Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.388
1.
Environ Pollut ; 349: 123956, 2024 May 15.
Article En | MEDLINE | ID: mdl-38626866

Ammonia-N, as the most toxic nitrogenous waste, has high toxicity to marine animals. However, the interplay between ammonia-induced neuroendocrine toxicity and intestinal immune homeostasis has been largely overlooked. Here, a significant concordance of metabolome and transcriptome-based "cholinergic synapse" supports that plasma metabolites acetylcholine (ACh) plays an important role during NH4Cl exposure. After blocking the ACh signal transduction, the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) in the cerebral ganglia increased, while the release of NPF in the thoracic ganglia and NE in the abdominal ganglia, and crustacean hyperglycemic hormone (CHH) and neuropeptide F (NPF) in the eyestalk decreased, finally the intestinal immunity was enhanced. After bilateral eyestalk ablation, the neuroendocrine system of shrimp was disturbed, more neuroendocrine factors, such as corticotropin releasing hormone (CRH), adrenocorticotropic-hormone (ACTH), ACh, DA, 5-HT, and norepinephrine (NE) were released into the plasma, and further decreased intestinal immunity. Subsequently, these neuroendocrine factors reach the intestine through endocrine or neural pathways and bind to their receptors to affect downstream signaling pathway factors to regulate intestinal immune homeostasis. Combined with different doses of ammonia-N exposure experiment, these findings suggest that NH4Cl may exert intestinal toxicity on shrimp by disrupting the cerebral ganglion-eyestalk axis and the cerebral ganglion-thoracic ganglion-abdominal ganglion axis, thereby damaging intestinal barrier function and inducing inflammatory response.


Ammonia , Penaeidae , Animals , Penaeidae/immunology , Penaeidae/drug effects , Penaeidae/metabolism , Ammonia/toxicity , Intestines/drug effects , Water Pollutants, Chemical/toxicity , Dopamine/metabolism , Nitrogen/metabolism , Acetylcholine/metabolism , Neurosecretory Systems/drug effects , Arthropod Proteins/metabolism
2.
Phytomedicine ; 128: 155324, 2024 Jun.
Article En | MEDLINE | ID: mdl-38552437

BACKGROUND: Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE: MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN: Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS: Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION: Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.


Drugs, Chinese Herbal , Rats, Sprague-Dawley , Stress, Psychological , Animals , Drugs, Chinese Herbal/pharmacology , Stress, Psychological/drug therapy , Male , Rats , Antidepressive Agents/pharmacology , Disease Models, Animal , Gastrointestinal Diseases/drug therapy , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Gastrointestinal Motility/drug effects , Neurosecretory Systems/drug effects , Behavior, Animal/drug effects , Citrus/chemistry , Brain-Derived Neurotrophic Factor/metabolism
3.
Mol Biol Rep ; 49(1): 331-340, 2022 Jan.
Article En | MEDLINE | ID: mdl-34716506

BACKGROUND: Endocrine-disrupting chemicals have been shown to cause toxicity in different systems of the body including the endocrine, cardiovascular and nervous systems. This study aims to analyze the adverse effects of Methylparaben (MP) on cardiac functions, neurodevelopment, and behavior of zebrafish. METHODS AND RESULTS: Adult male and female zebrafish were exposed to MP for 30 days to study the toxicity effects. Zebrafish were grouped into control, solvent control, 1/10th (110 ppb), 1/100th, and 1/1000th (1 ppb) lethal concentration 50 of MP. Neurobehavioral assays, acetylcholinesterase (AChE) activity, serotonin levels, and expression of genes-Hypoxia-inducible factor 1 alpha, Neurotrophic Receptor Tyrosine Kinase, Paired box protein Pax-6, and tnnt2 were investigated in zebrafish. Results of the study showed more anxiety-like behavior in MP-treated female zebrafish when compared to males on chronic exposure. There was a dose-dependent reduction of AChE activity in both male and female zebrafish. Female zebrafish showed a dose-dependent increase in serotonin level on MP exposure while male zebrafish showed a dose-independent decrease in serotonin level. On MP exposure, there was also a dose-dependent dysregulation in the expression of cardiac hypoxia and neuronal differentiation-related genes in female zebrafish while a dose-independent change was observed in male zebrafish. CONCLUSION: Chronic MP exposure affects cardiac functions, neuronal functions, and behavior of zebrafish by exhibiting changes in AChE activity, serotonin levels, and altering the expression of genes related to cardiac hypoxia and neuronal differentiation even at sub-lethal doses.


