Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Brain Res ; 1842: 149107, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38977236

ABSTRACT

Fever elicited by bacterial lypopolyssacharide (LPS) is mediated by pro-inflammatory cytokines, which activate central mediators and regulate the hypothalamic temperature setpoint. This response is often accompanied by morphological changes involving the extracellular matrix, neurons and glial cells, with significant health impacts. The NK1 receptor is involved in the febrile response induced by LPS but its effects over the extracellular matrix in the context of neuroinflammation remain unknown. The present work aims to clarify the extracellular changes associated with NK1 signaling in LPS-induced fever. Male Wistar rats were exposed to LPS intraperitoneally. Experimental groups were pre-treated intracerebroventricularly with the NK1 selective inhibitor SR140333B or saline. Histological changes involving the brain extracellular matrix were evaluated using hematoxylin and eosin, Mason's trichrome, picrosirius, alcian blue, periodic acid Schiff's stains. The expression of matrix metalloproteinase 9 (MMP9) was studied using confocal microscopy. Fever was accompanied by edema, perivascular lymphoplamacytic and neutrophylic infiltration, spongiosis and MMP9 overexpression. SR140333B significantly reduced LPS-induced fever (p < 0.0001), MMP9 overexpression (p < 0.01) and associated histological changes. These results contribute to characterize cerebral extracellular matrix changes associated with LPS-induced fever. Overall, the present work supports a role for NK1 receptor in these neuroinflammatory changes, involving MMP9 overexpression, edema and leukocytic infiltration.


Subject(s)
Fever , Lipopolysaccharides , Rats, Wistar , Receptors, Neurokinin-1 , Animals , Male , Fever/chemically induced , Fever/metabolism , Lipopolysaccharides/pharmacology , Rats , Receptors, Neurokinin-1/metabolism , Matrix Metalloproteinase 9/metabolism , Brain/metabolism , Brain/pathology , Brain/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Neurokinin-1 Receptor Antagonists/pharmacology
2.
Physiol Rep ; 12(12): e16125, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031618

ABSTRACT

Stimulation of the calcium-sensing receptor (CaSR) regulates vascular contractility, but cellular mechanisms involved remain unclear. This study investigated the role of perivascular sensory nerves in CaSR-induced relaxations of male rat mesenteric arteries. In fluorescence studies, colocalisation between synaptophysin, a synaptic vesicle marker, and the CaSR was present in the adventitial layer of arterial segments. Using wire myography, increasing external Ca2+ concentration ([Ca2+]o) from 1 to 10 mM induced vasorelaxations, previously shown to involve the CaSR, which were inhibited by pretreatment with capsaicin. [Ca2+]o-induced vasorelaxations were partially reduced by the calcitonin gene-related peptide (CGRP) receptor blockers, CGRP 8-37 and BIBN 4096, and the neurokinin 1 (NK1) receptor blocker L733,060. The inhibitory effect of CGRP 8-37 required a functional endothelium whereas the inhibitory action of L733,060 did not. Complete inhibition of [Ca2+]o-induced vasorelaxations occurred when CGRP 8-37 and L733,060 were applied together. [Ca2+]o-induced vasorelaxations in the presence of capsaicin were abolished by the ATP-dependent K+ channel (KATP) blocker PNU 37883, but unaffected by the endothelium nitric oxide synthase (eNOS) inhibitor L-NAME. We suggest that the CaSR on perivascular sensory nerves mediate relaxations in rat mesenteric arteries via endothelium-dependent and -independent mechanisms involving CGRP and NK1 receptor-activated NO production and KATP channels, respectively.


Subject(s)
Calcitonin Gene-Related Peptide , Mesenteric Arteries , Receptors, Calcium-Sensing , Receptors, Neurokinin-1 , Vasodilation , Animals , Male , Receptors, Calcium-Sensing/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Receptors, Neurokinin-1/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiology , Mesenteric Arteries/metabolism , Rats , Vasodilation/drug effects , Vasodilation/physiology , Rats, Wistar , Neurokinin-1 Receptor Antagonists/pharmacology , Calcium/metabolism , Capsaicin/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Signal Transduction/physiology
3.
Expert Opin Pharmacother ; 25(7): 783-789, 2024 May.
Article in English | MEDLINE | ID: mdl-38869992

