particular site in DNA, a protein, or a molecule that might be involved in the pathogenesis of the disease. However, the new era discusses directing the signaling mechanism involved in the disease progression, where receptors, ion channels, enzymes, and other carrier molecules play a huge role. This review aims to highlight how target identification can expedite the whole process of drug repurposing. Here, we first spot various target-identification methods and drug-repositioning studies, including drug-target and structure-based identification studies. Moreover, we emphasize various drug repurposing approaches in NDDs, namely, experimental-based, mechanism-based, and in silico approaches. Later, we draw attention to validation techniques and stress on drugs that are currently undergoing clinical trials in NDDs. Lastly, we underscore the future perspective of synergizing drug repurposing and target identification in NDDs and present an unresolved question to address the issue.


Drug Repositioning , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Animals , Molecular Targeted Therapy
3.
J Nanobiotechnology ; 22(1): 248, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741193

The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.


Gold , Metal Nanoparticles , Neurodegenerative Diseases , alpha-Synuclein , tau Proteins , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , tau Proteins/metabolism , Animals , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/diagnosis , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/diagnosis , Drug Delivery Systems/methods , Biomarkers
4.
J Nanobiotechnology ; 22(1): 260, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760847

Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.


Blood-Brain Barrier , Brain , Drug Delivery Systems , Nanoparticles , Humans , Blood-Brain Barrier/metabolism , Animals , Brain/metabolism , Ligands , Drug Delivery Systems/methods , Nanoparticles/chemistry , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Peptides/chemistry
5.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Article En | MEDLINE | ID: mdl-38742857

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Aluminum Chloride , Flavanones , Memory Disorders , Oxidative Stress , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Oxidative Stress/drug effects , Mice , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Aluminum Chloride/toxicity , Male , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
6.
Molecules ; 29(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38731618

Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.


Indoles , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Indoles/chemistry , Indoles/pharmacology , Indoles/therapeutic use , Neurodegenerative Diseases/drug therapy , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemistry
7.
Biomed Pharmacother ; 175: 116753, 2024 Jun.
Article En | MEDLINE | ID: mdl-38761423

Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.


Ferroptosis , Neurodegenerative Diseases , Ubiquitin-Protein Ligases , Ferroptosis/drug effects , Ferroptosis/physiology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/enzymology , Animals , Ubiquitin-Protein Ligases/metabolism , Deubiquitinating Enzymes/metabolism , Ubiquitination , Signal Transduction/drug effects , Molecular Targeted Therapy
8.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791160

While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.


Aging , Brain , Melatonin , Neurodegenerative Diseases , Neuroprotection , Neuroprotective Agents , Melatonin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Humans , Brain/metabolism , Brain/drug effects , Aging/metabolism , Aging/drug effects , Animals , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy , Neuroprotection/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Kynuramine/metabolism , Kynuramine/analogs & derivatives
9.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791356

In the area of drug research, several computational drug repurposing studies have highlighted candidate repurposed drugs, as well as clinical trial studies that have tested/are testing drugs in different phases. To the best of our knowledge, the aggregation of the proposed lists of drugs by previous studies has not been extensively exploited towards generating a dynamic reference matrix with enhanced resolution. To fill this knowledge gap, we performed weight-modulated majority voting of the modes of action, initial indications and targeted pathways of the drugs in a well-known repository, namely the Drug Repurposing Hub. Our method, DReAmocracy, exploits this pile of information and creates frequency tables and, finally, a disease suitability score for each drug from the selected library. As a testbed, we applied this method to a group of neurodegenerative diseases (Alzheimer's, Parkinson's, Huntington's disease and Multiple Sclerosis). A super-reference table with drug suitability scores has been created for all four neurodegenerative diseases and can be queried for any drug candidate against them. Top-scored drugs for Alzheimer's Disease include agomelatine, mirtazapine and vortioxetine; for Parkinson's Disease, they include apomorphine, pramipexole and lisuride; for Huntington's, they include chlorpromazine, fluphenazine and perphenazine; and for Multiple Sclerosis, they include zonisamide, disopyramide and priralfimide. Overall, DReAmocracy is a methodology that focuses on leveraging the existing drug-related experimental and/or computational knowledge rather than a predictive model for drug repurposing, offering a quantified aggregation of existing drug discovery results to (1) reveal trends in selected tracks of drug discovery research with increased resolution that includes modes of action, targeted pathways and initial indications for the investigated drugs and (2) score new candidate drugs for repurposing against a selected disease.