Acetylcholinesterase/metabolism , Anxiety/metabolism , Endocrine Disruptors/toxicity , Parabens/toxicity , Serotonin/metabolism , Animals , Anxiety/chemically induced , Behavior, Animal/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Male , Neurosecretory Systems/drug effects , Sex Characteristics , Toxicity Tests, Subchronic , Zebrafish
4.
Int J Neuropsychopharmacol ; 25(1): 1-12, 2022 01 12.
Article En | MEDLINE | ID: mdl-34648616

From the earliest days of the coronavirus disease 2019 (COVID-19) pandemic, there have been reports of significant neurological and psychological symptoms following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This narrative review is designed to examine the potential psychoneuroendocrine pathogenic mechanisms by which SARS-CoV-2 elicits psychiatric sequelae as well as to posit potential pharmacologic strategies to address and reverse these pathologies. Following a brief overview of neurological and psychological sequelae from previous viral pandemics, we address mechanisms by which SARS-CoV-2 could enter or otherwise elicit changes in the CNS. We then examine the hypothesis that COVID-19-induced psychiatric disorders result from challenges to the neuroendocrine system, in particular the hypothalamic-pituitary-adrenal stress axis and monoamine synthesis, physiological mechanisms that are only further enhanced by the pandemic-induced social environment of fear, isolation, and socioeconomic pressure. Finally, we evaluate several FDA-approved therapeutics in the context of COVID-19-induced psychoneuroendocrine disorders.


COVID-19/virology , Central Nervous System Viral Diseases/virology , Central Nervous System/virology , Neurosecretory Systems/virology , SARS-CoV-2/pathogenicity , Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/physiopathology , COVID-19/psychology , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/physiopathology , Central Nervous System Viral Diseases/drug therapy , Central Nervous System Viral Diseases/physiopathology , Central Nervous System Viral Diseases/psychology , Host-Pathogen Interactions , Humans , Neuroimmunomodulation , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Neurosecretory Systems/physiopathology , Prognosis , Risk Factors , Virus Internalization , COVID-19 Drug Treatment
5.
Behav Brain Res ; 416: 113572, 2022 01 07.
Article En | MEDLINE | ID: mdl-34499940

Social isolation and the disruption of established social bonds contribute to several physical and psychological health issues. Animal models are a useful tool for investigating consequences of social stress, including social isolation. The current study examined morphological changes in the basolateral amygdala (BLA) and affect-related behavioral and endocrine changes due to prolonged social isolation, using the translational prairie vole model (Microtus ochrogaster). Adult male prairie voles were either socially paired (control) or isolated from a same-sex sibling for 4 weeks. Following this 4-week period, a subset of animals (n = 6 per condition) underwent a series of behavioral tasks to assess affective, social, and stress-coping behaviors. Plasma was collected following the last behavioral task for stressor-induced endocrine assays. Brains were collected from a separate subset of animals (n = 10 per condition) following the 4-week social housing period for dendritic structure analyses in the BLA. Social isolation was associated with depressive- and anxiety-like behaviors, as well as elevated oxytocin reactivity following a social stressor. Social isolation was also associated with altered amount of dendritic material in the BLA, with an increase in spine density. These results provide further evidence that social isolation may lead to the development of affective disorders. Dysfunction in the oxytocin system and BLA remodeling may mediate these behavioral changes. Further research will promote an understanding of the connections between oxytocin function and structural changes in the BLA in the context of social stress. This research can facilitate novel treatments for alleviating or preventing behavioral and physiological consequences of social stressors in humans.