ABSTRACT

INTRODUCTION: In many postmenopausal women, quality of life is decreased due to vasomotor symptoms. Efficient and well-tolerated non-hormonal treatment options are needed. AREAS COVERED: The present review summarizes what is known about the etiology of postmenopausal vasomotor symptoms as a rationale for the mechanism of action of Elinzanetant, a new neurokinin (NK)-1/-3 receptor antagonist, as well as its efficacy and side effect profile. EXPERT OPINION: Elinzanetant likely exerts an antagonistic effect on the NK-3 receptor in the preoptic thermoregulatory zone, but also an additional antagonistic effect on the NK-1 receptor possibly leading to a reduction in vasodilatation and heat-sensing neuro-activity. Elinzanetant's reported peak drug concentrations are reached within one hour and the terminal elimination half-life is approximately 15 hours. Two phase IIb clinical trials evaluated the safety profile and efficacy of several doses. There were no serious adverse events, which also included a lack of evidence of drug-related hepatotoxicity. Overall, Elinzanetant seems to be well-tolerated. In the SWITCH-1 study, the 120 mg/day and 160 mg/day regimen showed good efficacy for the treatment of vasomotor symptoms and led to significant improvements in quality of life. Thus, 120 mg oral Elinzanetant/day was used in phase III trials, whose results have not yet been published.


Subject(s)
Hot Flashes , Neurokinin-1 Receptor Antagonists , Postmenopause , Quality of Life , Receptors, Neurokinin-3 , Humans , Female , Receptors, Neurokinin-3/antagonists & inhibitors , Neurokinin-1 Receptor Antagonists/therapeutic use , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/pharmacokinetics , Neurokinin-1 Receptor Antagonists/adverse effects , Hot Flashes/drug therapy , Animals
4.
J Ocul Pharmacol Ther ; 40(7): 445-451, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38829162

ABSTRACT

Purpose: To evaluate the therapeutic efficacy of topical application of a neurokinin-1 receptor (NK1R) antagonist in a rabbit model of nonallergic ocular redness. Methods: Nonallergic ocular redness was induced in rabbits by a single, topical application of dapiparzole hydrochloride eye drops (0.5%, 1%, 2%, or 5%). The NK1R antagonist L-703,606 was topically applied to the eye at the same time of induction or 20 min after induction, and phosphate buffered saline (PBS) treatment served as the control. Superior bulbar conjunctival images were taken every 30 s for the first 2 min, followed by every 4 min for 8 min, and then every 10 min until 1 h. The severity of ocular redness was evaluated on the images using ImageJ-based ocular redness index (ORI) calculations. Results: The ORI scores were significantly increased after the application of 0.5%, 1%, 2%, or 5% dapiparzole at each time point evaluated, with the most severe redness induced by the 5% dapiprazole that led to a maximal mean increase in ORI score of 14 at 20 min post-induction and thus used for subsequent evaluation of therapeutic efficacy of NK1R antagonism. Topical L-703,606, when applied at the same time as dapiprazole induction, significantly suppressed the increase of ORI scores at all time points (∼40% decrease). Furthermore, when applied at 20 min after dapiprazole induction, L-703,606 rapidly and effectively suppressed the increase of ORI scores at 30, 40, 50, and 60 min (∼30% decrease). Conclusions: Topical blockade of NK1R effectively prevents and alleviates nonallergic ocular redness in a novel animal model.


Subject(s)
Disease Models, Animal , Neurokinin-1 Receptor Antagonists , Animals , Rabbits , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/administration & dosage , Ophthalmic Solutions/administration & dosage , Male , Receptors, Neurokinin-1/metabolism , Dose-Response Relationship, Drug , Conjunctiva/drug effects , Conjunctiva/metabolism
5.
Eur J Pharmacol ; 973: 176587, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642667

