Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.037
1.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822367

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Mice , Microglia/metabolism , Microglia/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects , Neuroinflammatory Diseases/metabolism , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Mice, Inbred C57BL , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Male , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Lipopolysaccharides/toxicity
2.
J Neuroinflammation ; 21(1): 145, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824526

BACKGROUND: Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS: Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS: Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS: A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.


Astrocytes , CASP8 and FADD-Like Apoptosis Regulating Protein , Glaucoma , Neuroinflammatory Diseases , Animals , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Mice , Astrocytes/metabolism , Astrocytes/pathology , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/genetics , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Mice, Transgenic , Disease Models, Animal , Cytokines/metabolism , Retina/metabolism , Retina/pathology , Mice, Inbred C57BL , Optic Nerve/pathology , Optic Nerve/metabolism , Glial Fibrillary Acidic Protein/metabolism
3.
J Ethnopharmacol ; 331: 118273, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38703874

ETHNOPHARMACOLOGICAL RELEVANCE: Uncaria rhynchophylla (Miq.) Miq.ex Havil. was a classical medicinal plant exhibiting the properties of extinguishing wind, arresting convulsions, clearing heat and pacifying the liver. Clinically, it could be utilized for the treatment of central nervous system-related diseases, such as Alzheimer's disease. U. rhynchophylla (UR) and its major ingredient alkaloid compounds (URA) have been proved to exert significant neuroprotective effects. However, the potential mechanism aren't fully understood. AIM OF THE STUDY: This study systematically examined the therapeutic effects of URA on AD pathology in APP-PS1 mice, and revealed the potential mechanism of action. MATERIALS AND METHODS: The cognitive ability was evaluated by morris water maze test in APP-PS1 mice. The H&E staining was used to observe the tissue pathological changes. The ELISA kits were used to detect the level of inflammatory factors. The flow cytometry was used to analyze the percentage of CD4+ effector T cells (Teffs) in spleen. The immunofluorescent staining was performed to count the Teffs and microglia in brain. The protein expression was analyzed by western blot. In vitro, the lymphocyte proliferation induced by ConA was performed by CCK-8 kits. The IFN-γ, IL-17, and TNF-α production were detected by ELISA kits. The effects of URA on glycolysis and the involvement of PI3K/Akt/mTOR signaling pathway was analyzed by Lactic Acid assay kit and western blot in ConA-induced naive T cell. RESULTS: URA treatment improved AD pathology effectively as demonstrated by enhanced cognitive ability, decreased Aß deposit and Tau phosphorylation, as well as reduced neuron apoptosis. Also, the neuroinflammation was significantly alleviated as evidenced by decreased IFN-γ, IL-17 and increased IL-10, TGF-ß. Notably, URA treatment down-regulated the percentage of Teffs (Th1 and Th17) in spleen, and reduced the infiltration of Teffs and microglia in brain. Meanwhile, the Treg cell was up-regulated both in spleen and brain. In vitro, URA was capable of attenuating the spleen lymphocyte proliferation and release of inflammatory factors provoked by ConA. Interestingly, glycolysis was inhibited by URA treatment as evidenced by the decrease in Lactic Acid production and expression of HK2 and GLUT1 via regulating PI3K/Akt/mTOR signaling pathway in ConA-induced naive T cell. CONCLUSION: This study proved that URA could improve AD pathology which was possibly attributable to the restraints of CD4+ T cell mediated neuroinflammation via inhibiting glycolysis.


Alkaloids , Alzheimer Disease , CD4-Positive T-Lymphocytes , Glycolysis , Neuroinflammatory Diseases , Uncaria , Animals , Uncaria/chemistry , Glycolysis/drug effects , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , CD4-Positive T-Lymphocytes/drug effects , Alkaloids/pharmacology , Male , Neuroinflammatory Diseases/drug therapy , Mice, Transgenic , Disease Models, Animal , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects
4.
Front Immunol ; 15: 1365673, 2024.
Article En | MEDLINE | ID: mdl-38817603

Importance: Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations: Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance: While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.


Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Humans , Gastrointestinal Microbiome/immunology , Animals , Brain-Gut Axis/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/microbiology , Neuroinflammatory Diseases/etiology , Brain/immunology , Brain/microbiology
5.
J Neuroimmune Pharmacol ; 19(1): 23, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775885

Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1ß, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.