Drug Discovery , Drug Repositioning , Drug Repositioning/methods , Humans , Drug Discovery/methods , Neurodegenerative Diseases/drug therapy
10.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732545

Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.


Curcumin , Neurodegenerative Diseases , Neuroprotective Agents , Resveratrol , Neuroprotective Agents/pharmacology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Curcumin/pharmacology , Resveratrol/pharmacology , Ergothioneine/pharmacology , Biological Products/pharmacology , Biological Products/therapeutic use , Phycocyanin/pharmacology , Animals , Cyanobacteria , Agaricales/chemistry , Microalgae
11.
Food Funct ; 15(11): 5972-5986, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38739010

Since oxidative stress is often associated with neurodegenerative diseases, antioxidants are likely to confer protection against neurodegeneration. Despite an increasing number of food-derived peptides being identified as antioxidants, their antineurodegenerative potentials remain largely unexplored. Here, a sea cucumber peptide preparation - the peptide-rich fraction of <3 kDa (UF<3K) obtained by ultrafiltration from Apostichopus japonicus protein hydrolyzate - was found to protect PC12 cells and Caenorhabditis elegans from neurodegeneration by reducing oxidative stress and apoptosis, demonstrating its in vitro and in vivo neuroprotective effects. As many food-originated peptides are cryptides (cryptic peptides - short amino acid sequences encrypted in parent proteins) released in quantities by protein hydrolysis, UF<3K was subjected to sequencing analysis. As expected, a large repertoire of peptides were identified in UF<3K, establishing a sea cucumber cryptome (1238 peptides in total). Then 134 peptides were randomly selected from the cryptome (>10%) and analyzed for their antioxidant activities using a number of in silico bioinformatic programs as well as in vivo experimental assays in C. elegans. From these results, a novel antioxidant peptide - HoloPep#362 (FETLMPLWGNK) - was shown to not only inhibit aggregation of neurodegeneration-associated polygluatmine proteins but also ameliorate behavioral deficits in proteotoxicity nematodes. Proteomic analysis revealed an increased expression of several lysosomal proteases by HoloPep#362, suggesting proteostasis maintenance as a mechanism for its antineurodegenerative action. These findings provide an insight into the health-promoting potential of sea cucumber peptides as neuroprotective nutraceuticals and also into the importance of training in silico peptide bioactivity prediction programs with in vivo experimental data.


Antioxidants , Caenorhabditis elegans , Neuroprotective Agents , Oxidative Stress , Peptides , Sea Cucumbers , Animals , Caenorhabditis elegans/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Peptides/pharmacology , Peptides/chemistry , Sea Cucumbers/chemistry , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , PC12 Cells , Rats , Neurodegenerative Diseases/drug therapy , Computer Simulation
13.
Clin Interv Aging ; 19: 681-693, 2024.
Article En | MEDLINE | ID: mdl-38706635

Aging and aging-related diseases present a global public health problem. Therefore, the development of efficient anti-aging drugs has become an important area of research. Traditional Chinese medicine is an important complementary and alternative branch of aging-related diseases therapy. Recently, a growing number of studies have revealed that traditional Chinese medicine has a certain delaying effect on the progression of aging and aging-related diseases. Here, we review the progress in research into using traditional Chinese medicine for aging and aging-related diseases (including neurodegenerative diseases, cardiovascular diseases, diabetes, and cancer). Furthermore, we summarize the potential mechanisms of action of traditional Chinese medicine and provide references for further studies on aging and aging-related diseases.


Aging , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Neoplasms , Neurodegenerative Diseases , Humans , Aging/drug effects , Medicine, Chinese Traditional/methods , Neurodegenerative Diseases/drug therapy , Neoplasms/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Diabetes Mellitus/drug therapy
14.
J Neuroimmunol ; 391: 578363, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38728929

Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.