ABSTRACT

Agonist-induced phosphorylation is a crucial step in the activation/deactivation cycle of G protein-coupled receptors (GPCRs), but direct determination of individual phosphorylation events has remained a major challenge. We have recently developed a bead-based immunoassay for the quantitative assessment of agonist-induced GPCR phosphorylation that can be performed entirely in 96-well plates, thus eliminating the need for western blot analysis. In the present study, we adapted this assay to three novel phosphosite-specific antibodies directed against the neurokinin 1 (NK1) receptor, namely pS338/pT339-NK1, pT344/pS347-NK1, and pT356/pT357-NK1. We found that substance P (SP) stimulated concentration-dependent phosphorylation of all three sites, which could be completely blocked in the presence of the NK1 receptor antagonist aprepitant. The other two endogenous ligands of the tachykinin family, neurokinin A (NKA) and neurokinin B (NKB), were also able to induce NK1 receptor phosphorylation, but to a much lesser extent than substance P. Interestingly, substance P promoted phosphorylation of the two distal sites more efficiently than that of the proximal site. The proximal site was identified as a substrate for phosphorylation by protein kinase C. Analysis of GPCR kinase (GRK)-knockout cells revealed that phosphorylation was mediated by all four GRK isoforms to similar extents at the T344/S347 and the T356/T357 cluster. Knockout of all GRKs resulted in abolition of all phosphorylation signals highlighting the importance of these kinases in agonist-mediated receptor phosphorylation. Thus, the 7TM phosphorylation assay technology allows for rapid and detailed analyses of GPCR phosphorylation.


Subject(s)
Receptors, Neurokinin-1 , Substance P , Receptors, Neurokinin-1/metabolism , Receptors, Neurokinin-1/agonists , Phosphorylation/drug effects , Humans , Substance P/pharmacology , Animals , Immunoassay/methods , Cricetulus , CHO Cells , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin A/pharmacology , Neurokinin A/metabolism
6.
Toxins (Basel) ; 16(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668612

ABSTRACT

Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.


Subject(s)
Bothrops , Crotalid Venoms , Ganglia, Spinal , Hyperalgesia , Receptors, Neurokinin-1 , Animals , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Crotalid Venoms/toxicity , Male , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Receptors, Neurokinin-1/metabolism , Minocycline/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Microglia/drug effects , Microglia/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Rats , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Microfilament Proteins/metabolism , Neurokinin-1 Receptor Antagonists/pharmacology , Rats, Sprague-Dawley
7.
Liver Int ; 44(7): 1651-1667, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38554043

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis and limited treatment options. Aprepitant, a selective NK-1R antagonist, can inhibit the growth of various tumours in vitro and in vivo. However, it remains unclear whether aprepitant has cytotoxic effects on iCCA. METHODS: We measured the expression of SP/NK-1R in clinical samples of iCCA by immunohistochemistry. Then, we detected the cytotoxic effects of aprepitant on iCCA cells via MTT, EdU and colony formation assay. We constructed a subcutaneous xenograft model of BALB/c nude mice by using HCCC-9810 and RBE cell lines to explore the effects of aprepitant in vivo. To elucidate the potential mechanisms, we explored the pro-apoptotic effect of aprepitant by flow cytometric, western blotting, ROS detection and JC-1 staining. Furthermore, we detected the autophagic level of HCCC-9810 and RBE by western blotting, mRFP-eGFP-LC3 adenovirus transfection and electron microscope. RESULTS: SP/NK-1R is significantly expressed in iCCA. Aprepitant inhibited human iCCA xenograft growth and dose-dependently decreased the viability of RBE and HCCC-9810 cells. Aprepitant-induced mitochondria-dependent apoptosis through ROS/JNK pathway. Additionally, pretreatment with z-VAD-fmk partly reversed the effect of aprepitant on cell viability, while NAC completely attenuated the cytotoxic effects of aprepitant in vitro. Furthermore, we observed the dynamic changes of autophagosome in RBE and HCCC-9810 cells treated with aprepitant. CONCLUSION: SP/NK-1R signalling is significantly activated in iCCA and promotes the proliferation of iCCA cells. By contrast, aprepitant can induce autophagy and apoptosis in iCCA cells via ROS accumulation and subsequent activation of JNK.


