Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 700
Filter
1.
J Neuroeng Rehabil ; 21(1): 135, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103947

ABSTRACT

BACKGROUND: Repetitive Transcranial Magnetic Stimulation (rTMS) and EEG-guided neurofeedback techniques can reduce motor symptoms in Parkinson's disease (PD). However, the effects of their combination are unknown. Our objective was to determine the immediate and short-term effects on motor and non-motor symptoms, and neurophysiological measures, of rTMS and EEG-guided neurofeedback, alone or combined, compared to no intervention, in people with PD. METHODS: A randomized, single-blinded controlled trial with 4 arms was conducted. Group A received eight bilateral, high-frequency (10 Hz) rTMS sessions over the Primary Motor Cortices; Group B received eight 30-minute EEG-guided neurofeedback sessions focused on reducing average bilateral alpha and beta bands; Group C received a combination of A and B; Group D did not receive any therapy. The primary outcome measure was the UPDRS-III at post-intervention and two weeks later. Secondary outcomes were functional mobility, limits of stability, depression, health-related quality-of-life and cortical silent periods. Treatment effects were obtained by longitudinal analysis of covariance mixed-effects models. RESULTS: Forty people with PD participated (27 males, age = 63 ± 8.26 years, baseline UPDRS-III = 15.63 ± 6.99 points, H&Y = 1-3). Group C showed the largest effect on motor symptoms, health-related quality-of-life and cortical silent periods, followed by Group A and Group B. Negligible differences between Groups A-C and Group D for functional mobility or limits of stability were found. CONCLUSIONS: The combination of rTMS and EEG-guided neurofeedback diminished overall motor symptoms and increased quality-of-life, but this was not reflected by changes in functional mobility, postural stability or depression levels. TRIAL REGISTRATION: NCT04017481.


Subject(s)
Electroencephalography , Neurofeedback , Parkinson Disease , Transcranial Magnetic Stimulation , Humans , Parkinson Disease/therapy , Parkinson Disease/rehabilitation , Parkinson Disease/complications , Male , Female , Middle Aged , Transcranial Magnetic Stimulation/methods , Neurofeedback/methods , Aged , Electroencephalography/methods , Single-Blind Method , Treatment Outcome , Motor Cortex/physiology , Motor Cortex/physiopathology , Quality of Life
2.
J Integr Neurosci ; 23(7): 125, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39082285

ABSTRACT

This review provides a comprehensive examination of recent developments in both neurofeedback and brain-computer interface (BCI) within the medical field and rehabilitation. By analyzing and comparing results obtained with various tools and techniques, we aim to offer a systematic understanding of BCI applications concerning different modalities of neurofeedback and input data utilized. Our primary objective is to address the existing gap in the area of meta-reviews, which provides a more comprehensive outlook on the field, allowing for the assessment of the current landscape and developments within the scope of BCI. Our main methodologies include meta-analysis, search queries employing relevant keywords, and a network-based approach. We are dedicated to delivering an unbiased evaluation of BCI studies, elucidating the primary vectors of research development in this field. Our review encompasses a diverse range of applications, incorporating the use of brain-computer interfaces for rehabilitation and the treatment of various diagnoses, including those related to affective spectrum disorders. By encompassing a wide variety of use cases, we aim to offer a more comprehensive perspective on the utilization of neurofeedback treatments across different contexts. The structured and organized presentation of information, complemented by accompanying visualizations and diagrams, renders this review a valuable resource for scientists and researchers engaged in the domains of biofeedback and brain-computer interfaces.


Subject(s)
Brain-Computer Interfaces , Mental Disorders , Nervous System Diseases , Neurofeedback , Humans , Neurofeedback/methods , Mental Disorders/rehabilitation , Nervous System Diseases/rehabilitation , Neurological Rehabilitation/methods
3.
BMC Geriatr ; 24(1): 639, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085795