Hippocampus , Kernicterus , Microglia , Minocycline , Neurogenesis , Animals , Neurogenesis/drug effects , Neurogenesis/physiology , Microglia/drug effects , Microglia/metabolism , Rats , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Minocycline/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Inflammation/metabolism , Inflammation/pathology , Neuroinflammatory Diseases/drug therapy
6.
Neuroreport ; 35(9): 549-557, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38739900

Neuroinflammation after traumatic brain injury (TBI) exhibits a strong correlation with neurological impairment, which is a crucial target for improving the prognosis of TBI patients. The involvement of CXCL5/CXCR2 signaling in the regulation of neuroinflammation in brain injury models has been documented. Therefore, the effects of CXCL5 on post-TBI neuroinflammation and its potential mechanisms need to be explored. Following TBI, C57BL/6 mice were administered intraperitoneal injections of a CXCL5 neutralizing antibody (Nab-CXCL5) (5 mg/kg, 2 times/day). Subsequently, the effects on neuroinflammation, nerve injury, and neurological function were assessed. Nab-CXCL5 significantly reduced the release of inflammatory factors, inhibited the formation of inflammatory microglia and astrocytes, and reduced the infiltration of peripheral immune cells in TBI mice. Additionally, this intervention led to a reduction in neuronal impairment and facilitated the restoration of sensorimotor abilities, as well as improvements in learning and memory functions. Peripheral administration of the Nab-CXCL5 to TBI mice could suppress neuroinflammation, reduce neurological damage, and improve neurological function. Our data suggest that neutralizing antibodies against CXCL5 (Nab-CXCL5) may be a promising agent for treating TBI.


Brain Injuries, Traumatic , Chemokine CXCL5 , Mice, Inbred C57BL , Neuroinflammatory Diseases , Recovery of Function , Animals , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/drug therapy , Chemokine CXCL5/metabolism , Neuroinflammatory Diseases/drug therapy , Mice , Male , Recovery of Function/drug effects , Recovery of Function/physiology , Antibodies, Neutralizing/pharmacology , Microglia/drug effects , Microglia/metabolism
7.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732259

Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson's disease, Alzheimer's disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin's multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin's therapeutic promise and calls for further investigation into its clinical applications.


Anti-Inflammatory Agents , Apigenin , Neuroinflammatory Diseases , Apigenin/pharmacology , Apigenin/therapeutic use , Humans , Animals , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Oxidative Stress/drug effects , Inflammation/drug therapy , Inflammation/metabolism
8.
Methods Mol Biol ; 2807: 271-283, 2024.
Article En | MEDLINE | ID: mdl-38743235

The blood-brain barrier (BBB) is one of several barriers between the brain and the peripheral blood system to maintain homeostasis. Understanding the interactions between infectious agents such as human immunodeficiency virus type 1 (HIV-1), which are capable of traversing the BBB and causing neuroinflammation requires modeling an authentic BBB in vitro. Such an in vitro BBB model also helps develop means of targeting viruses that reside in the brain via natural immune effectors such as antibodies. The BBB consists of human brain microvascular endothelial cells (HBMECs), astrocytes, and pericytes. Here we report in vitro methods to establish a dual-cell BBB model consisting of primary HBMECs and primary astrocytes to measure the integrity of the BBB and antibody penetration of the BBB, as well as a method to establish a single cell BBB model to study the impact of HIV-1 infected medium on the integrity of such a BBB.


Astrocytes , Blood-Brain Barrier , Endothelial Cells , HIV Infections , HIV-1 , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Humans , Astrocytes/virology , Astrocytes/metabolism , Astrocytes/immunology , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/immunology , HIV-1/immunology , HIV-1/physiology , HIV Infections/virology , HIV Infections/immunology , Pericytes/virology , Pericytes/metabolism , Pericytes/immunology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/immunology , Coculture Techniques/methods , Cells, Cultured , Brain/virology , Brain/immunology , Brain/metabolism
9.
PLoS One ; 19(5): e0303150, 2024.
Article En | MEDLINE | ID: mdl-38728304