Subject(s)
Apoptosis , Aprepitant , Autophagy , Bile Duct Neoplasms , Cholangiocarcinoma , Mice, Inbred BALB C , Mice, Nude , Neurokinin-1 Receptor Antagonists , Reactive Oxygen Species , Xenograft Model Antitumor Assays , Aprepitant/pharmacology , Aprepitant/therapeutic use , Animals , Humans , Autophagy/drug effects , Apoptosis/drug effects , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Neurokinin-1 Receptor Antagonists/pharmacology , Mice , Male , Female , Receptors, Neurokinin-1/metabolism , Middle Aged , Cell Proliferation/drug effects
8.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542509

ABSTRACT

Traumatic brain injuries represent a leading cause of death and disability in the paediatric and adult populations. Moderate-to-severe injuries are associated with blood-brain barrier dysfunction, the development of cerebral oedema, and neuroinflammation. Antagonists of the tachykinin NK1 receptor have been proposed as potential agents for the post-injury treatment of TBI. We report on the identification of EUC-001 as a potential clinical candidate for development as a novel TBI therapy. EUC-001 is a selective NK1 antagonist with a high affinity for the human NK1 receptor (Ki 5.75 × 10-10 M). It has sufficient aqueous solubility to enable intravenous administration, whilst still retaining good CNS penetration as evidenced by its ability to inhibit the gerbil foot-tapping response. Using an animal model of TBI, the post-injury administration of EUC-001 was shown to restore BBB function in a dose-dependent manner. EUC-001 was also able to ameliorate cerebral oedema. These effects were associated with a significant reduction in post-TBI mortality. In addition, EUC-001 was able to significantly reduce functional deficits, both motor and cognitive, that normally follow a severe injury. EUC-001 is proposed as an ideal candidate for clinical development for TBI.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Animals , Humans , Child , Receptors, Neurokinin-1 , Substance P , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Brain Injuries, Traumatic/drug therapy , Infusions, Intravenous
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5875-5882, 2024 08.
Article in English | MEDLINE | ID: mdl-38334824

ABSTRACT

Substance P (SP), an important neuropeptide, has a crucial role in the progression of several cancers, including prostate cancer, through interacting with the neurokinin-1 receptor (NK1R). Oxidative stress is also involved in the onset and progression of prostate cancer. However, no studies have been performed on the cross-talk between the SP/NK1R system and cellular redox balance in prostate cancer, and how it is involved in tumorogenesis. We aimed to investigate the effect of the SP/NK1R system and the blockage of NK1R with its specific antagonist (aprepitant) on the cellular redox status of the prostate cancer cell line (PC3 and LNCaP). We performed the resazurin assay to evaluate the toxicity of the aprepitant on the PC3 and LNCaP cell lines. The intracellular reactive oxygen species (ROS) level was measured after SP and aprepitant treatment. The alterations of expression and activity of two crucial cellular oxidoreductases, glutaredoxin, and thioredoxin were evaluated by qRT-PCR and commercial kits (ZellBio GmbH), respectively. Our results revealed that SP increased ROS production and decreased the expression and activity of glutaredoxin and thioredoxin. On the other hand, treatment of cells with aprepitant showed reverse results. In conclusion, we found that the SP/NK1R system could promote prostate cancer progression by inducing oxidative stress. In addition, the inhibition of NK1R by aprepitant modulated the effect of the SP/NK1R system on the cellular redox system. Aprepitant might therefore be introduced as a candidate for the treatment of prostate cancer; however, more studies are required to confirm the validation of this hypothesis.


Subject(s)
Aprepitant , Glutaredoxins , Prostatic Neoplasms , Reactive Oxygen Species , Receptors, Neurokinin-1 , Substance P , Thioredoxins , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Thioredoxins/metabolism , Reactive Oxygen Species/metabolism , Aprepitant/pharmacology , Receptors, Neurokinin-1/metabolism , Cell Line, Tumor , Glutaredoxins/metabolism , Glutaredoxins/genetics , Substance P/metabolism , Substance P/pharmacology , Neurokinin-1 Receptor Antagonists/pharmacology , Oxidative Stress/drug effects , PC-3 Cells
10.
Biol Pharm Bull ; 47(3): 692-697, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38417893

