Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 267
1.
Nat Commun ; 14(1): 7659, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38036535

Many of the Alzheimer's disease (AD) risk genes are specifically expressed in microglia and astrocytes, but how and when the genetic risk localizing to these cell types contributes to AD pathophysiology remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets and uncover the impact of cell-type-specific genetic risk on AD endophenotypes. In an autopsy dataset spanning all stages of AD (n = 1457), the astrocytic ADPRS affected diffuse and neuritic plaques (amyloid-ß), while microglial ADPRS affected neuritic plaques, microglial activation, neurofibrillary tangles (tau), and cognitive decline. In an independent neuroimaging dataset of cognitively unimpaired elderly (n = 2921), astrocytic ADPRS was associated with amyloid-ß, and microglial ADPRS was associated with amyloid-ß and tau, connecting cell-type-specific genetic risk with AD pathology even before symptom onset. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.


Alzheimer Disease , Humans , Aged , Alzheimer Disease/metabolism , Plaque, Amyloid/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Risk Factors
2.
Neurology ; 100(14): e1474-e1487, 2023 04 04.
Article En | MEDLINE | ID: mdl-36697247

BACKGROUND AND OBJECTIVES: Lifetime risk of Alzheimer disease (AD) dementia is twofold higher in women compared with men, and low estrogen levels in postmenopause have been suggested as a possible contributor. We examined 3 ER (GPER1, ER2, and ER1) variants in association with AD traits as an indirect method to test the association between estrogen and AD in women. Although the study focus was on women, in a comparison, we separately examined ER molecular variants in men. METHODS: Participants were followed for an average of 10 years in one of the 2 longitudinal clinical pathologic studies of aging. Global cognition was assessed using a composite score derived from 19 neuropsychological tests' scores. Postmortem pathologic assessment included examination of 3 AD (amyloid-ß and tau tangles determined by immunohistochemistry, and a global AD pathology score derived from diffuse and neurotic plaques and neurofibrillary tangle count) and 8 non-AD pathology indices. ER molecular genomic variants included genotyping and examining ER DNA methylation and RNA expression in brain regions including the dorsolateral prefrontal cortex (DLPFC) that are major players in cognition and often have AD pathology. RESULTS: The mean age of women (N = 1711) at baseline was 78.0 (SD = 7.7) years. In women, GPER1 molecular variants had the most consistent associations with AD traits. GPER1 DNA methylation was associated with cognitive decline, tau tangle density, and global AD pathology score. GPER1 RNA expression in DLPFC was related to cognitive decline and tau tangle density. Other associations included associations of ER2 and ER1 sequence variants and DNA methylation with cognition. RNA expressions in DLPFC of genes involved in signaling mechanisms of activated ERs were also associated with cognitive decline and tau tangle density in women. In men (N = 651, average age at baseline: 77.4 [SD = 7.3]), there were less robust associations between ER molecular genomic variants and AD cognitive and pathologic traits. No consistent association was seen between ER molecular genomic variations and non-AD pathologies in either of the sexes. DISCUSSION: ER DNA methylation and RNA expression, and to some extent ER polymorphisms, were associated with AD cognitive and pathologic traits in women, and to a lesser extent in men.


Alzheimer Disease , Cognitive Dysfunction , Aged , Female , Humans , Male , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognitive Dysfunction/pathology , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , RNA/metabolism , tau Proteins/metabolism , Aged, 80 and over
3.
Neurobiol Dis ; 174: 105880, 2022 Nov.
Article En | MEDLINE | ID: mdl-36191742