Endothelium, Vascular , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Endothelium, Vascular/pathology , Inflammation , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Neuroinflammatory Diseases/drug therapy
15.
Biomed Pharmacother ; 175: 116691, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713941

Neurodegenerative diseases affect many people worldwide, and as the population ages, the incidence of these conditions increases. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative disorders worldwide. Different medicines are being used to control symptoms related to these conditions, but no treatment has yet been approved. Both genetic and environmental factors are involved in disease pathogenesis, and research on the pathophysiological pathways is still ongoing. The role of subcellular pathways and dysregulation in RNA pathways has been highlighted in pathophysiological studies, and treatment strategies focused on these pathways can be a promising approach. Many experiments have been conducted on delivering RNA cargo to the CNS to modulate various pathways involved. Yet another challenge to be faced is the effective transport of desired molecules to targets, which can be greatly hindered by distinct barriers limiting transport to the CNS, most noticeably the blood-brain barrier (BBB). Nanotechnology and the use of different nano-carriers for the delivery of nucleotides, peptides, proteins, and drug molecules are currently of great interest as these carriers help with better delivery and protection and, as a result, improve the effectiveness of the cargo. Nanocarriers can protect susceptible RNA molecules from possible degradation or destruction and improve their ability to reach the brain by enhancing BBB penetration. Different mechanisms for this process have been hypothesized. This review will go through the therapeutic application of RNA molecules in the treatment of AD and PD and the role of nanocarriers in overcoming delivery challenges and enhancing efficacy.


Blood-Brain Barrier , Neurodegenerative Diseases , RNA , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Animals , RNA/genetics , RNA/administration & dosage , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Nanoparticles , Nanoparticle Drug Delivery System , Drug Delivery Systems/methods
16.
Ageing Res Rev ; 98: 102343, 2024 Jul.
Article En | MEDLINE | ID: mdl-38762101

Glucagon-like peptide-1 (GLP-1) receptor agonist-based drugs (incretin mimetics) have meaningfully impacted current treatment of type 2 diabetes mellitus (T2DM), and their actions on satiety and weight loss have led to their use as an obesity medication. With multiple pleotropic actions beyond their insulinotropic and weight loss ones, including anti-inflammatory and anti-insulin-resistant effects selectively mediated by their receptors present within numerous organs, this drug class offers potential efficacy for an increasing number of systemic and neurological disorders whose current treatment is inadequate. Among these are a host of neurodegenerative disorders that are prevalent in the elderly, such as Parkinson's and Alzheimer's disease, which have bucked previous therapeutic approaches. An increasing preclinical, clinical, and epidemiological literature suggests that select incretin mimetics may provide an effective treatment strategy, but 'which ones' for 'which disorders' and 'when' remain key open questions.


Diabetes Mellitus, Type 2 , Neurodegenerative Diseases , Obesity , Humans , Diabetes Mellitus, Type 2/drug therapy , Neurodegenerative Diseases/drug therapy , Obesity/drug therapy , Animals , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Incretins/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology
17.
J Colloid Interface Sci ; 670: 357-363, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38763031

Carbon dots (CDs) are carbon nano materials (CNMs) that find use across several biological applications because of their water solubility, biocompatible nature, eco-friendliness, and ease of synthesis. Additionally, their physiochemical properties can be chemically tuned for further optimization towards specific applications. Here, we investigate the efficacy of C70-derived Graphene Acid Quantum Dots (GAQDs) in mitigating the transformation of soluble, monomeric Hen Egg-White Lysozyme (HEWL) to mature fibrils during its amyloidogenic trajectory. Our findings reveal that GAQDs exhibit dose-dependent inhibition of HEWL fibril formation (up to 70 % at 5 mg/mL) without affecting mitochondrial membrane potential or inducing apoptosis at the same density. Furthermore, GAQDs scavenged reactive oxygen species (ROS); achieving a 50 % reduction in ROS levels at a mere 100 µg/mL when exposed to a standard free radical generator. GAQDs were not only found to be biocompatible with a human neuroblastoma-derived SHSY-5Y cell line but also rescued the cells from rotenone-induced apoptosis. The GAQD-tolerance of SHSY-5Y cells coupled with their ability to restitute cells from rotenone-dependent apoptosis, when taken in conjunction with the biocompatibility data, indicate that GAQDs possess neuroprotective potential. The data position this class of CNMs as promising candidates for resolving aberrant cellular outputs that associate with the advent and progress of multifactorial neurodegenerative disorders including Parkinson's (PD) and Alzheimer's diseases (AD) wherein environmental causes are implicated (95 % etiology). The data suggest that GAQDs are a multifunctional carbon-based sustainable nano-platform at the intersection of nanotechnology and neuroprotection for advancing green chemistry-derived, sustainable healthcare solutions.