ABSTRACT

Existing antiemetic therapy against emetic-risk agents across malignancies 24 h post-dose in the acute period in cisplatin (CDDP)-based regimens yields a satisfactory complete response (CR) rate of ≥90%. However, the control rate after 24 h in the delayed period is unsatisfactory. This study compared the efficacy of fosnetupitant (F-NTP), a neurokinin 1 receptor antagonist, with that of fosaprepitant (F-APR) and aprepitant (APR) in the treatment of patients with cancer at high emetic risk due to chemotherapy. In this retrospective case-control study involving patients receiving cisplatin-containing regimens and neurokinin 1 receptor antagonists, patients were divided into three groups based on prophylactic antiemetic therapy: F-NTP, F-APR, and APR. The CR rate was evaluated for each period up to 168 h and further subdivided into acute (0-24 h), delayed (24-120 h), overall (0-120 h), and beyond-delayed (120-168 h) periods. Eighty-eight patients were included in the F-NTP group, 66 in the F-APR group, and 268 in the APR group. The CR rates at 0-168 and 120-168 h after cisplatin administration were significantly higher in the F-NTP group than in the F-APR and APR groups. After adjusting for confounding factors, F-NTP use was an independent factor in the multivariate analysis. Prophylactic antiemetic therapy, including F-NTP, was effective and well-tolerated during the delayed period. The efficacy of F-NTP in managing chemotherapy-induced nausea and vomiting was superior to those of F-APR and APR during the study period.


Subject(s)
Antiemetics , Antineoplastic Agents , Morpholines , Neoplasms , Humans , Aprepitant/therapeutic use , Cisplatin/adverse effects , Emetics/adverse effects , Retrospective Studies , Case-Control Studies , Vomiting/chemically induced , Vomiting/prevention & control , Vomiting/drug therapy , Neurokinin-1 Receptor Antagonists/therapeutic use , Neurokinin-1 Receptor Antagonists/pharmacology , Neoplasms/drug therapy , Gastrointestinal Agents/therapeutic use , Antineoplastic Agents/adverse effects
11.
J Zhejiang Univ Sci B ; 25(2): 91-105, 2024 Feb 15.
Article in English, Chinese | MEDLINE | ID: mdl-38303494

ABSTRACT

Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy. This review updates the latest potential and applications of NK-1R antagonists in the treatment of human diseases and cancers, as well as the underlying mechanisms. Furthermore, the strategies to improve the bioavailability and efficacy of NK-1R antagonist drugs are summarized, such as solid dispersion systems, nanonization, and nanoencapsulation. As a radiopharmaceutical therapeutic, the NK-1R antagonist aprepitant was originally developed as radioligand receptor to target NK-1R-overexpressing tumors. However, combining NK-1R antagonists with other drugs can produce a synergistic effect, thereby enhancing the therapeutic effect, alleviating the symptoms, and improving patients quality of life in several diseases and cancers.


Subject(s)
Neoplasms , Neurokinin-1 Receptor Antagonists , Humans , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Quality of Life , Substance P , Receptors, Neurokinin-1 , Neoplasms/drug therapy
12.
Eur J Med Chem ; 264: 116021, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38086194

ABSTRACT

Different studies using Aprepitant, a NK1R antagonist currently used as a clinical drug for treating chemotherapy-related nausea and vomiting, have demonstrated that pharmacological inhibition of NK1R effectively reduces the growth of several tumor types such as neuroblastoma (NB). In a previous work, we demonstrated that a series of carbohydrate-based Aprepitant analogs, derived from either d-galactose or l-arabinose, have shown high affinity and NK1R antagonistic activity with a broad-spectrum anticancer activity and an important selectivity. In this new study, we explore the selective cytotoxic effects of these derivatives for the treatment of NB. Furthermore, we describe the design and stereoselective synthesis of a new generation of d-glucose derivatives as Aprepitant analogs, supported by docking studies. This approach showed that most of our carbohydrate-based analogs are significantly more selective than Aprepitant. The galactosyl derivative 2α, has demonstrated a marked in vitro selective cytotoxic activity against NB, with IC50 values in the same range as those of Aprepitant and its prodrug Fosaprepitant. Interestingly, the derivative 2α has shown similar apoptotic effect to that of Aprepitant. Moreover, we can select the glucosyl amino derivative 10α as an interesting hit exhibiting higher in vitro cytotoxic activity against NB than Aprepitant, being 1.2 times more selective.