The Ang-(1-7)/MasR axis is critically involved in treating several diseases; For example, Ang-(1-7) improves inflammatory response and neurological function after traumatic brain injury and inhibits post-inflammatory hypothermia. However, its function in traumatic brain injury (TBI) combined with seawater immersion hypothermia remains unclear. Here, we used a mice model of hypothermic TBI and a BV2 cell model of hypothermic inflammation to investigate whether the Ang-(1-7)/MasR axis is involved in ameliorating hypothermic TBI. Quantitative reverse transcription PCR, western blotting assay, and immunofluorescence assay were performed to confirm microglia polarization and cytokine regulation. Hematoxylin-eosin staining, Nissl staining, and immunohistochemical assay were conducted to assess the extent of hypothermic TBI-induced damage and the ameliorative effect of Ang-(1-7) in mice. An open field experiment and neurological function scoring with two approaches were used to assess the degree of recovery and prognosis in mice. After hypothermic TBI establishment in BV2 cells, the Ang-(1-7)/MasR axis induced phenotypic transformation of microglia from M1 to M2, inhibited IL-6 and IL-1ß release, and upregulated IL-4 and IL-10 levels. After hypothermic TBI development in mice, intraperitoneally administered Ang-(1-7) attenuated histological damage and promoted neurological recovery. These findings suggest that hypothermia exacerbates TBI-induced damage and that the Ang-(1-7)/MasR axis can ameliorate hypothermic TBI and directly affect prognosis.


Angiotensin I , Brain Injuries, Traumatic , Microglia , Neuroinflammatory Diseases , Peptide Fragments , Animals , Microglia/metabolism , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Mice , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Phenotype , Disease Models, Animal , Hypothermia, Induced , Cytokines/metabolism , Cell Line , Hypothermia/metabolism , Inflammation/pathology , Inflammation/metabolism
10.
J Alzheimers Dis ; 99(2): 739-752, 2024.
Article En | MEDLINE | ID: mdl-38701142

Background: Early detection of Alzheimer's disease (AD) is a key component for the success of the recently approved lecanemab and aducanumab. Patients with neuroinflammation-related conditions are associated with a higher risk for developing AD. Objective: Investigate the incidence of AD among patients with neuroinflammation-related conditions including epilepsy, hemorrhage stroke, multiple sclerosis (MS), and traumatic brain injury (TBI). Methods: We used Optum's de-identified Clinformatics Data Mart Database (CDM). We derived covariate-matched cohorts including patients with neuroinflammation-related conditions and controls without the corresponding condition. The matched cohorts were: 1) patients with epilepsy and controls (N = 67,825 matched pairs); 2) patients with hemorrhage stroke and controls (N = 81,510 matched pairs); 3) patients with MS and controls (N = 9,853 matched pairs); and 4) patients TBI and controls (N = 104,637 matched pairs). We used the Cox model to investigate the associations between neuroinflammation-related conditions and AD. Results: We identified that epilepsy, hemorrhage stroke, and TBI were associated with increased risks of AD in both males and females (hazard ratios [HRs]≥1.74, p < 0.001), as well as in gender- and race-conscious subpopulations (HRs≥1.64, p < 0.001). We identified that MS was associated with increased risks of AD in both males and females (HRs≥1.47, p≤0.004), while gender- and race-conscious subgroup analysis shown mixed associations. Conclusions: Patients with epilepsy, hemorrhage stroke, MS, and/or TBI are associated with a higher risk of developing AD. More attention on cognitive status should be given to older patients with these conditions.


Alzheimer Disease , Epilepsy , Humans , Male , Alzheimer Disease/epidemiology , Female , United States/epidemiology , Aged , Middle Aged , Epilepsy/epidemiology , Multiple Sclerosis/epidemiology , Brain Injuries, Traumatic/epidemiology , Brain Injuries, Traumatic/complications , Neuroinflammatory Diseases/epidemiology , Incidence , Hemorrhagic Stroke/epidemiology , Adult , Aged, 80 and over , Cohort Studies , Databases, Factual , Insurance Claim Review
11.
Mol Med ; 30(1): 59, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745316

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Autophagy , Disease Models, Animal , Microglia , Neuroinflammatory Diseases , Reperfusion Injury , Animals , Microglia/drug effects , Microglia/metabolism , Mice , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/etiology , Autophagy/drug effects , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Cell Polarity/drug effects
12.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717643

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Annexin A1 , Ischemic Stroke , Mice, Inbred C57BL , Microglia , Neuroinflammatory Diseases , Up-Regulation , Animals , Mice , Microglia/drug effects , Microglia/metabolism , Male , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Annexin A1/metabolism , Up-Regulation/drug effects , Sirtuins/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism
13.
Brain Behav ; 14(5): e3515, 2024 May.
Article En | MEDLINE | ID: mdl-38702895

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Hippocampus , Melatonin , Memory Disorders , Neuronal Plasticity , Sleep Deprivation , Animals , Melatonin/pharmacology , Melatonin/administration & dosage , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Sleep Deprivation/physiopathology , Mice , Male , Hippocampus/metabolism , Hippocampus/drug effects , Female , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/physiopathology , Neuronal Plasticity/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Pregnancy , Maternal Deprivation , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/physiopathology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Neuroinflammatory Diseases/drug therapy
14.
J Neuroinflammation ; 21(1): 117, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715127

BACKGROUND: Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS: We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS: The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION: Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.


Amino Acid Transport System y+ , Mice, Inbred C57BL , Neuralgia , Neuroinflammatory Diseases , Spinal Cord , Animals , Mice , Neuralgia/metabolism , Neuroinflammatory Diseases/metabolism , Male , Spinal Cord/metabolism , Spinal Cord/pathology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Disease Models, Animal , Mice, Knockout , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use , Hyperalgesia/metabolism , Hyperalgesia/etiology , Mice, Transgenic
15.
J Neuroinflammation ; 21(1): 115, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698374

BACKGROUND: Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS: To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS: NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION: In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.


Macrophages , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2 , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/virology , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Encephalitis, Japanese/immunology , Reactive Oxygen Species/metabolism , Encephalitis Virus, Japanese , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Cell Polarity/drug effects , Cell Polarity/physiology
16.
Sci Immunol ; 9(95): eabq1558, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701190

Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (TH17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1ß (IL-1ß) induced a signal transducer and activator of transcription 5 (STAT5)-mediated steroid-resistant transcriptional program in TH17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. TH17-specific deletion of STAT5 ablated the IL-1ß-induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1ß synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)-resident CD69+ TH17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident TH17 cells, reduced EAE severity, and prevented relapse. CD69+ tissue-resident TH17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1ß-STAT5 signaling in TH17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in TH17-mediated CNS autoimmunity.


Dexamethasone , Encephalomyelitis, Autoimmune, Experimental , Interleukin-1beta , STAT5 Transcription Factor , Th17 Cells , Animals , Th17 Cells/immunology , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/immunology , Mice , Interleukin-1beta/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Mice, Inbred C57BL , Drug Resistance , Signal Transduction/immunology , Mice, Knockout , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Female , Humans
17.
J Neuroinflammation ; 21(1): 116, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702778

BACKGROUND: Subarachnoid hemorrhage (SAH), a severe subtype of stroke, is characterized by notably high mortality and morbidity, largely due to the lack of effective therapeutic options. Although the neuroprotective potential of PPARg and Nrf2 has been recognized, investigative efforts into oroxin A (OA), remain limited in preclinical studies. METHODS: SAH was modeled in vivo through filament perforation in male C57BL/6 mice and in vitro by exposing HT22 cells to hemin to induce neuronal damage. Following the administration of OA, a series of methods were employed to assess neurological behaviors, brain water content, neuronal damage, cell ferroptosis, and the extent of neuroinflammation. RESULTS: The findings indicated that OA treatment markedly improved survival rates, enhanced neurological functions, mitigated neuronal death and brain edema, and attenuated the inflammatory response. These effects of OA were linked to the suppression of microglial activation. Moreover, OA administration was found to diminish ferroptosis in neuronal cells, a critical factor in early brain injury (EBI) following SAH. Further mechanistic investigations uncovered that OA facilitated the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus, thereby activating the Nrf2/GPX4 pathway. Importantly, OA also upregulated the expression of FSP1, suggesting a significant and parallel protective effect against ferroptosis in EBI following SAH in synergy with GPX4. CONCLUSION: In summary, this research indicated that the PPARg activator OA augmented the neurological results in rodent models and diminished neuronal death. This neuroprotection was achieved primarily by suppressing neuronal ferroptosis. The underlying mechanism was associated with the alleviation of cellular death through the Nrf2/GPX4 and FSP1/CoQ10 pathways.


Ferroptosis , Mice, Inbred C57BL , Neuroinflammatory Diseases , Subarachnoid Hemorrhage , Animals , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , Subarachnoid Hemorrhage/complications , Ferroptosis/drug effects , Ferroptosis/physiology , Mice , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/metabolism , Neurons/drug effects , Neurons/pathology
18.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791125

The brain is the central organ of adaptation to stress because it perceives and determines threats that induce behavioral, physiological, and molecular responses. In humans, chronic stress manifests as an enduring consistent feeling of pressure and being overwhelmed for an extended duration. This can result in a persistent proinflammatory response in the peripheral and central nervous system (CNS), resulting in cellular, physiological, and behavioral effects. Compounding stressors may increase the risk of chronic-stress-induced inflammation, which can yield serious health consequences, including mental health disorders. This review summarizes the current knowledge surrounding the neuroinflammatory response in rodent models of chronic stress-a relationship that is continually being defined. Many studies investigating the effects of chronic stress on neuroinflammation in rodent models have identified significant changes in inflammatory modulators, including nuclear factor-κB (NF-κB) and toll-like receptors (TLRs), and cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and IL-6. This suggests that these are key inflammatory factors in the chronic stress response, which may contribute to the establishment of anxiety and depression-like symptoms. The behavioral and neurological effects of modulating inflammatory factors through gene knockdown (KD) and knockout (KO), and conventional and alternative medicine approaches, are discussed.


Disease Models, Animal , Neuroinflammatory Diseases , Stress, Psychological , Animals , Humans , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Stress, Psychological/metabolism , Rodentia , Chronic Disease , Cytokines/metabolism , NF-kappa B/metabolism , Inflammation/metabolism
19.
Int J Mol Sci ; 25(10)2024 May 19.
Article En | MEDLINE | ID: mdl-38791588

Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aß infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aß-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aß infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway.


Amyloid beta-Peptides , Chitinase-3-Like Protein 1 , Cognitive Dysfunction , MAP Kinase Signaling System , Mice, Knockout , Neuroinflammatory Diseases , Animals , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/metabolism , Mice , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Humans , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Male , MAP Kinase Signaling System/drug effects , C-Reactive Protein/metabolism , Female , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Down-Regulation , Disease Models, Animal , Aged , Mice, Inbred C57BL
20.
J Affect Disord ; 358: 211-221, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38705530

BACKGROUND: Neuroinflammation is involved in the advancement of depression. Du-moxibustion can treat depression. Here, we explored whether Du-moxibustion could alleviate neuroglia-associated neuro-inflammatory process in chronic unpredictable mild stress (CUMS) mice. METHODS: C57BL/6J mice were distributed into five groups. Except for the CON group, other four groups underwent CUMS for four consecutive weeks, and Du-moxibustion was given simultaneously after modeling. Behavioral tests were then carried out. Additionally, Western blot was conducted to measure the relative expression levels of high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB). Immunofluorescence was employed to evaluate the positive cells of ionized calcium binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP). Furthermore, interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) were analyzed using an ELISA assay. RESULTS: We found that CUMS induced depression-like behaviors, such as reduced sucrose preference ratio, decreased locomotor and exploratory activity, decreased the time in open arms and prolonged immobility. Furthermore, versus the CON group, the expression of HMGB1, TLR4, MyD88, NF-κB, positive cells of Iba-1, IL-1ß and TNF-α were increased but positive cells of GFAP were decreased in CUMS group. However, the detrimental effects were ameliorated by treatment with CUMS+FLU and CUMS+DM. LIMITATIONS: A shortage of this study is that only CUMS model of depression were used, while other depression model were not included. CONCLUSIONS: Du-moxibustion alleviates depression-like behaviors in CUMS mice mainly by reducing neuroinflammation, which offers novel insights into the potential treatment of depression.


Depression , Disease Models, Animal , HMGB1 Protein , Mice, Inbred C57BL , Moxibustion , Myeloid Differentiation Factor 88 , Neuroinflammatory Diseases , Stress, Psychological , Animals , Mice , Stress, Psychological/complications , Depression/drug therapy , Male , HMGB1 Protein/metabolism , Myeloid Differentiation Factor 88/metabolism , Neuroinflammatory Diseases/drug therapy , Toll-Like Receptor 4/metabolism , Behavior, Animal/drug effects , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism
...