Apoptosis , Graphite , Muramidase , Quantum Dots , Reactive Oxygen Species , Quantum Dots/chemistry , Humans , Graphite/chemistry , Graphite/pharmacology , Reactive Oxygen Species/metabolism , Muramidase/chemistry , Muramidase/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Animals , Particle Size , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Carbon/chemistry , Surface Properties , Membrane Potential, Mitochondrial/drug effects
18.
Brain Res Bull ; 213: 110988, 2024 Jul.
Article En | MEDLINE | ID: mdl-38805766

SOCS (Suppressor of Cytokine Signalling) proteins are intracellular negative regulators that primarily modulate and inhibit cytokine-mediated signal transduction, playing a crucial role in immune homeostasis and related inflammatory diseases. SOCS act as inhibitors by regulating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, thereby intervening in the pathogenesis of inflammation and autoimmune diseases. Recent studies have also demonstrated their involvement in central immunity and neuroinflammation, showing a dual functionality. However, the specific mechanisms of SOCS in the central nervous system remain unclear. This review thoroughly elucidates the specific mechanisms linking the SOCS-JAK-STAT pathway with the inflammatory manifestations of neurodegenerative diseases. Based on this, it proposes the theory that SOCS proteins can regulate the JAK-STAT pathway and inhibit the occurrence of neuroinflammation. Additionally, this review explores in detail the current therapeutic landscape and potential of targeting SOCS in the brain via the JAK-STAT pathway for neuroinflammation, offering insights into potential targets for the treatment of neurodegenerative diseases.


Janus Kinases , Neuroinflammatory Diseases , STAT Transcription Factors , Signal Transduction , Suppressor of Cytokine Signaling Proteins , Humans , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/physiology , Animals , Suppressor of Cytokine Signaling Proteins/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy , Inflammation/metabolism
19.
J Steroid Biochem Mol Biol ; 241: 106520, 2024 Jul.
Article En | MEDLINE | ID: mdl-38614433

Gonadal hormone deprivation (GHD) and decline such as menopause and bilateral oophorectomy are associated with an increased risk of neurodegeneration. Yet, hormone therapies (HTs) show varying efficacy, influenced by factors such as sex, drug type, and timing of treatment relative to hormone decline. We hypothesize that the molecular environment of the brain undergoes a transition following GHD, impacting the effectiveness of HTs. Using a GHD model in mice treated with Tibolone, we conducted proteomic analysis and identified a reprogrammed response to Tibolone, a compound that stimulates estrogenic, progestogenic, and androgenic pathways. Through a comprehensive network pharmacological workflow, we identified a reprogrammed response to Tibolone, particularly within "Pathways of Neurodegeneration", as well as interconnected pathways including "cellular respiration", "carbon metabolism", and "cellular homeostasis". Analysis revealed 23 proteins whose Tibolone response depended on GHD and/or sex, implicating critical processes like oxidative phosphorylation and calcium signalling. Our findings suggest the therapeutic efficacy of HTs may depend on these variables, suggesting a need for greater precision medicine considerations whilst highlighting the need to uncover underlying mechanisms.


Norpregnenes , Animals , Norpregnenes/pharmacology , Female , Mice , Proteomics/methods , Estrogen Receptor Modulators/pharmacology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy , Mice, Inbred C57BL , Male , Ovariectomy , Gonadal Hormones/metabolism , Brain/metabolism , Brain/drug effects , Brain/pathology
20.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38612544

N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.


Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/drug therapy , Receptors, N-Methyl-D-Aspartate , Alzheimer Disease/drug therapy , Glutamic Acid
...