Subject(s)
Antiemetics , Antineoplastic Agents , Neuroblastoma , Humans , Aprepitant/pharmacology , Neurokinin-1 Receptor Antagonists/pharmacology , Vomiting/drug therapy , Antineoplastic Agents/pharmacology , Neuroblastoma/drug therapy , Carbohydrates , Antiemetics/therapeutic use
13.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958914

ABSTRACT

The substance P (SP)/neurokinin-1 receptor (NK-1R) system is involved in cancer progression. NK-1R, activated by SP, promotes tumor cell proliferation and migration, angiogenesis, the Warburg effect, and the prevention of apoptosis. Tumor cells overexpress NK-1R, which influences their viability. A typical specific anticancer strategy using NK-1R antagonists, irrespective of the tumor type, is possible because these antagonists block all the effects mentioned above mediated by SP on cancer cells. This review will update the information regarding using NK-1R antagonists, particularly Aprepitant, as an anticancer drug. Aprepitant shows a broad-spectrum anticancer effect against many tumor types. Aprepitant alone or in combination therapy with radiotherapy or chemotherapy could reduce the sequelae and increase the cure rate and quality of life of patients with cancer. Current data open the door to new cancer research aimed at antitumor therapeutic strategies using Aprepitant. To achieve this goal, reprofiling the antiemetic Aprepitant as an anticancer drug is urgently needed.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Aprepitant/pharmacology , Aprepitant/therapeutic use , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Drug Repositioning , Quality of Life , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Receptors, Neurokinin-1/metabolism , Substance P/pharmacology , Substance P/metabolism , Neoplasms/drug therapy
14.
J Cell Biochem ; 124(11): 1848-1869, 2023 11.
Article in English | MEDLINE | ID: mdl-37942587

ABSTRACT

Advances in structural biology have bestowed insights into the pleiotropic effects of neurokinin 1 receptors (NK1R) in diverse patho-physiological processes, thereby highlighting the potential therapeutic value of antagonists directed against NK1R. Herein, we investigate the mode of antagonist recognition to discern the obscure atomic facets germane for the function and molecular determinants of NK1R. To commence discernment of potent antagonists and the conformational changes in NK1R, induced upon antagonist binding, state-of-the-art classical all-atoms molecular dynamics (MD) simulations in lipid mimetic bilayers have been utilized. MD simulations of structural ensembles reveals the involvement of TM5 and TM6 in tight anchoring of antagonists through a network of interhelical hydrogen-bonds, while, the extracellular loop 2 (ECL2) governs the overall size and nature of the pocket, thereby modulating NK1R. Consistent comparison between experiments and MD simulation results discerns the predominant role of TM3, TM4, and TM6 in lipid-NK1R interaction. Correlation between hydrophobic index and helicity of TM domains elucidates their importance in maintaining the structural stability in addition to regulating NK1R antagonism. Taken together, we anticipate that our computational study marks a comprehensive structural basis of NK1R antagonism in lipid bilayers, which may facilitate designing of new therapeutics against associated diseases targeting human neurokinin receptors.


Subject(s)
Neurokinin-1 Receptor Antagonists , Receptors, Neurokinin-1 , Humans , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/metabolism , Molecular Dynamics Simulation , Lipids
15.
Br J Clin Pharmacol ; 89(12): 3468-3490, 2023 12.
Article in English | MEDLINE | ID: mdl-37452618

ABSTRACT

A broad-spectrum anti-vomiting effect of neurokinin1 receptor antagonists (NK1 RA), shown in pre-clinical animal studies, has been supported by a more limited range of clinical studies in different indications. However, this review suggests that compared with vomiting, the self-reported sensation of nausea is less affected or possibly unaffected (depending on the stimulus) by NK1 receptor antagonism, a common finding for anti-emetics. The stimulus-independent effects of NK1 RAs against vomiting are explicable by actions within the central pattern generator (ventral brainstem) and the nucleus tractus solitarius (NTS; dorsal brainstem), with additional effects on vagal afferent activity for certain stimuli (e.g., highly emetogenic chemotherapy). The central pattern generator and NTS neurones are multifunctional so the notable lack of obvious effects of NK1 RAs on other reflexes mediated by the same neurones suggests that their anti-vomiting action is dependent on the activation state of the pathway leading to vomiting. Nausea requires activation of cerebral pathways by projection of information from the NTS. Although NK1 receptors are present in cerebral nuclei implicated in nausea, and imaging studies show very high receptor occupancy at clinically used doses, the variable or limited ability of NK1 RAs to inhibit nausea emphasizes: (i) our inadequate understanding of the mechanisms of nausea; and (ii) that classification of a drug as an anti-emetic may give a false impression of efficacy against nausea vs. vomiting. We discuss the potential mechanisms for the differential efficacy of NK1 RA and the implications for future development of drugs that can effectively treat nausea, an area of unmet clinical need.