Arvicolinae/physiology , Basolateral Nuclear Complex/drug effects , Oxytocin/pharmacology , Social Isolation/psychology , Stress, Psychological/physiopathology , Task Performance and Analysis , Animals , Behavior, Animal/physiology , Corticosterone/blood , Dendrites , Male , Neurosecretory Systems/drug effects
6.
Food Chem Toxicol ; 157: 112616, 2021 Nov.
Article En | MEDLINE | ID: mdl-34662691

Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.


Mycotoxins/toxicity , Trichothecenes/toxicity , Animals , Aquatic Organisms/drug effects , Fishes , Neurosecretory Systems/drug effects
7.
Biomed Res Int ; 2021: 1156031, 2021.
Article En | MEDLINE | ID: mdl-34423030

Here, we report the participation of N-methyl-D-aspartate (NMDA) glutamate receptor in the mediation of cardiovascular and circulating vasopressin responses evoked by a hemorrhagic stimulus. In addition, once NMDA receptor activation is a prominent mechanism involved in nitric oxide (NO) synthesis in the brain, we investigated whether control of hemorrhagic shock by NMDA glutamate receptor was followed by changes in NO synthesis in brain supramedullary structures involved in cardiovascular and neuroendocrine control. Thus, we observed that intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK801, 0.3 mg/kg) delayed and reduced the magnitude of hemorrhage-induced hypotension. Besides, hemorrhage induced a tachycardia response in the posthemorrhage period (i.e., recovery period) in control animals, and systemic treatment with MK801 caused a bradycardia response during hemorrhagic shock. Hemorrhagic stimulus increased plasma vasopressin levels during the recovery period and NMDA receptor antagonism increased concentration of this hormone during both the hemorrhage and postbleeding periods in relation to control animals. Moreover, hemorrhagic shock caused a decrease in NOx levels in the paraventricular nucleus of the hypothalamus (PVN), amygdala, bed nucleus of the stria terminalis (BNST), and ventral periaqueductal gray matter (vPAG). Nevertheless, treatment with MK801 did not affect these effects. Taken together, these results indicate that the NMDA glutamate receptor is involved in the hemorrhagic shock by inhibiting circulating vasopressin release. Our data also suggest a role of the NMDA receptor in tachycardia, but not in the decreased NO synthesis in the brain evoked by hemorrhage.


Bradycardia/chemically induced , Cardiovascular System/metabolism , Dizocilpine Maleate/administration & dosage , Shock, Hemorrhagic/metabolism , Vasopressins/blood , Animals , Bradycardia/blood , Brain/drug effects , Brain/metabolism , Cardiovascular System/drug effects , Disease Models, Animal , Dizocilpine Maleate/adverse effects , Injections, Intraperitoneal , Male , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Nitric Oxide/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism
8.
Endocrinology ; 162(11)2021 11 01.
Article En | MEDLINE | ID: mdl-34346492

Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.


Androgens/blood , Neurons/pathology , Polycystic Ovary Syndrome/pathology , Prenatal Exposure Delayed Effects , Afferent Pathways/drug effects , Afferent Pathways/metabolism , Androgens/pharmacology , Animals , Disease Models, Animal , Dynorphins/metabolism , Female , Kisspeptins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurokinin B/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Neurons, Afferent/drug effects , Neurons, Afferent/metabolism , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/physiopathology , Polycystic Ovary Syndrome/psychology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/psychology
9.
Open Biol ; 11(7): 210080, 2021 07.
Article En | MEDLINE | ID: mdl-34315274

The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.


Acyltransferases/metabolism , Ghrelin/metabolism , Neurosecretory Systems/metabolism , Protein Processing, Post-Translational , Signal Transduction , Acylation , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Animals , Binding Sites , Carrier Proteins , Drug Development , Ghrelin/chemistry , Humans , Models, Molecular , Neurosecretory Systems/drug effects , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction/drug effects , Structure-Activity Relationship , Substrate Specificity
11.
Medicine (Baltimore) ; 100(25): e26412, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-34160427

BACKGROUND: Hypertension is a kind of cardiovascular syndrome with the main clinical manifestation of continuous increase of systemic arterial blood pressure. Hypertension coexists with other cardiovascular risk factors and is an important risk factor for cardiovascular and cerebrovascular diseases. Acupuncture is an important part of Traditional Chinese Medicine intervention. The antihypertensive effect of acupuncture on hypertension is based on the neuroendocrine system, characterized by multichannel and multitarget. This study aims to provide latest and updated proof of systematic review to assess the effectiveness and safety of acupuncture for hypertension. METHODS: We will systematically search 9 databases from their inceptions to February 2021. Only randomized controlled trials of acupuncture combined with western medicine in the treatment of hypertension will meet the inclusion criteria. The main outcome measures we focus on include clinical efficacy, syndrome efficacy, Traditional Chinese Medicine syndrome score, diastolic and systolic blood pressure changes, blood pressure variability, heart rate variability, pulse rate variability, and adverse reactions. The research screening, data extraction, and risk of bias assessment will be employed by 2 reviewers independently, and disagreement will be decided by a third senior reviewer. The Revman 5.3 software will be used for meta-analysis. The confidence of proof will be rated adopting grading of recommendations assessment, development and evaluation tool and methodological quality of this research will be assessed using assessment of multiple systematic reviews-2 and risk of bias in systematic reviews. The publication quality will be evaluated by preferred reporting items for systematic reviews and meta-analyses (PRISMA). RESULTS: This systematic review (SR) will provide evidence-based medical evidence for hypertension therapy by acupuncture combined with western medicine and we will submit the findings of this SR for peer-review publication. CONCLUSIONS: This SR will provide latest and updated summary proof for assessing the effectiveness and safety of acupuncture for hypertension. REGISTRATION NUMBER: INPLASY 202150047.


Acupuncture Therapy/methods , Antihypertensive Agents/administration & dosage , Diuretics/administration & dosage , Evidence-Based Medicine/methods , Hypertension/drug therapy , Acupuncture Therapy/adverse effects , Adult , Antihypertensive Agents/adverse effects , Blood Pressure/drug effects , Blood Pressure/physiology , Combined Modality Therapy/methods , Diuretics/adverse effects , Humans , Hypertension/diagnosis , Hypertension/physiopathology , Meta-Analysis as Topic , Neurosecretory Systems/drug effects , Neurosecretory Systems/physiopathology , Randomized Controlled Trials as Topic , Systematic Reviews as Topic , Treatment Outcome
12.
Int Immunopharmacol ; 97: 107695, 2021 Aug.
Article En | MEDLINE | ID: mdl-33962227

Staphylococcus aureus induced brain abscess is a critical health concern throughout the developing world. The conventional surgical intervention could not regulate the abscess-induced brain inflammation. Thus further study over the alternative therapeutic strategy for treating a brain abscess is of high priority. The resident glial cells recognize the invading S. aureus by their cell surface Toll-like receptor-2 (TLR-2). Glucocorticoid receptor (GR) was known for its immunosuppressive effects. In this study, an attempt had been taken to utilize the functional relationship or cross-talking between TLR-2 and GR during the pathogenesis of brain abscesses. Here, the combination of an antibiotic (i.e. ciprofloxacin) and dexamethasone was used to regulate the brain inflammation either in TLR-2 or GR blocking condition. We were also interested to figure out the possible impact of alternative therapy on behavioral impairments. The results indicated that combination treatment during TLR-2 blockade significantly reduced the bacterial burden and abscess area score in the infected brain. However, marked improvements were observed in anxiety, depression-like behavior, and motor co-ordination. The combination treatment after TLR-2 blocking effectively scavenged free radicals (H2O2, superoxide anion, and NO) through modulating antioxidant enzyme activities that ultimately control S. aureus induced glial reactivity possibly via up-regulating GR expression. The exogenous dexamethasone might regulate the GR expression in the brain by increasing the corticosterone concentration and the GC-GR mediated signaling. Therefore, this in-vivo study demonstrates the possible regulatory mechanism of bacterial brain abscess that involved TLR-2 and GR as a part of neuroendocrine-immune interaction.


Brain Abscess/drug therapy , Ciprofloxacin/pharmacology , Dexamethasone/pharmacology , Neuroinflammatory Diseases/drug therapy , Staphylococcal Infections/drug therapy , Animals , Behavior, Animal/drug effects , Brain Abscess/complications , Brain Abscess/immunology , Brain Abscess/microbiology , Ciprofloxacin/therapeutic use , Dexamethasone/therapeutic use , Disease Models, Animal , Drug Therapy, Combination , Humans , Male , Mice , Neuroinflammatory Diseases/diagnosis , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/microbiology , Neurosecretory Systems/drug effects , Neurosecretory Systems/immunology , Receptors, Glucocorticoid/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Staphylococcal Infections/complications , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/immunology , Toll-Like Receptor 2/metabolism
13.
Viruses ; 13(5)2021 04 30.
Article En | MEDLINE | ID: mdl-33946474

Human immunodeficiency virus (HIV) is associated with neuroendocrine dysfunction which may contribute to co-morbid stress-sensitive disorders. The hypothalamic-pituitary-adrenal (HPA) or -gonadal (HPG) axes are perturbed in up to 50% of HIV patients. The mechanisms are not known, but we have found the HIV-1 trans-activator of transcription (Tat) protein to recapitulate the clinical phenotype in male mice. We hypothesized that HPA and/or HPG dysregulation contributes to Tat-mediated interactions with oxycodone, an opioid often prescribed to HIV patients, in females. Female mice that conditionally-expressed the Tat1-86 protein [Tat(+) mice] or their counterparts that did not [Tat(-) control mice] were exposed to forced swim stress (or not) and behaviorally-assessed for motor and anxiety-like behavior. Some mice had glucocorticoid receptors (GR) or corticotropin-releasing factor receptors (CRF-R) pharmacologically inhibited. Some mice were ovariectomized (OVX). As seen previously in males, Tat elevated basal corticosterone levels and potentiated oxycodone's psychomotor activity in females. Unlike males, females did not demonstrate adrenal insufficiency and oxycodone potentiation was not regulated by GRs or CRF-Rs. Rather OVX attenuated Tat/oxycodone interactions. Either Tat or oxycodone increased anxiety-like behavior and their combination increased hypothalamic allopregnanolone. OVX increased basal hypothalamic allopregnanolone and obviated Tat or oxycodone-mediated fluctuations. Together, these data provide further evidence for Tat-mediated dysregulation of the HPA axis and reveal the importance of HPG axis regulation in females. HPA/HPG disruption may contribute vulnerability to affective and substance use disorders.


HIV Infections/complications , HIV Infections/virology , HIV-1/physiology , Neurosecretory Systems/metabolism , Neurosecretory Systems/physiopathology , Oxycodone/pharmacology , Psychomotor Performance/drug effects , tat Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Estrous Cycle , Female , Humans , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Mice , Motor Activity , Neurosecretory Systems/drug effects , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Pregnanolone/blood , Pregnanolone/metabolism , Steroids/blood
14.
Int J Mol Sci ; 22(8)2021 Apr 14.
Article En | MEDLINE | ID: mdl-33920043

Phthalates, as other endocrine disrupting chemicals (EDCs), may alter the homeostasis and the action of hormones and signaling molecules, causing adverse health outcomes. This is true especially for infants, who are both more exposed and sensitive to their effects. Phthalates are particularly harmful when the exposure occurs during certain critical temporal windows of the development, such as the prenatal and the early postnatal phases. Phthalates may also interfere with the neuroendocrine systems (e.g., thyroid hormone signaling or metabolism), causing disruption of neuronal differentiation and maturation, increasing the risk of behavioral and cognitive disorders (ADHD and autistic behaviors, reduced mental, psychomotor, and IQ development, and emotional problems). Despite more studies being needed to better understand the role of these substances, plenty of evidence suggests the impact of phthalates on the neuroendocrine system development and function. This review aims to update the knowledge on the neuroendocrine consequences of neonatal and perinatal exposure to phthalates.


Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Neurodevelopmental Disorders/physiopathology , Neurosecretory Systems/drug effects , Phthalic Acids/toxicity , Environmental Exposure , Female , Humans , Neurodevelopmental Disorders/chemically induced , Neurosecretory Systems/pathology , Pregnancy
15.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article En | MEDLINE | ID: mdl-33921035

Acquired treatment resistance is an important cause of death in prostate cancer, and this study aimed to explore the mechanisms of chemotherapy resistance in prostate cancer. We employed castration-resistant prostate cancer (CRPC), neuroendocrine prostate cancer (NEPC), and chemotherapy-resistant prostate cancer datasets to screen for potential target genes. The Cancer Genome Atlas (TCGA) was used to detect the correlation between the target genes and prognosis and clinical characteristics. Nei endonuclease VIII-like 3 (NEIL3) knockdown cell lines were constructed with RNA interference. Prostate cancer cells were treated with enzalutamide for the androgen deprivation therapy (ADT) model, and with docetaxel and cisplatin for the chemotherapy model. Apoptosis and the cell cycle were examined using flow cytometry. RNA sequencing and western blotting were performed in the knockdown Duke University 145 (DU145) cell line to explore the possible mechanisms. The TCGA dataset demonstrated that high NEIL3 was associated with a high T stage and Gleason score, and indicated a possibility of lymph node metastasis, but a good prognosis. The cell therapy models showed that the loss of NEIL3 could promote the chemotherapy resistance (but not ADT resistance) of prostate cancer (PCa). Flow cytometry revealed that the loss of NEIL3 in PCa could inhibit cell apoptosis and cell cycle arrest under cisplatin treatment. RNA sequencing showed that the knockdown of NEIL3 changes the expression of neuroendocrine-related genes. Further western blotting revealed that the loss of NEIL3 could significantly promote the phosphorylation of ATR serine/threonine kinase (ATR) and ATM serine/threonine kinase (ATM) under chemotherapy, thus initiating downstream pathways related to DNA repair. In summary, the loss of NEIL3 promotes chemotherapy resistance in prostate cancer, and NEIL3 may serve as a diagnostic marker for chemotherapy-resistant patients.


Drug Resistance, Neoplasm , N-Glycosyl Hydrolases/deficiency , Prostatic Neoplasms/drug therapy , Androgen Antagonists/pharmacology , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism , Neoplasm Invasiveness , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , S Phase/drug effects
16.
Gynecol Endocrinol ; 37(6): 490-496, 2021 Jun.
Article En | MEDLINE | ID: mdl-33703987

Prolactin is a proteic hormone best known for its role in enabling the production of milk by female mammals. Secreted by the pituitary gland in response to the stimuli of eating, estrogen treatment, mating, ovulation and nursing, prolactin is involved in over 300 separate processes in a range of vertebrates, including humans. The hormone is released in a pulsatile manner and plays an essential role in metabolism, as well as in the regulation of the immune system and pancreatic development. Nevertheless, prolactin exerts other relevant roles, as it acts at the central nervous system level to modulate behavior, arousal and sexuality. In this experts' opinion, we aim to give insights into the main activities of prolactin to advance the ability of medical doctors and specialists in obstetrics and gynecology to provide more emphasis in their clinical practices to the link between prolactin and sexuality.


Aging/physiology , Prolactin/physiology , Reproduction/physiology , Sexual Behavior/physiology , Expert Testimony , Female , Humans , Hyperprolactinemia/metabolism , Hyperprolactinemia/physiopathology , Neurosecretory Systems/drug effects , Pregnancy , Prolactin/pharmacology , Sexual Behavior/drug effects
17.
Article En | MEDLINE | ID: mdl-33545344

In teleost fish, radial glial cells (RGCs) are progenitor cells for neurons and the major cell type synthesizing neuroestrogens. We hypothesized that chemical exposure impairs mitochondrial bioenergetics of RGCs, which then may lead to downstream consequences for neuroestrogen production. Here we provide proof of concept that mitochondria of RGCs can be perturbed by fungicides. We isolated RGCs from a mixed sex population of goldfish (Carassius auratus) and measured metabolic capacity of primary cells to a model mitotoxin fluazinam, a broad-spectrum fungicide that inhibits mitochondria electron transport chain (or ETC) Complex I. Using immunocytochemistry and real-time PCR, we demonstrate that the goldfish primary cell cultures are highly enriched for glia after multiple passages. Cytotoxicity assays revealed that glia treated with >25 µM fluazinam for 24 and 48-h showed reduced viability. As such, metabolic assays were conducted with non-cytotoxic concentrations (0.25-12.5 µM). Fluazinam did not affect oxygen consumption rates of RGCs at 24 h, but after 48 h, oligomycin induced ATP-linked respiration was decreased by both 6.25 and 12.5 µM fluazinam. Moreover, concentrations as low as 0.25 µM disrupted the mitochondrial membrane potential of RGCs, reflecting strong uncoupling effects of the fungicide on mitochondria. Here we provide proof of concept that mitochondrial bioenergetics of teleostean RGCs can be responsive to agrochemicals. Additional studies are required to address low-dose exposures in vivo and to determine if metabolic disruption impairs neuroendocrine functions of RGCs. We propose this mechanism constitutes a novel aspect of neuroendocrine disruption, significant because dysregulation of neuron-glia communication is expected to contribute to neuroendocrine disruption.


Aminopyridines/toxicity , Fungicides, Industrial/toxicity , Mitochondria/drug effects , Neuroglia/drug effects , Neurosecretory Systems/drug effects , Animals , Cells, Cultured , Female , Goldfish , Male , Membrane Potential, Mitochondrial/drug effects
18.
Int J Neuropsychopharmacol ; 24(6): 464-476, 2021 07 14.
Article En | MEDLINE | ID: mdl-33560411

BACKGROUND: Accumulating evidence has established a role for the orexigenic hormone ghrelin in alcohol-seeking behaviors. Accordingly, the ghrelin system may represent a potential pharmacotherapeutic target for alcohol use disorder. Ghrelin modulates several neuroendocrine pathways, such as appetitive, metabolic, and stress-related hormones, which are particularly relevant in the context of alcohol use. The goal of the present study was to provide a comprehensive assessment of neuroendocrine response to exogenous ghrelin administration, combined with alcohol, in heavy-drinking individuals. METHODS: This was a randomized, crossover, double-blind, placebo-controlled human laboratory study, which included 2 experimental alcohol administration paradigms: i.v. alcohol self-administration and i.v. alcohol clamp. Each paradigm consisted of 2 counterbalanced sessions of i.v. ghrelin or placebo administration. Repeated blood samples were collected during each session, and peripheral concentrations of the following hormones were measured: leptin, glucagon-like peptide-1, pancreatic polypeptide, gastric inhibitory peptide, insulin, insulin-like growth factor-1, cortisol, prolactin, and aldosterone. RESULTS: Despite some statistical differences, findings were consistent across the 2 alcohol administration paradigms: i.v. ghrelin, compared to placebo, increased blood concentrations of glucagon-like peptide-1, pancreatic polypeptide, cortisol, and prolactin, both acutely and during the whole session. Lower levels of leptin and higher levels of aldosterone were also found during the ghrelin vs placebo session. CONCLUSION: These findings, gathered from a clinically relevant sample of heavy-drinking individuals with alcohol use disorder, provide a deeper insight into the complex interplay between ghrelin and appetitive, metabolic, and stress-related neuroendocrine pathways in the context of alcohol use.


Alcohol Drinking/metabolism , Alcoholism/blood , Central Nervous System Depressants/pharmacology , Craving/drug effects , Ethanol/pharmacology , Ghrelin/pharmacology , Neurosecretory Systems/drug effects , Adult , Central Nervous System Depressants/administration & dosage , Double-Blind Method , Ethanol/administration & dosage , Female , Ghrelin/administration & dosage , Humans , Male , Middle Aged , Self Administration
19.
Mol Oncol ; 15(1): 27-42, 2021 01.
Article En | MEDLINE | ID: mdl-32191822

Small-cell lung cancer (SCLC) occurs infrequently in never/former light smokers. We sought to study this rare clinical subset through next-generation sequencing (NGS) and by characterizing a representative patient-derived model. We performed targeted NGS, as well as comprehensive pathological evaluation, in 11 never/former light smokers with clinically diagnosed SCLC. We established a patient-derived model from one such patient (DFCI168) harboring an NRASQ61K mutation and characterized the sensitivity of this model to MEK and TORC1/2 inhibitors. Despite the clinical diagnosis of SCLC, the majority (8/11) of cases were either of nonpulmonary origin or of mixed histology and included atypical carcinoid (n = 1), mixed non-small-cell lung carcinoma and SCLC (n = 4), unspecified poorly differentiated carcinoma (n = 1), or small-cell carcinoma from different origins (n = 2). RB1 and TP53 mutations were found in four and five cases, respectively. Predicted driver mutations were detected in EGFR (n = 2), NRAS (n = 1), KRAS (n = 1), BRCA1 (n = 1), and ATM (n = 1), and one case harbored a TMPRSS2-ERG fusion. DFCI168 (NRASQ61K ) exhibited marked sensitivity to MEK inhibitors in vitro and in vivo. The combination of MEK and mTORC1/2 inhibitors synergized to prevent compensatory mTOR activation, resulting in prolonged growth inhibition in this model and in three other NRAS mutant lung cancer cell lines. SCLC in never/former light smokers is rare and is potentially a distinct disease entity comprised of oncogenic driver mutation-harboring carcinomas morphologically and/or clinically mimicking SCLC. Comprehensive pathologic review integrated with genomic profiling is critical in refining the diagnosis and in identifying potential therapeutic options.


Genetic Heterogeneity , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Molecular Targeted Therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Smokers , Aged , Animals , Base Sequence , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Female , GTP Phosphohydrolases/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Membrane Proteins/genetics , Mice , Middle Aged , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Mutation/genetics , Neurosecretory Systems/drug effects , Neurosecretory Systems/pathology , Phenotype , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/drug therapy
20.
Article En | MEDLINE | ID: mdl-32957897

OBJECTIVE: The aim of the study was to determine the influence of maternal sodium valproate (SVP) on neonatal neuroendocrine (hypothalamic-pituitary-adrenal; HPA)-cytokines and oxido-inflammatory axes. METHODS: Pregnant rats (Rattus norvegicus) were orally administered (by gavage) SVP (50 mg/kg) from gestation day (GD) 8 to lactation day (LD) 21. RESULTS: The elevation in serum corticotropin-releasing hormone (CRH), corticosterone, and adrenocorticotropic hormone (ACTH) levels was highly significant at postnatal days (PNDs) 14 and 21 in both dams and neonates of the maternal SVP-treated group relative to those in the control group. However, hypercortisolism (cortisolemia) was highly significant in neonates at both PNDs 14 and 21, while in dams, it was not significantly increased at LD 14 but was at LD 21. This disruption caused adverse effects on maternal food consumption and maternal/neonatal body weight. The maternal SVP treatment resulted in higher levels of neonatal serum adrenaline, noradrenaline, neuropeptide Y (NPY), tumor necrosis factor-alpha (TNF-α), leptin, interleukins (IL-1ß, IL-17, IL-4, IL-6 & IL-2), transforming growth factor-beta (TGF-ß), and prostaglandin E2 (PGE2), and lower levels of neonatal serum growth hormone (GH), insulin growth factor-1 (IGF-1) and adiponectin at both PNDs. This administration also induced the oxidative stress in neonatal cerebrum and cerebellum at both tested PNDs via the production of free radicals (malondialdehyde; MDA & nitric oxide; NO) and reduction of antioxidant parameters (glutathione; GSH, superoxide dismutase; SOD & catalase; CAT). CONCLUSION: Maternal SVP treatment stimulated the neonatal stress-brain (HPA) axis, resulted in an oxido-inflammatory state, and disrupted the neuroendocrine-cytokines axis, and generally neonatal health.


Cytokines/metabolism , Inflammation , Neurosecretory Systems/drug effects , Prenatal Exposure Delayed Effects , Valproic Acid/adverse effects , Animals , Animals, Newborn , Female , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Maternal Exposure/adverse effects , Neurosecretory Systems/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
...