The classic pathologic hallmarks of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles (AD neuropathologic changes, or ADNC). However, brains from individuals clinically diagnosed with "AD-type" (amnestic) dementia usually harbor heterogeneous neuropathologies in addition to, or other than, ADNC. We hypothesized that some AD-type dementia associated genetic single nucleotide variants (SNVs) identified from large genomewide association studies (GWAS) were associated with non-ADNC neuropathologies. To test this hypothesis, we analyzed data from multiple studies with available genotype and neuropathologic phenotype information. Clinical AD/dementia risk alleles of interest were derived from the very large GWAS by Bellenguez et al. (2022) who reported 83 clinical AD/dementia-linked SNVs in addition to the APOE risk alleles. To query the pathologic phenotypes associated with variation of those SNVs, National Alzheimer's disease Coordinating Center (NACC) neuropathologic data were linked to AD Sequencing Project (ADSP) and AD Genomics Consortium (ADGC) data. Separate data were obtained from the harmonized Religious Orders Study and the Rush Memory and Aging Project (ROSMAP). A total of 4811 European participants had at least ADNC neuropathology data and also genotype data available; data were meta-analyzed across cohorts. As expected, a subset of dementia-associated SNVs were associated with ADNC risk in Europeans-e.g., BIN1, PICALM, CR1, MME, and COX7C. Other gene variants linked to (clinical) AD dementia were associated with non-ADNC pathologies. For example, the associations of GRN and TMEM106B SNVs with limbic-predominant age-related TDP-43 neuropathologic changes (LATE-NC) were replicated. In addition, SNVs in TNIP1 and WNT3 previously reported as AD-related were instead associated with hippocampal sclerosis pathology. Some genotype/neuropathology association trends were not statistically significant at P < 0.05 after correcting for multiple testing, but were intriguing. For example, variants in SORL1 and TPCN1 showed trends for association with LATE-NC whereas Lewy body pathology trended toward association with USP6NL and BIN1 gene variants. A smaller cohort of non-European subjects (n = 273, approximately one-half of whom were African-Americans) provided the basis for additional exploratory analyses. Overall, these findings were consistent with the hypothesis that some genetic variants linked to AD dementia risk exert their affect by influencing non-ADNC neuropathologies.


Alzheimer Disease , Humans , Alzheimer Disease/pathology , Genome-Wide Association Study , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
4.
J Alzheimers Dis ; 90(2): 475-493, 2022.
Article En | MEDLINE | ID: mdl-36155518

Alzheimer's disease (AD) represents a global health challenge, with an estimated 55 million people suffering from the non-curable disease across the world. While amyloid-ß plaques and tau neurofibrillary tangles in the brain define AD proteinopathy, it has become evident that diverse coding and non-coding regions of the genome may significantly contribute to AD neurodegeneration. The diversity of factors associated with AD pathogenesis, coupled with age-associated damage, suggests that a series of triggering events may be required to initiate AD. Since somatic mutations accumulate with aging, and aging is a major risk factor for AD, there is a great potential for somatic mutational events to drive disease. Indeed, recent data from the Gozes team/laboratories as well as other leading laboratories correlated the accumulation of somatic brain mutations with the progression of tauopathy. In this review, we lay the current perspectives on the principal genetic factors associated with AD and the potential causes, highlighting the contribution of somatic mutations to the pathogenesis of late onset Alzheimer's disease. The roles that artificial intelligence and big data can play in accelerating the progress of causal somatic mutation markers/biomarkers identification, and the associated drug discovery/repurposing, have been highlighted for future AD and other neurodegenerations, with the aim to bring hope for the vulnerable aging population.


Alzheimer Disease , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Artificial Intelligence , Amyloid beta-Peptides/genetics , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Biomarkers , Mutation/genetics , tau Proteins/genetics
5.
Mol Psychiatry ; 27(11): 4800-4808, 2022 Nov.
Article En | MEDLINE | ID: mdl-36071110

Dementia is more prevalent in Blacks than in Whites, likely due to a combination of environmental and biological factors. Paradoxically, clinical studies suggest an attenuation of APOE ε4 risk of dementia in African ancestry (AFR), but a dearth of neuropathological data preclude the interpretation of the biological factors underlying these findings, including the association between APOE ε4 risk and Alzheimer's disease (AD) pathology, the most frequent cause of dementia. We investigated the interaction between African ancestry, AD-related neuropathology, APOE genotype, and functional cognition in a postmortem sample of 400 individuals with a range of AD pathology severity and lack of comorbid neuropathology from a cohort of community-dwelling, admixed Brazilians. Increasing proportions of African ancestry (AFR) correlated with a lower burden of neuritic plaques (NP). However, for individuals with a severe burden of NP and neurofibrillary tangles (NFT), AFR proportion was associated with worse Clinical Dementia Rating sum of boxes (CDR-SOB). Among APOE ε4 carriers, the association between AFR proportion and CDR-SOB disappeared. APOE local ancestry inference of a subset of 309 individuals revealed that, in APOE ε4 noncarriers, non-European APOE background correlated with lower NP burden and, also, worse cognitive outcomes than European APOE when adjusting by NP burden. Finally, APOE ε4 was associated with worse AD neuropathological burden only in a European APOE background. APOE genotype and its association with AD neuropathology and clinical pattern are highly influenced by ancestry, with AFR associated with lower NP burden and attenuated APOE ε4 risk compared to European ancestry.


Alzheimer Disease , Apolipoprotein E4 , Humans , Apolipoprotein E4/genetics , Alzheimer Disease/pathology , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Genotype , Biological Factors , Cognition
6.
Nat Commun ; 13(1): 5620, 2022 09 24.
Article En | MEDLINE | ID: mdl-36153390

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by the progressive accumulation of amyloid-beta and neurofibrillary tangles of tau in the neocortex. We profiled DNA methylation in two regions of the cortex from 631 donors, performing an epigenome-wide association study of multiple measures of AD neuropathology. We meta-analyzed our results with those from previous studies of DNA methylation in AD cortex (total n = 2013 donors), identifying 334 cortical differentially methylated positions (DMPs) associated with AD pathology including methylomic variation at loci not previously implicated in dementia. We subsequently profiled DNA methylation in NeuN+ (neuronal-enriched), SOX10+ (oligodendrocyte-enriched) and NeuN-/SOX10- (microglia- and astrocyte-enriched) nuclei, finding that the majority of DMPs identified in 'bulk' cortex tissue reflect DNA methylation differences occurring in non-neuronal cells. Our study highlights the power of utilizing multiple measures of neuropathology to identify epigenetic signatures of AD and the importance of characterizing disease-associated variation in purified cell-types.


Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/metabolism , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Neurodegenerative Diseases/genetics , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism
7.
Neurobiol Aging ; 119: 77-88, 2022 11.
Article En | MEDLINE | ID: mdl-35977443

Ageing-related pathologies of the brain include neurofibrillary tangles, argyrophilic grains, ageing-related tau astrogliopathy (ARTAG), limbic-predominant age-related TDP-43 encephalopathy-neuropathological change (LATE-NC), vascular pathology and corpora amylacea. This study used an unbiased approach to evaluate a broad range of pathologies in an unselected European community-dwelling ageing cohort of 101 individuals (77-90 years). Pathological alterations observed included neurofibrillary tangles and corpora amylacea in all cases, ARTAG (79%), Thal amyloid-ß phase >1 (60%), cerebral amyloid angiopathy (39%), Lewy bodies (22%), LATE-NC (21%), oligodendroglial tau-positive coiled bodies (33%), and argyrophilic grains (15%). We demonstrate association of LATE-NC with the previously unappreciated age-related tau oligodendrogliopathy (ARTOG) and highlight the association of LATE-NC with various ARTAG types pointing toward common pathogenic aspects. Only neurofibrillary tangles and LATE-NC were associated with cognitive decline. This study broadens the spectrum of age-related brain pathologies and highlights a novel ageing-related tau pathology in oligodendroglia. Results from this study suggest overlapping pathogenic mechanisms between LATE-NC and glial tau pathologies in the medial temporal lobe.


Aging , Alzheimer Disease , Dementia , Oligodendroglia , TDP-43 Proteinopathies , Temporal Lobe , tau Proteins , Aged , Aged, 80 and over , Aging/genetics , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , DNA-Binding Proteins/metabolism , Dementia/genetics , Dementia/pathology , Humans , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Neuroglia/metabolism , Neuroglia/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/pathology , Temporal Lobe/metabolism , Temporal Lobe/pathology , tau Proteins/genetics , tau Proteins/metabolism
8.
Nat Med ; 27(9): 1592-1599, 2021 09.
Article En | MEDLINE | ID: mdl-34446931

Compelling experimental evidence suggests that microglial activation is involved in the spread of tau tangles over the neocortex in Alzheimer's disease (AD). We tested the hypothesis that the spatial propagation of microglial activation and tau accumulation colocalize in a Braak-like pattern in the living human brain. We studied 130 individuals across the aging and AD clinical spectrum with positron emission tomography brain imaging for microglial activation ([11C]PBR28), amyloid-ß (Aß) ([18F]AZD4694) and tau ([18F]MK-6240) pathologies. We further assessed microglial triggering receptor expressed on myeloid cells 2 (TREM2) cerebrospinal fluid (CSF) concentrations and brain gene expression patterns. We found that [11C]PBR28 correlated with CSF soluble TREM2 and showed regional distribution resembling TREM2 gene expression. Network analysis revealed that microglial activation and tau correlated hierarchically with each other following Braak-like stages. Regression analysis revealed that the longitudinal tau propagation pathways depended on the baseline microglia network rather than the tau network circuits. The co-occurrence of Aß, tau and microglia abnormalities was the strongest predictor of cognitive impairment in our study population. Our findings support a model where an interaction between Aß and activated microglia sets the pace for tau spread across Braak stages.


Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , tau Proteins/genetics , Adult , Aged , Aging/genetics , Aging/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Female , Gene Expression Regulation/genetics , Humans , Male , Membrane Glycoproteins/cerebrospinal fluid , Microglia/metabolism , Microglia/pathology , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Positron-Emission Tomography
9.
Neurobiol Dis ; 158: 105452, 2021 10.
Article En | MEDLINE | ID: mdl-34298087

Familial British and Danish dementias (FBD and FDD) share striking neuropathological similarities with Alzheimer's disease (AD), including intraneuronal neurofibrillary tangles as well as parenchymal and vascular amyloid deposits. Multiple amyloid associated proteins with still controversial role in amyloidogenesis colocalize with the structurally different amyloid peptides ABri in FBD, ADan in FDD, and Aß in AD. Genetic variants and plasma levels of one of these associated proteins, clusterin, have been identified as risk factors for AD. Clusterin is known to bind soluble Aß in biological fluids, facilitate its brain clearance, and prevent its aggregation. The current work identifies clusterin as the major ABri- and ADan-binding protein and provides insight into the biochemical mechanisms leading to the association of clusterin with ABri and ADan deposits. Mirroring findings in AD, the studies corroborate clusterin co-localization with cerebral parenchymal and vascular amyloid deposits in both disorders. Ligand affinity chromatography with downstream Western blot and amino acid sequence analyses unequivocally identified clusterin as the major ABri- and ADan-binding plasma protein. ELISA highlighted a specific saturable binding of clusterin to ABri and ADan with low nanomolar Kd values within the same range as those previously demonstrated for the clusterin-Aß interaction. Consistent with its chaperone activity, thioflavin T binding assays clearly showed a modulatory effect of clusterin on ABri and ADan aggregation/fibrillization properties. Our findings, together with the known multifunctional activity of clusterin and its modulatory activity on the complex cellular pathways leading to oxidative stress, mitochondrial dysfunction, and the induction of cell death mechanisms - all known pathogenic features of these protein folding disorders - suggests the likelihood of a more complex role and a translational potential for the apolipoprotein in the amelioration/prevention of these pathogenic mechanisms.


Adaptor Proteins, Signal Transducing/genetics , Amyloid/metabolism , Clusterin/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Brain/pathology , Dementia/genetics , Humans , Mice , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Protein Folding
10.
Life Sci Alliance ; 4(7)2021 07.
Article En | MEDLINE | ID: mdl-34127518

Aggregation and accumulation of amyloid-ß (Aß) is a defining feature of Alzheimer's disease pathology. To study microglial responses to Aß, we applied exogenous Aß peptide, in either oligomeric or fibrillar conformation, to primary mouse microglial cultures and evaluated system-level transcriptional changes and then compared these with transcriptomic changes in the brains of CRND8 APP mice. We find that primary microglial cultures have rapid and massive transcriptional change in response to Aß. Transcriptomic responses to oligomeric or fibrillar Aß in primary microglia, although partially overlapping, are distinct and are not recapitulated in vivo where Aß progressively accumulates. Furthermore, although classic immune mediators show massive transcriptional changes in the primary microglial cultures, these changes are not observed in the mouse model. Together, these data extend previous studies which demonstrate that microglia responses ex vivo are poor proxies for in vivo responses. Finally, these data demonstrate the potential utility of using microglia as biosensors of different aggregate conformation, as the transcriptional responses to oligomeric and fibrillar Aß can be distinguished.


Amyloid beta-Peptides/genetics , Microglia/metabolism , Neurofibrillary Tangles/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/physiology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Female , Gene Expression/genetics , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Microglia/physiology , Primary Cell Culture , Transcriptome/genetics
11.
Nat Commun ; 12(1): 2311, 2021 04 19.
Article En | MEDLINE | ID: mdl-33875655

Selective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer's disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.


Alzheimer Disease/genetics , Cerebral Cortex/metabolism , Gene Expression Profiling/methods , Hippocampus/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Autopsy , Cerebral Cortex/pathology , Female , Hippocampus/pathology , Humans , Machine Learning , Male , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Protein C Inhibitor/genetics , Protein C Inhibitor/metabolism , RNA-Seq/methods , tau Proteins/genetics , tau Proteins/metabolism
12.
Cell Death Dis ; 12(3): 227, 2021 03 01.
Article En | MEDLINE | ID: mdl-33649324

Active Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2-25-month-old brains. Casp6 activity was confirmed with Tau∆D421 and Tubulin cleaved by Casp6 immunopositivity in 3-25-month-old CTC, but not in CTO, brains. Immunoprecipitated Tau∆D402 was detected in both CTC and CTO brains, but was more abundant in CTC brains. Intraneuronal hippocampal Tau hyperphosphorylation at S202/T205, S422, and T231, and Tau conformational change were absent in both CTC and CTO brains. A slight accumulation of Tau phosphorylated at S396/404 and S202 was observed in Cornu Ammonis 1 (CA1) hippocampal neuron soma of CTC compared to CTO brains. Eighteen-month-old CTC brains showed rare argentophilic deposits that increased by 25 months, whereas CTO brains only displayed them sparsely at 25 months. Tau microtubule binding was equivalent in CTC and CTO hippocampi. Episodic and spatial memory measured with novel object recognition and Barnes maze, respectively, remained normal in 3-25-month-old CTC and CTO mice, in contrast to previously observed impairments in ACL mice expressing equivalent levels of hCasp6 only. Consistently, the CTC and CTO hippocampal CA1 region displayed equivalent dendritic spine density and no glial inflammation. Together, these results reveal that active hCasp6 co-expression with hTau generates Tau cleavage and rare age-dependent argentophilic deposits but fails to induce cognitive deficits, neuroinflammation, and Tau pathology.


Alzheimer Disease/enzymology , Behavior, Animal , Brain/enzymology , Caspase 6/metabolism , Cognition , Cognitive Dysfunction/enzymology , Nerve Degeneration , Neuroglia/enzymology , Neurons/enzymology , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Animals , Brain/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Caspase 6/genetics , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/psychology , Disease Models, Animal , Locomotion , Memory , Mice, Inbred C57BL , Mice, Transgenic , Neurofibrillary Tangles/enzymology , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Neuroglia/pathology , Neurons/pathology , Open Field Test , Phosphorylation , Protein Aggregates , Protein Aggregation, Pathological , tau Proteins/genetics
13.
J Biol Chem ; 296: 100245, 2021.
Article En | MEDLINE | ID: mdl-33380426

Down syndrome (DS) is mainly caused by an extra copy of chromosome 21 (trisomy 21), and patients display a variety of developmental symptoms, including characteristic facial features, physical growth delay, intellectual disability, and neurodegeneration (i.e., Alzheimer's disease; AD). One of the pathological hallmarks of AD is insoluble deposits of neurofibrillary tangles (NFTs) that consist of hyperphosphorylated tau. The human DYRK1A gene is mapped to chromosome 21, and the protein is associated with the formation of inclusion bodies in AD. For example, DYRK1A directly phosphorylates multiple serine and threonine residues of tau, including Thr212. However, the mechanism underpinning DYRK1A involvement in Trisomy 21-related pathological tau aggregation remains unknown. Here, we explored a novel regulatory mechanism of DYRK1A and subsequent tau pathology through a phosphatase. Using LC-MS/MS technology, we analyzed multiple DYRK1A-binding proteins, including PPM1B, a member of the PP2C family of Ser/Thr protein phosphatases, in HEK293 cells. We found that PPM1B dephosphorylates DYRK1A at Ser258, contributing to the inhibition of DYRK1A activity. Moreover, PPM1B-mediated dephosphorylation of DYRK1A reduced tau phosphorylation at Thr212, leading to inhibition of toxic tau oligomerization and aggregation. In conclusion, our study demonstrates that DYRK1A autophosphorylates Ser258, the dephosphorylation target of PPM1B, and PPM1B negatively regulates DYRK1A activity. This finding also suggests that PPM1B reduces the toxic formation of phospho-tau protein via DYRK1A modulation, possibly providing a novel cellular protective mechanism to regulate toxic tau-mediated neuropathology in AD of DS.


Alzheimer Disease/genetics , Down Syndrome/genetics , Protein Phosphatase 2C/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , tau Proteins/genetics , Alzheimer Disease/complications , Alzheimer Disease/pathology , Carrier Proteins/genetics , Chromatography, Liquid , Down Syndrome/complications , Down Syndrome/pathology , HEK293 Cells , Humans , Nerve Degeneration , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Phosphoprotein Phosphatases/genetics , Phosphorylation/genetics , Protein Aggregation, Pathological/genetics , Tandem Mass Spectrometry , Dyrk Kinases
14.
Curr Protein Pept Sci ; 22(2): 170-189, 2021.
Article En | MEDLINE | ID: mdl-33292151

Various neurodegenerative disorders have various molecular origins but some common molecular mechanisms. In the current scenario, there are very few treatment regimens present for advanced neurodegenerative diseases. In this context, there is an urgent need for alternate options in the form of natural compounds with an ameliorating effect on patients. There have been individual scattered experiments trying to identify potential values of various intracellular metabolites. Purines and Pyrimidines, which are vital molecules governing various aspects of cellular biochemical reactions, have been long sought as crucial candidates for the same, but there are still many questions that go unanswered. Some critical functions of these molecules associated with neuromodulation activities have been identified. They are also known to play a role in foetal neurodevelopment, but there is a lacuna in understanding their mechanisms. In this review, we have tried to assemble and identify the importance of purines and pyrimidines, connecting them with the prevalence of neurodegenerative diseases. The leading cause of this class of diseases is protein misfolding and the formation of amyloids. A direct correlation between loss of balance in cellular homeostasis and amyloidosis is yet an unexplored area. This review aims at bringing the current literature available under one umbrella serving as a foundation for further extensive research in this field of drug development in neurodegenerative diseases.


Gene Expression Regulation/drug effects , Metabolic Networks and Pathways/genetics , Purines/therapeutic use , Pyrimidines/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloidosis/drug therapy , Amyloidosis/enzymology , Amyloidosis/genetics , Amyloidosis/pathology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Humans , Huntington Disease/drug therapy , Huntington Disease/enzymology , Huntington Disease/genetics , Huntington Disease/pathology , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/enzymology , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Neurofibrillary Tangles/drug effects , Neurofibrillary Tangles/enzymology , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Parkinson Disease/genetics , Parkinson Disease/pathology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Purines/metabolism , Pyrimidines/metabolism , Synapses/drug effects , Thymidine Phosphorylase/genetics , Thymidine Phosphorylase/metabolism
15.
Ann Neurol ; 89(1): 54-65, 2021 01.
Article En | MEDLINE | ID: mdl-32996171

OBJECTIVE: The purpose of this study was to infer causal relationships between 22 previously reported risk factors for Alzheimer's disease (AD) and the "AD phenome": AD, AD age of onset (AAOS), hippocampal volume, cortical surface area and thickness, cerebrospinal fluid (CSF) levels of amyloid-ß (Aß42 ), tau, and ptau181 , and the neuropathological burden of neuritic plaques, neurofibrillary tangles (NFTs), and vascular brain injury (VBI). METHODS: Polygenic risk scores (PRS) for the 22 risk factors were computed in 26,431 AD cases/controls and the association with AD was evaluated using logistic regression. Two-sample Mendelian randomization (MR) was used to infer the causal effect of risk factors on the AD phenome. RESULTS: PRS for increased education and diastolic blood pressure were associated with reduced risk for AD. MR indicated that only education was causally associated with reduced risk of AD, delayed AAOS, and increased cortical surface area and thickness. Total- and LDL-cholesterol levels were causally associated with increased neuritic plaque burden, although the effects were driven by single nucleotide polymorphisms (SNPs) within the APOE locus. Diastolic blood pressure and pulse pressure are causally associated with increased risk of VBI. Furthermore, total cholesterol was associated with decreased hippocampal volume; smoking initiation with decreased cortical thickness; type 2 diabetes with an earlier AAOS; and sleep duration with increased cortical thickness. INTERPRETATION: Our comprehensive examination of the genetic evidence for the causal relationships between previously reported risk factors in AD using PRS and MR supports a causal role for education, blood pressure, cholesterol levels, smoking, and diabetes with the AD phenome. ANN NEUROL 2021;89:54-65.


Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Cholesterol/metabolism , Neurofibrillary Tangles/genetics , Peptide Fragments/cerebrospinal fluid , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Brain/metabolism , Brain/physiopathology , Cognition/physiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Female , Humans , Male , Middle Aged , Risk Factors , Sleep/physiology
16.
RNA Biol ; 18(7): 1037-1047, 2021 07.
Article En | MEDLINE | ID: mdl-32605500

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common dementia among the elderly. The pathophysiology of AD is characterized by two hallmarks: amyloid plaques, produced by amyloid ß (Aß) aggregation, and neurofibrillary tangle (NFT), produced by accumulation of phosphorylated tau. The regulatory roles of non-coding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), have been widely recognized in gene expression at the transcriptional and posttranscriptional levels. Mounting evidence shows that lncRNAs are aberrantly expressed in AD progression. Here, we review the lncRNAs that implicated in the regulation of Aß peptide, tau, inflammation, cell death, and other aspects which are the main mechanisms of AD pathology. We also discuss the possible clinical or therapeutic utility of lncRNA detection or targeting to help diagnose or possibly combat AD.


Alzheimer Disease/genetics , Dementia/genetics , Neurofibrillary Tangles/genetics , Plaque, Amyloid/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Dementia/metabolism , Dementia/pathology , Gene Expression Regulation , Humans , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neuronal Plasticity , Neurons/metabolism , Neurons/pathology , Phosphorylation , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Protein Aggregates , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Signal Transduction , Transcription, Genetic , tau Proteins/genetics , tau Proteins/metabolism
17.
J Neurochem ; 156(5): 563-588, 2021 03.
Article En | MEDLINE | ID: mdl-32770783

Since aggregates of the microtubule-binding protein tau were found to be the main component of neurofibrillary tangles more than 30 years ago, their contribution to neurodegeneration in Alzheimer's disease (AD) and tauopathies has become well established. Recent work shows that both tau load and its distribution in the brain of AD patients correlate with cognitive decline more closely compared to amyloid plaque deposition. In addition, the amyloid cascade hypothesis has been recently challenged because of disappointing results of clinical trials designed to treat AD by reducing beta-amyloid levels, thus fuelling a renewed interest in tau. There is now robust evidence to indicate that tau pathology can spread within the central nervous system via a prion-like mechanism following a stereotypical pattern, which can be explained by the trans-synaptic inter-neuronal transfer of pathological tau. In the receiving neuron, tau has been shown to take multiple routes of internalisation, which are partially dependent on its conformation and aggregation status. Here, we review the emerging mechanisms proposed for the uptake of extracellular tau in neurons and the requirements for the propagation of its pathological conformers, addressing how they gain access to physiological tau monomers in the cytosol. Furthermore, we highlight some of the key mechanistic gaps of the field, which urgently need to be addressed to expand our understanding of tau propagation and lead to the identification of new therapeutic strategies for tauopathies.


Brain/metabolism , Neurofibrillary Tangles/metabolism , Neurons/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Biological Transport/physiology , Brain/pathology , Humans , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Neurons/pathology , Tauopathies/genetics , Tauopathies/pathology , tau Proteins/genetics
18.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article En | MEDLINE | ID: mdl-33255694

Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.


Neuroglia/metabolism , Neurons/metabolism , Tauopathies/genetics , tau Proteins/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , Cell Death/genetics , Cytoskeleton/genetics , Cytoskeleton/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Mutation/genetics , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Neuroglia/pathology , Neurons/pathology , Tauopathies/pathology
19.
Science ; 370(6519)2020 11 20.
Article En | MEDLINE | ID: mdl-33004675

Neurodegeneration in Alzheimer's disease (AD) is closely associated with the accumulation of pathologic tau aggregates in the form of neurofibrillary tangles. We found that a p.Asp395Gly mutation in VCP (valosin-containing protein) was associated with dementia characterized neuropathologically by neuronal vacuoles and neurofibrillary tangles. Moreover, VCP appeared to exhibit tau disaggregase activity in vitro, which was impaired by the p.Asp395Gly mutation. Additionally, intracerebral microinjection of pathologic tau led to increased tau aggregates in mice in which p.Asp395Gly VCP mice was knocked in, as compared with injected wild-type mice. These findings suggest that p.Asp395Gly VCP is an autosomal-dominant genetic mutation associated with neurofibrillary degeneration in part owing to reduced tau disaggregation, raising the possibility that VCP may represent a therapeutic target for the treatment of AD.


Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Protein Aggregates , Protein Aggregation, Pathological/genetics , Valosin Containing Protein/metabolism , tau Proteins/metabolism , Animals , Aspartic Acid/genetics , Gene Knock-In Techniques , Genes, Dominant , Glycine/genetics , Humans , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Phosphorylation , Valosin Containing Protein/genetics
20.
Neurobiol Aging ; 96: 104-108, 2020 12.
Article En | MEDLINE | ID: mdl-32977080

The levels of tau phosphorylation differ between sexes in Alzheimer's disease (AD). Transcriptome-wide associations of sex by disease interaction could indicate whether specific genes underlie sex differences in tau pathology; however, no such study has been reported yet. We report the first analysis of the effect of the interaction between disease status and sex on differential gene expression, meta-analyzing transcriptomic data from the 3 largest publicly available case-control studies (N = 785) in the brain to date. A total of 128 genes, significantly associated with sex-AD interactions, were enriched in phosphoproteins (false discovery rate (FDR) = 0.001). High and consistent associations were found for the overexpressions of NCL (FDR = 0.002), whose phosphorylated protein generates an epitope against neurofibrillary tangles and KIF2A (FDR = 0.005), a microtubule-associated motor protein gene. Transcriptome-wide interaction analyses suggest sex-modulated tau phosphorylation, at sites like Thr231, Ser199, or Ser202 that could increase the risk of women to AD and indicate sex-specific strategies for intervention and prevention.


Alzheimer Disease/genetics , Gene Expression Profiling , Genetic Association Studies , Sex Characteristics , Transcriptome/genetics , tau Proteins/metabolism , Alzheimer Disease/etiology , Epitopes , Female , Humans , Kinesins/genetics , Male , Neurofibrillary Tangles/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Risk , Nucleolin
...