Subject(s)
Antiemetics , Antineoplastic Agents , Animals , Humans , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Vomiting/chemically induced , Vomiting/drug therapy , Nausea/chemically induced , Nausea/drug therapy , Antiemetics/pharmacology , Antiemetics/therapeutic use , Drug Development , Antineoplastic Agents/therapeutic use
16.
Biofactors ; 49(4): 900-911, 2023.
Article in English | MEDLINE | ID: mdl-37092793

ABSTRACT

Glioblastoma multiforme (GBM) is the most malignant type of cerebral neoplasm in adults with a poor prognosis. Currently, combination therapy with different anti-cancer agents is at the forefront of GBM research. Hence, this study aims to evaluate the potential anti-cancer synergy of a clinically approved neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid (5-ALA), a prodrug that elicits fluorescent porphyrins in gliomas on U-87 human GBM cells. We found that aprepitant and 5-ALA effectively inhibited GBM cell viability. The combinatorial treatment of these drugs exerted potent synergistic growth inhibitory effects on GBM cells. Moreover, aprepitant and 5-ALA induced apoptosis and altered the levels of apoptotic genes (up-regulation of Bax and P53 along with downregulation of Bcl-2). Furthermore, aprepitant and 5-ALA increased the accumulation of protoporphyrin IX, a highly pro-apoptotic and fluorescent photosensitizer. Aprepitant and 5-ALA significantly inhibited GBM cell migration and reduced matrix metalloproteinases (MMP-2 and MMP-9) activities. Importantly, all these effects were more prominent following aprepitant-5-ALA combination treatment than either drug alone. Collectively, the combination of aprepitant and 5-ALA leads to considerable synergistic anti-proliferative, pro-apoptotic, and anti-migratory effects on GBM cells and provides a firm basis for further evaluation of this combination as a novel therapeutic approach for GBM.


Subject(s)
Aminolevulinic Acid , Glioblastoma , Adult , Humans , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Aprepitant/pharmacology , Aprepitant/therapeutic use , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Cell Line, Tumor
17.
Laryngoscope ; 133(11): 2891-2897, 2023 11.
Article in English | MEDLINE | ID: mdl-36856158

ABSTRACT

OBJECTIVE: Substance P is a peptide from the tachykinin family, which is found in peripheral and central nervous systems, causing vasodilation and increased secretion in the nasal mucosa. In this study, we aimed to investigate whether the experimental model of allergic rhinitis will cause allergic changes in the larynx and to compare the effects of aprepitant, a substance P antagonist, on nasal symptoms in allergic rhinitis, and histopathological changes in the nasal and laryngeal mucosa with antihistamine and leukotriene receptor antagonists (LTRA). STUDY DESIGN: An experimental animal study. METHOD: The study was carried out on 34 healthy 8-12 weeks old female Sprague Dawley rats in 5 groups. The rats in which an experimental allergic rhinitis model was created with ovalbumin were scored by observing their nasal symptoms, and nasal and laryngeal mucous membranes included in the study were evaluated histopathologically after medications. RESULTS: As a result of the analysis of the data obtained from the study, antihistamine and LTRA significantly reduced the symptoms of nose scratching and sneezing, while aprepitant did not affect nasal symptoms. In the histopathological examination of the larynx, effects that would make a significant difference were found in the allergy group when compared to the control group. On the larynx, aprepitant reduced pseudostratification significantly compared to the allergy group. CONCLUSION: Aprepitant provides histopathological changes in the treatment of allergic rhinitis, but does not have sufficient effect on nasal symptoms. The effect of aprepitant on the larynx has not been clearly demonstrated. LEVEL OF EVIDENCE: NA Laryngoscope, 133:2891-2897, 2023.