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of neurofeedback training (NFT) on alpha activity in quantitative electroencephalography (QEEG), cognitive function, and speech perception in elderly with presbycusis. METHODS: This study was conducted from June 15 to November 30, 2020. The experimental group (n = 28) underwent NFT, while the control group (n = 31) was instructed to continue with their routine daily life. The NFT conducted for 40 min, two times a week, for a total of 16 sessions and was performed using Neuroharmony S and BrainHealth 2.7. The alpha activity was measured as alpha waves using QEEG. The cognitive function was measured using the Korean version of Mini-Mental Status Examination, digit span forward and backward (DSF and DSB). The speech perception was measured using the word and sentence recognition score (WRS and SRS) using an audiometer with the Korean Standard Monosyllabic Word Lists for Adults. RESULTS: The experimental group demonstrated improvement in the alpha wave of the left frontal lobe measured as alpha activity (t=-2.521, p = .018); MMSE-K (t=-3.467, p < .01), and DSF (t=-2.646, p < .05) measured as cognitive function; and WRS (t=-3.255, p = .003), and SRS (t=-2.851, p = .008) measured as speech perception compared to the control group. CONCLUSIONS: This study suggests that NFT could be considered an effective cognitive and auditory rehabilitation method based on brain and cognitive science for improving alpha activity, cognitive function, and speech perception.


Subject(s)
Cognition , Electroencephalography , Neurofeedback , Presbycusis , Speech Perception , Humans , Male , Female , Aged , Cognition/physiology , Speech Perception/physiology , Electroencephalography/methods , Presbycusis/physiopathology , Presbycusis/rehabilitation , Presbycusis/diagnosis , Presbycusis/psychology , Presbycusis/therapy , Neurofeedback/methods , Alpha Rhythm/physiology
4.
Schizophr Res ; 270: 358-365, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968807

ABSTRACT

BACKGROUND: Individuals with schizophrenia (SZ) and auditory hallucinations (AHs) display a distorted sense of self and self-other boundaries. Alterations of activity in midline cortical structures such as the prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) during self-reference as well as in the superior temporal gyrus (STG) have been proposed as neuromarkers of SZ and AHs. METHODS: In this randomized, participant-blinded, sham-controlled trial, 22 adults (18 males) with SZ spectrum disorders (SZ or schizoaffective disorder) and frequent medication-resistant AHs received one session of real-time fMRI neurofeedback (NFB) either from the STG (n = 11; experimental group) or motor cortex (n = 11; control group). During NFB, participants were instructed to upregulate their STG activity by attending to pre-recorded sentences spoken in their own voice and downregulate it by ignoring unfamiliar voices. Before and after NFB, participants completed a self-reference task where they evaluated if trait adjectives referred to themselves (self condition), Abraham Lincoln (other condition), or whether adjectives had a positive valence (semantic condition). FMRI activation analyses of self-reference task data tested between-group changes after NFB (self>semantic, post>pre-NFB, experimental>control). Analyses were pre-masked within a self-reference network. RESULTS: Activation analyses revealed significantly (p < 0.001) greater activation increase in the experimental, compared to the control group, after NFB within anterior regions of the self-reference network (mPFC, ACC, superior frontal cortex). CONCLUSIONS: STG-NFB was associated with activity increase in the mPFC, ACC, and superior frontal cortex during self-reference. Modulating the STG is associated with activation changes in other, not-directly targeted, regions subserving higher-level cognitive processes associated with self-referential processes and AHs psychopathology in SZ. CLINICALTRIALS: GOV: Rt-fMRI Neurofeedback and AH in Schizophrenia; https://clinicaltrials.gov/study/NCT03504579.


Subject(s)
Hallucinations , Magnetic Resonance Imaging , Neurofeedback , Schizophrenia , Temporal Lobe , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/therapy , Male , Female , Adult , Pilot Projects , Neurofeedback/methods , Hallucinations/physiopathology , Hallucinations/diagnostic imaging , Hallucinations/therapy , Hallucinations/etiology , Temporal Lobe/physiopathology , Temporal Lobe/diagnostic imaging , Single-Blind Method , Psychotic Disorders/physiopathology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/therapy , Middle Aged , Self Concept , Young Adult
5.
J Integr Neurosci ; 23(6): 121, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38940096

ABSTRACT

BACKGROUND: Neurofeedback is a non-invasive brain training technique used to enhance and treat hyperactivity disorder by altering the patterns of brain activity. Nonetheless, the extent of enhancement by neurofeedback varies among individuals/patients and many of them are irresponsive to this treatment technique. Therefore, several studies have been conducted to predict the effectiveness of neurofeedback training including the theta/beta protocol with a specific emphasize on slow cortical potential (SCP) before initiating treatment, as well as examining SCP criteria according to age and sex criteria in diverse populations. While some of these studies failed to make accurate predictions, others have demonstrated low success rates. This study explores functional connections within various brain lobes across different frequency bands of electroencephalogram (EEG) signals and the value of phase locking is used to predict the potential effectiveness of neurofeedback treatment before its initiation. METHODS: This study utilized EEG data from the Mendelian database. In this database, EEG signals were recorded during neurofeedback sessions involving 60 hyperactive students aged 7-14 years, irrespective of sex. These students were categorized into treatable and non-treatable. The proposed method includes a five-step algorithm. Initially, the data underwent preprocessing to reduce noise using a multi-stage filtering process. The second step involved extracting alpha and beta frequency bands from the preprocessed EEG signals, with a particular emphasis on the EEG recorded from sessions 10 to 20 of neurofeedback therapy. In the third step, the method assessed the disparity in brain signals between the two groups by evaluating functional relationships in different brain lobes using the phase lock value, a crucial data characteristic. The fourth step focused on reducing the feature space and identifying the most effective and optimal electrodes for neurofeedback treatment. Two methods, the probability index (p-value) via a t-test and the genetic algorithm, were employed. These methods showed that the optimal electrodes were in the frontal lobe and central cerebral cortex, notably channels C3, FZ, F4, CZ, C4, and F3, as they exhibited significant differences between the two groups. Finally, in the fifth step, machine learning classifiers were applied, and the results were combined to generate treatable and non-treatable labels for each dataset. RESULTS: Among the classifiers, the support vector machine and the boosting method demonstrated the highest accuracy when combined. Consequently, the proposed algorithm successfully predicted the treatability of individuals with hyperactivity in a short time and with limited data, achieving an accuracy of 90.6% in the neurofeedback method. Additionally, it effectively identified key electrodes in neurofeedback treatment, reducing their number from 32 to 6. CONCLUSIONS: This study introduces an algorithm with a 90.6% accuracy for predicting neurofeedback treatment outcomes in hyperactivity disorder, significantly enhancing treatment efficiency by identifying optimal electrodes and reducing their number from 32 to 6. The proposed method enables the prediction of patient responsiveness to neurofeedback therapy without the need for numerous sessions, thus conserving time and financial resources.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Electroencephalography , Neurofeedback , Humans , Neurofeedback/methods , Attention Deficit Disorder with Hyperactivity/therapy , Attention Deficit Disorder with Hyperactivity/physiopathology , Adolescent , Male , Female , Child , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Brain Waves/physiology , Treatment Outcome
6.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38889442

ABSTRACT

Neurofeedback, a non-invasive intervention, has been increasingly used as a potential treatment for major depressive disorders. However, the effectiveness of neurofeedback in alleviating depressive symptoms remains uncertain. To address this gap, we conducted a comprehensive meta-analysis to evaluate the efficacy of neurofeedback as a treatment for major depressive disorders. We conducted a comprehensive meta-analysis of 22 studies investigating the effects of neurofeedback interventions on depression symptoms, neurophysiological outcomes, and neuropsychological function. Our analysis included the calculation of Hedges' g effect sizes and explored various moderators like intervention settings, study designs, and demographics. Our findings revealed that neurofeedback intervention had a significant impact on depression symptoms (Hedges' g = -0.600) and neurophysiological outcomes (Hedges' g = -0.726). We also observed a moderate effect size for neurofeedback intervention on neuropsychological function (Hedges' g = -0.418). As expected, we observed that longer intervention length was associated with better outcomes for depressive symptoms (ß = -4.36, P < 0.001) and neuropsychological function (ß = -2.89, P = 0.003). Surprisingly, we found that shorter neurofeedback sessions were associated with improvements in neurophysiological outcomes (ß = 3.34, P < 0.001). Our meta-analysis provides compelling evidence that neurofeedback holds promising potential as a non-pharmacological intervention option for effectively improving depressive symptoms, neurophysiological outcomes, and neuropsychological function in individuals with major depressive disorders.


Subject(s)
Depressive Disorder, Major , Neurofeedback , Neurofeedback/methods , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Treatment Outcome , Electroencephalography/methods
7.
Neuroreport ; 35(11): 721-728, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38874941

ABSTRACT

Attention is a cognitive process that involves focusing mental resources on specific stimuli and plays a fundamental role in perception, learning, memory, and decision-making. Neurofeedback (NF) is a useful technique for improving attention, providing real-time feedback on brain activity in the form of visual or auditory cues, and allowing users to learn to self-regulate their cognitive processes. This study compares the effectiveness of different cues in NF training for attention enhancement through a multimodal approach. We conducted neurological (Quantitative Electroencephalography), neuropsychological (Mindfulness Attention Awareness Scale-15), and behavioral (Stroop test) assessments before and after NF training on 36 healthy participants, divided into audiovisual (G1) and visual (G2) groups. Twelve NF training sessions were conducted on alternate days, each consisting of five subsessions, with pre- and post-NF baseline electroencephalographic evaluations using power spectral density. The pre-NF baseline was used for thresholding the NF session using the beta frequency band power. Two-way analysis of variance revealed a significant long-term effect of group (G1/G2) and state (before/after NF) on the behavioral and neuropsychological assessments, with G1 showing significantly higher Mindfulness Attention Awareness Scale-15 scores, higher Stroop scores, and lower Stroop reaction times for interaction effects. Moreover, unpaired t -tests to compare voxel-wise standardized low-resolution brain electromagnetic tomography images revealed higher activity of G1 in Brodmann area 40 due to NF training. Neurological assessments show that G1 had better improvement in immediate, short-, and long-term attention. The findings of this study offer a guide for the development of NF training protocols aimed at enhancing attention effectively.


Subject(s)
Attention , Electroencephalography , Neurofeedback , Humans , Neurofeedback/methods , Attention/physiology , Male , Female , Adult , Young Adult , Electroencephalography/methods , Brain/physiology , Brain/diagnostic imaging , Photic Stimulation/methods , Auditory Perception/physiology
8.
Soc Cogn Affect Neurosci ; 19(1)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38915188

ABSTRACT

Alcohol use disorder (AUD) is defined as the impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences and still represents one of the biggest challenges for society regarding health conditions, social consequences, and financial costs, including the high relapse rates after traditional alcohol rehabilitation treatment. Especially, the deficient emotional competence in AUD is said to play a key role in the development of AUD and hinders the interruption of substance compulsion, often leading to a viscous circle of relapse. Although the empirical evidence of a neurophysiological basis of AUD is solid and increases even further, clinical interventions based on neurophysiology are still rare for individuals with AUD. This randomized controlled trial investigates changes in emotional competences, alcohol-related cognitions, and drinking behavior before and after an established alcohol rehabilitation treatment (control group: nCG = 29) compared to before and after an optimized, add-on neurofeedback (NF) training (experimental group: nEG = 27). Improvements on the clinical-psychological level, i.e. increases in emotional competences as well as life satisfaction, were found after the experimental electroencephalography (EEG) NF training. Neurophysiological measurements via resting-state EEG indicate decreases in low beta frequency band, while alpha and theta bands remained unaffected.


Subject(s)
Alcoholism , Brain , Electroencephalography , Neurofeedback , Humans , Male , Alcoholism/psychology , Alcoholism/physiopathology , Alcoholism/rehabilitation , Female , Adult , Electroencephalography/methods , Brain/physiopathology , Brain/physiology , Neurofeedback/methods , Middle Aged , Emotions/physiology , Treatment Outcome
9.
Hum Brain Mapp ; 45(9): e26767, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38923184

ABSTRACT

Closed-loop neurofeedback training utilizes neural signals such as scalp electroencephalograms (EEG) to manipulate specific neural activities and the associated behavioral performance. A spatiotemporal filter for high-density whole-head scalp EEG using a convolutional neural network can overcome the ambiguity of the signaling source because each EEG signal includes information on the remote regions. We simultaneously acquired EEG and functional magnetic resonance images in humans during the brain-computer interface (BCI) based neurofeedback training and compared the reconstructed and modeled hemodynamic responses of the sensorimotor network. Filters constructed with a convolutional neural network captured activities in the targeted network with spatial precision and specificity superior to those of the EEG signals preprocessed with standard pipelines used in BCI-based neurofeedback paradigms. The middle layers of the trained model were examined to characterize the neuronal oscillatory features that contributed to the reconstruction. Analysis of the layers for spatial convolution revealed the contribution of distributed cortical circuitries to reconstruction, including the frontoparietal and sensorimotor areas, and those of temporal convolution layers that successfully reconstructed the hemodynamic response function. Employing a spatiotemporal filter and leveraging the electrophysiological signatures of the sensorimotor excitability identified in our middle layer analysis would contribute to the development of a further effective neurofeedback intervention.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Magnetic Resonance Imaging , Neural Networks, Computer , Neurofeedback , Sensorimotor Cortex , Humans , Electroencephalography/methods , Adult , Male , Neurofeedback/methods , Young Adult , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Female
10.
Appl Psychophysiol Biofeedback ; 49(3): 347-363, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38837017

ABSTRACT

The field of EEG-Neurofeedback (EEG-NF) training has showcased significant promise in treating various mental disorders, while also emerging as a cognitive enhancer across diverse applications. The core principle of EEG-NF involves consciously guiding the brain in desired directions, necessitating active engagement in neurofeedback (NF) tasks over an extended period. Music listening tasks have proven to be effective stimuli for such training, influencing emotions, mood, and brainwave patterns. This has spurred the development of musical NF systems and training protocols. Despite these advancements, there exists a gap in systematic literature that comprehensively explores and discusses the various modalities of feedback mechanisms, its benefits, and the emerging applications. Addressing this gap, our review article presents a thorough literature survey encompassing studies on musical NF conducted over the past decade. This review highlights the several benefits and applications ranging from neurorehabilitation to therapeutic interventions, stress management, diagnostics of neurological disorders, and sports performance enhancement. While acknowledged for advantages and popularity of musical NF, there is an opportunity for growth in the literature in terms of the need for systematic randomized controlled trials to compare its effectiveness with other modalities across different tasks. Addressing this gap will involve developing standardized methodologies for studying protocols and optimizing parameters, presenting an exciting prospect for advancing the field.


Subject(s)
Music , Neurofeedback , Humans , Neurofeedback/methods , Electroencephalography , Music Therapy/methods , Auditory Perception/physiology
11.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38904080

ABSTRACT

Time-on-task effect is a common consequence of long-term cognitive demand work, which reflects reduced behavioral performance and increases the risk of accidents. Neurofeedback is a neuromodulation method that can guide individuals to regulate their brain activity and manifest as changes in related symptoms and cognitive behaviors. This study aimed to examine the effects of functional near-infrared spectroscopy-based neurofeedback training on time-on-task effects and sustained cognitive performance. A randomized, single-blind, sham-controlled study was performed: 17 participants received feedback signals of their own dorsolateral prefrontal cortex activity (neurofeedback group), and 16 participants received feedback signals of dorsolateral prefrontal cortex activity from the neurofeedback group (sham-neurofeedback group). All participants received 5 neurofeedback training sessions and completed 2 sustained cognitive tasks, including a 2-back task and a psychomotor vigilance task, to evaluate behavioral performance changes following neurofeedback training. Results showed that neurofeedback relative to the sham-neurofeedback group exhibited increased dorsolateral prefrontal cortex activation, increased accuracy in the 2-back task, and decreased mean response time in the psychomotor vigilance task after neurofeedback training. In addition, the neurofeedback group showed slower decline performance during the sustained 2-back task after neurofeedback training compared with sham-neurofeedback group. These findings demonstrate that neurofeedback training could regulate time-on-task effects on difficult task and enhance performance on sustained cognitive tasks by increasing dorsolateral prefrontal cortex activity.


Subject(s)
Cognition , Neurofeedback , Psychomotor Performance , Spectroscopy, Near-Infrared , Humans , Neurofeedback/methods , Neurofeedback/physiology , Spectroscopy, Near-Infrared/methods , Male , Female , Young Adult , Single-Blind Method , Cognition/physiology , Adult , Psychomotor Performance/physiology , Dorsolateral Prefrontal Cortex/physiology , Reaction Time/physiology , Prefrontal Cortex/physiology
12.
Clin Neurophysiol ; 165: 1-15, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941959

ABSTRACT

OBJECTIVE: Parkinsonian motor symptoms are linked to pathologically increased beta oscillations in the basal ganglia. Studies with externalised deep brain stimulation electrodes showed that Parkinson patients were able to rapidly gain control over these pathological basal ganglia signals through neurofeedback. Studies with fully implanted deep brain stimulation systems duplicating these promising results are required to grant transferability to daily application. METHODS: In this study, seven patients with idiopathic Parkinson's disease and one with familial Parkinson's disease were included. In a postoperative setting, beta oscillations from the subthalamic nucleus were recorded with a fully implanted deep brain stimulation system and converted to a real-time visual feedback signal. Participants were instructed to perform bidirectional neurofeedback tasks with the aim to modulate these oscillations. RESULTS: While receiving regular medication and deep brain stimulation, participants were able to significantly improve their neurofeedback ability and achieved a significant decrease of subthalamic beta power (median reduction of 31% in the final neurofeedback block). CONCLUSION: We could demonstrate that a fully implanted deep brain stimulation system can provide visual neurofeedback enabling patients with Parkinson's disease to rapidly control pathological subthalamic beta oscillations. SIGNIFICANCE: Fully-implanted DBS electrode-guided neurofeedback is feasible and can now be explored over extended timespans.


Subject(s)
Beta Rhythm , Deep Brain Stimulation , Neurofeedback , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Neurofeedback/methods , Deep Brain Stimulation/methods , Deep Brain Stimulation/instrumentation , Male , Female , Middle Aged , Beta Rhythm/physiology , Aged , Subthalamic Nucleus/physiopathology , Subthalamic Nucleus/physiology , Electrodes, Implanted
13.
Neurosci Biobehav Rev ; 162: 105696, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723734

ABSTRACT

Human brain activity consists of different frequency bands associated with varying functions. Oscillatory activity of frontal brain regions in the theta range (4-8 Hz) is linked to cognitive processing and can be modulated by neurofeedback - a technique where participants receive real-time feedback about their brain activity and learn to modulate it. However, criticism of this technique evolved, and high heterogeneity of study designs complicates a valid evaluation of its effectiveness. This meta-analysis provides the first systematic overview over studies attempting to modulate frontal midline theta with neurofeedback in healthy human participants. Out of 1261 articles screened, 14 studies were eligible for systematic review and 11 for quantitative meta-analyses. Studies were evaluated following the DIAD model and the PRISMA guidelines. A significant across-study effect of medium size (Hedges' g = .66; 95%-CI [-0.62, 1.73]) with substantial between-study heterogeneity (Q(16) = 167.43, p < .001) was observed and subanalysis revealed effective frontal midline theta upregulation. We discuss moderators of effect sizes and provide guidelines for future research in this dynamic field.


Subject(s)
Frontal Lobe , Neurofeedback , Theta Rhythm , Humans , Theta Rhythm/physiology , Neurofeedback/physiology , Neurofeedback/methods , Frontal Lobe/physiology
14.
Appl Psychophysiol Biofeedback ; 49(3): 365-382, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38722457

ABSTRACT

This study explores a novel approach to enhancing cognitive proficiency by targeting neural mechanisms that facilitate science and math learning, especially mental rotation. The study specifically examines the relationship between upper alpha intensity and mental rotation skills. Although prior neurofeedback research for increasing upper alpha highlights this correlation, mostly with familiar objects, novel chemistry and math learning prompts envisioning unfamiliar objects which question the persistence of this correlation. This study revisits the upper alpha and mental rotation relationship in the context of unfamiliar objects with a single neurofeedback session and examines the efficiency of manual and automatic neurofeedback protocols. Results will provide a basis for integrating neurofeedback protocols into learning applications for enhanced learning. Our study encompassed three cohorts: Group 1 experienced an automatic neurofeedback protocol, Group 2 received a manual neurofeedback protocol, and the control group had no neurofeedback intervention. The experimental phases involved EEG measurement of individual upper alpha (frequency of maximal power + 2 Hz) intensity, mental rotation tasks featuring geometric and unfamiliar molecular stimuli, one neurofeedback session for applicable groups, post-treatment upper alpha level assessments, and a mental rotation retest. The neurofeedback groups exhibited increased levels of upper alpha power, which was correlated with improved response time in mental rotation, regardless of stimulus type, compared to the control group. Both neurofeedback protocols achieved comparable results. This study advocates integrating neurofeedback into learning software for optimal learning experiences, highlighting a single session's efficacy and the substantial neurofeedback protocol's impact in enhancing upper alpha oscillations.


Subject(s)
Alpha Rhythm , Neurofeedback , Humans , Neurofeedback/methods , Female , Male , Alpha Rhythm/physiology , Adult , Young Adult , Electroencephalography , Learning/physiology , Rotation , Imagination/physiology
15.
Article in English | MEDLINE | ID: mdl-38739520

ABSTRACT

Robotic systems, such as Lokomat® have shown promising results in people with severe motor impairments, who suffered a stroke or other neurological damage. Robotic devices have also been used by people with more challenging damages, such as Spinal Cord Injury (SCI), using feedback strategies that provide information about the brain activity in real-time. This study proposes a novel Motor Imagery (MI)-based Electroencephalogram (EEG) Visual Neurofeedback (VNFB) system for Lokomat® to teach individuals how to modulate their own µ (8-12 Hz) and ß (15-20 Hz) rhythms during passive walking. Two individuals with complete SCI tested our VNFB system completing a total of 12 sessions, each on different days. For evaluation, clinical outcomes before and after the intervention and brain connectivity were analyzed. As findings, the sensitivity related to light touch and painful discrimination increased for both individuals. Furthermore, an improvement in neurogenic bladder and bowel functions was observed according to the American Spinal Injury Association Impairment Scale, Neurogenic Bladder Symptom Score, and Gastrointestinal Symptom Rating Scale. Moreover, brain connectivity between different EEG locations significantly ( [Formula: see text]) increased, mainly in the motor cortex. As other highlight, both SCI individuals enhanced their µ rhythm, suggesting motor learning. These results indicate that our gait training approach may have substantial clinical benefits in complete SCI individuals.


Subject(s)
Electroencephalography , Gait , Neurofeedback , Spinal Cord Injuries , Humans , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/physiopathology , Neurofeedback/methods , Electroencephalography/methods , Male , Adult , Gait/physiology , Robotics , Imagination/physiology , Female , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Treatment Outcome , Middle Aged , Exoskeleton Device , Walking/physiology , Beta Rhythm , Imagery, Psychotherapy/methods
16.
Appl Psychophysiol Biofeedback ; 49(3): 457-471, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38739182

ABSTRACT

Neurofeedback training (NFT) is a promising adjuvant intervention method. The desynchronization of mu rhythm (8-13 Hz) in the electroencephalogram (EEG) over centro-parietal areas is known as a valid indicator of mirror neuron system (MNS) activation, which has been associated with social skills. Still, the effect of neurofeedback training on the MNS requires to be well investigated. The present study examined the possible impact of NFT with a mu suppression training protocol encompassing 15 NFT sessions (45 min each) on 16 healthy neurotypical participants. In separate pre- and post-training sessions, 64-channel EEG was recorded while participants (1) observed videos with various types of movements (including complex goal-directed hand movements and social interaction scenes) and (2) performed the "Reading the Mind in the Eyes Test" (RMET). EEG source reconstruction analysis revealed statistically significant mu suppression during hand movement observation across MNS-attributed fronto-parietal areas after NFT. The frequency analysis showed no significant mu suppression after NFT, despite the fact that numerical mu suppression appeared to be visible in a majority of participants during goal-directed hand movement observation. At the behavioral level, RMET accuracy scores did not suggest an effect of NFT on the ability to interpret subtle emotional expressions, although RMET response times were reduced after NFT. In conclusion, the present study exhibited preliminary and partial evidence that mu suppression NFT can induce mu suppression in MNS-attributed areas. More powerful experimental designs and longer training may be necessary to induce substantial and consistent mu suppression, particularly while observing social scenarios.


Subject(s)
Electroencephalography , Mirror Neurons , Neurofeedback , Humans , Mirror Neurons/physiology , Pilot Projects , Neurofeedback/methods , Male , Female , Adult , Young Adult , Brain Waves/physiology
17.
Neurosci Biobehav Rev ; 161: 105680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641091

ABSTRACT

Empathic communication between a patient and therapist is an essential component of psychotherapy. However, finding objective neural markers of the quality of the psychotherapeutic relationship have been elusive. Here we conceptualize how a neuroscience-informed approach involving real-time neurofeedback, facilitated via existing functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) technologies, could provide objective information for facilitating therapeutic rapport. We propose several neurofeedback-assisted psychotherapy (NF-AP) approaches that could be studied as a way to optimize the experience of the individual patient and therapist across the spectrum of psychotherapeutic treatment. Finally, we consider how the possible strengths of these approaches are balanced by their current limitations and discuss the future prospects of NF-AP.


Subject(s)
Neurofeedback , Psychotherapy , Humans , Neurofeedback/physiology , Neurofeedback/methods , Psychotherapy/methods , Professional-Patient Relations , Communication , Electroencephalography , Brain/physiology , Brain/diagnostic imaging
18.
BMJ Open ; 14(4): e079098, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631828

ABSTRACT

INTRODUCTION: Electroencephalographic neurofeedback (NFB), as a non-invasive form of brainwave training, has been shown to be effective in the treatment of various mental health disorders. However, only few results regarding manualised and standardised NFB trainings exist. This makes comparison as well as replication of studies difficult. Therefore, we developed a standard manual for NFB training in patients with mental health disorders attending a psychosomatic outpatient clinic. The current study aims at investigating the conduction of a standardised manual for NFB training in patients with mental health disorders. If successful, the study provides new opportunities to investigate NFB in a more controlled and comparable manner in clinical practice. METHODS AND ANALYSIS: 30 patients diagnosed with a mental health disorder will be included. After the educational interview, patients will undergo baseline diagnostics (T0). The subsequent intervention consists of 10 sessions of NFB training aiming at increasing sensorimotor rhythm and alpha-frequency amplitudes and decreasing theta-frequency and high beta-frequency amplitudes to induce relaxation and decrease subjective stress. All patients will undergo a post-treatment diagnostic assessment (T1) and a follow-up assessment 8 weeks following the closing session (T2). Changes in amplitude bands (primary outcome) will be recorded with electroencephalography during pre-assessments, post-assessments and follow-up assessments and during NFB sessions. Physiological (respiratory rate, blood volume pulse, muscle tension) and psychometric parameters (distress, perceived stress, relaxation ability, depressive and anxiety symptoms, insomnia, self-efficacy and quality of life) will be assessed at T0, T1 and T2. Moreover, satisfaction, acceptance and usability will be assessed at T1 after NFB training. Further, qualitative interviews about the experiences with the intervention will be conducted with NFB practitioners 6 months after the study starts. Quantitative data will be analysed using repeated measures analysis of variance as well as mediation analyses on mixed linear models. Qualitative data will be analysed using Mayring's content analysis. ETHICS AND DISSEMINATION: The study was approved by the ethics committee of the Medical Faculty of the University of Duisburg-Essen (23-11140-BO) and patient enrolment began in April 2023. Before participation, written informed consent by each participant will be required. Results will be published in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER: Prospectively registered on 28 March 2023 in the German clinical trials register, DRKS00031497.


Subject(s)
Neurofeedback , Humans , Electroencephalography/methods , Neurofeedback/methods , Outpatients , Pilot Projects , Quality of Life
19.
J Neurosci Methods ; 406: 110132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604523

ABSTRACT

BACKGROUND: Traditional therapist-based rehabilitation training for patients with movement impairment is laborious and expensive. In order to reduce the cost and improve the treatment effect of rehabilitation, many methods based on human-computer interaction (HCI) technology have been proposed, such as robot-assisted therapy and functional electrical stimulation (FES). However, due to the lack of active participation of brain, these methods have limited effects on the promotion of damaged nerve remodeling. NEW METHOD: Based on the neurofeedback training provided by the combination of brain-computer interface (BCI) and exoskeleton, this paper proposes a multimodal brain-controlled active rehabilitation system to help improve limb function. The joint control mode of steady-state visual evoked potential (SSVEP) and motor imagery (MI) is adopted to achieve self-paced control and thus maximize the degree of brain involvement, and a requirement selection function based on SSVEP design is added to facilitate communication with aphasia patients. COMPARISON WITH EXISTING METHODS: In addition, the Transformer is introduced as the MI decoder in the asynchronous online BCI to improve the global perception of electroencephalogram (EEG) signals and maintain the sensitivity and efficiency of the system. RESULTS: In two multi-task online experiments for left hand, right hand, foot and idle states, subject achieves 91.25% and 92.50% best accuracy, respectively. CONCLUSION: Compared with previous studies, this paper aims to establish a high-performance and low-latency brain-controlled rehabilitation system, and provide an independent and autonomous control mode of the brain, so as to improve the effect of neural remodeling. The performance of the proposed method is evaluated through offline and online experiments.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Exoskeleton Device , Neurofeedback , Humans , Electroencephalography/methods , Male , Neurofeedback/methods , Neurofeedback/instrumentation , Evoked Potentials, Visual/physiology , Adult , Brain/physiology , Brain/physiopathology , Female , Young Adult , Imagination/physiology , Imagery, Psychotherapy/methods
20.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 132-137, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605610

ABSTRACT

The study developed a memory task training system using functional near-infrared spectroscopy (fNIRS) and neurofeedback mechanisms, and acquired and analyzed subjects' EEG signals. The results showed that subjects participating in the neurofeedback task had higher correlated brain network node degrees and average cluster coefficients in the right hemisphere brain region of the prefrontal lobe, with relatively lower dispersion of mediator centrality. In addition, the subjects' left hemisphere brain region of the prefrontal lobe section had increased centrality in the neurofeedback task. Classification of brain data by the channel network model and the support vector machine model showed that the classification accuracy of both models was higher in the task state and resting state than in the feedback task and the control task, and the classification accuracy of the channel network model was higher. The results suggested that subjects in the neurofeedback task had distinct brain data features and that these features could be effectively recognized.


Subject(s)
Neurofeedback , Humans , Neurofeedback/methods , Cognitive Training , Spectroscopy, Near-Infrared/methods , Brain , Prefrontal Cortex
SELECTION OF CITATIONS
SEARCH DETAIL