Subject(s)
Neurokinin-1 Receptor Antagonists , Rhinitis, Allergic , Rats , Female , Animals , Ovalbumin , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Rats, Sprague-Dawley , Aprepitant/therapeutic use , Substance P/therapeutic use , Rhinitis, Allergic/chemically induced , Rhinitis, Allergic/drug therapy , Nasal Mucosa , Histamine Antagonists/therapeutic use , Disease Models, Animal
18.
Eur J Histochem ; 67(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36629320

ABSTRACT

Neurokinin-1 receptor (NK1R) belongs to tachykinin receptor family. Recent studies have suggested that NK1R was upregulated in cancer tissues including breast cancer, glioma and melanoma. Furthermore, NK1R antagonists have been employed to exert anti-tumor effect and promote cancer cell apoptosis. However, the role of NK1R in cervical cancer remains largely unknown. In this study, we aimed to detect the expression of NK1R in cervical cancer and evaluate the anti-tumor effects of NK1R antagonist on cervical cancer cells. We found that NK1R was highly expressed in cervical cancer tissues than in adjacent normal cervical tissues. Furthermore, by using NK1R antagonist we demonstrated that NK1R antagonist inhibited the viability and induced the apoptosis of cervical cancer cells in a dose-dependent manner, and the mechanism may be related to the inhibition of ERK activation and the regulation of apoptosis proteins Bcl-2 and BAX. In conclusion, these findings suggest that NK1R plays an oncogenic role in cervical cancer and is a promising target for cervical cancer therapy.


Subject(s)
Neurokinin-1 Receptor Antagonists , Receptors, Neurokinin-1 , Uterine Cervical Neoplasms , Female , Humans , Apoptosis , Cell Line, Tumor , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/metabolism , Uterine Cervical Neoplasms/drug therapy
19.
Biomed Res Int ; 2022: 8082608, 2022.
Article in English | MEDLINE | ID: mdl-36177059

ABSTRACT

Background: Osteosarcoma, the most frequent osteogenic malignancy, has become a serious public health challenge due to its high morbidity rates and metastatic potential. Recently, the neurokinin-1 receptor (NK-1R) is proved to be a promising target in cancer therapy. This study is aimed at determining the effect of aprepitant, a safe and Food and Drug Administration (FDA) approved NK-1R antagonist, on osteosarcoma cell migration and metastasis, and to explore its underlying mechanism of action. Methods: Colorimetric MTT assay was employed to assess cell viability and cytotoxicity. A wound-healing assay was used to examine migration ability. The desired genes' protein and mRNA expression levels were measured by western blot assay and quantitative real-time PCR (qRT-PCR), respectively. Gelatinase activity was also measured by zymography. Results: We found that aprepitant inhibited MG-63 osteosarcoma cell viability in a dose-dependent manner. We also observed that aprepitant inhibited the migrative phenotype of osteosarcoma cells and reduced the expression levels and activities of matrix metalloproteinases (MMP-2 and MMP-9). Aprepitant also reduced the expression of an angiogenic factor, VEGF protein, and NF-κB as an important transcriptional regulator of metastasis-related genes. Conclusion: Collectively, our observations indicate that aprepitant modulates the metastatic behavior of human osteosarcoma cells, which may be applied to an effective therapeutic approach for patients with metastatic osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Angiogenesis Inducing Agents/pharmacology , Aprepitant/pharmacology , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Osteosarcoma/pathology , RNA, Messenger/genetics , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacology
20.
Biomaterials ; 285: 121536, 2022 06.
Article in English | MEDLINE | ID: mdl-35533442

ABSTRACT

Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NK1R) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NK1R antagonist aprepitant-amine for the treatment of chronic pain in mice. Nanostars continually released cargo for 24 h, trafficked through the endosomal system, and disrupted NK1R endosomal signaling. After intrathecal injection, nanostars accumulated in endosomes of spinal neurons. Nanostar-aprepitant reversed mechanical, thermal and cold allodynia and normalized nociceptive behavior more efficaciously than free aprepitant in preclinical models of neuropathic and inflammatory pain. Analgesia was maintained for >10 h. The sustained endosomal delivery of antagonists from slow-release nanostars provides effective and long-lasting reversal of chronic pain.


Subject(s)
Chronic Pain , Neurokinin-1 Receptor Antagonists , Animals , Aprepitant/pharmacology , Aprepitant/therapeutic use , Chronic Pain/drug therapy , Endosomes , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Polymers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL