Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.590
Filter
1.
Nucleic Acids Res ; 52(16): 9536-9550, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39106166

ABSTRACT

Heterochromatin is a key feature of eukaryotic genomes and is crucial for maintaining genomic stability. In fission yeast, heterochromatin nucleation is mainly mediated by DNA-binding proteins or the RNA interference (RNAi) pathway. In the filamentous fungus Neurospora crassa, however, the mechanism that causes the initiation of heterochromatin at the relics of repeat-induced point mutation is unknown and independent of the classical RNAi pathway. Here, we show that casein kinase II (CKII) and its kinase activity are required for heterochromatin formation at the well-defined 5-kb heterochromatin of the 5H-cat-3 region and transcriptional repression of its adjacent cat-3 gene. Similarly, mutation of the histone H3 phosphorylation site T11 also impairs heterochromatin formation at the same locus. The catalytic subunit CKA colocalizes with H3T11 phosphorylation (H3pT11) within the 5H-cat-3 domain and the deletion of cka results in a significant decrease in H3T11 phosphorylation. Furthermore, the loss of kinase activity of CKII results in a significant reduction of H3pT11, H3K9me3 (histone H3 lysine 9 trimethylation) and DNA methylation levels, suggesting that CKII regulates heterochromatin formation by promoting H3T11 phosphorylation. Together, our results establish that histone H3 phosphorylation by CKII is a critical event required for heterochromatin formation.


Subject(s)
Casein Kinase II , Heterochromatin , Histones , Neurospora crassa , Heterochromatin/metabolism , Heterochromatin/genetics , Phosphorylation , Histones/metabolism , Casein Kinase II/metabolism , Casein Kinase II/genetics , Neurospora crassa/genetics , Neurospora crassa/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , DNA Methylation , Gene Expression Regulation, Fungal , Mutation
2.
Nat Commun ; 15(1): 6815, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122718

ABSTRACT

Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.


Subject(s)
Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone , DNA Methylation , Fungal Proteins , Heterochromatin , Histones , Heterochromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Histones/metabolism , Histones/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Protein Binding , Neurospora crassa/genetics , Neurospora crassa/metabolism
3.
Proc Natl Acad Sci U S A ; 121(31): e2402944121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39052837

ABSTRACT

In eukaryotes, repetitive DNA can become silenced de novo, either transcriptionally or post-transcriptionally, by processes independent of strong sequence-specific cues. The mechanistic nature of such processes remains poorly understood. We found that in the fungus Neurospora crassa, de novo initiation of both transcriptional and post-transcriptional silencing was linked to perturbed chromatin, which was produced experimentally by the aberrant activity of transcription factors at the tetO operator array. Transcriptional silencing was mediated by canonical constitutive heterochromatin. On the other hand, post-transcriptional silencing resembled repeat-induced quelling but occurred normally when homologous recombination was inactivated. All silencing of the tetO array was dependent on SAD-6, fungal ortholog of the SWI/SNF chromatin remodeler ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked), which was required to maintain nucleosome occupancy at the perturbed locus. In addition, we found that two other types of sequences (the lacO array and native AT-rich DNA) could also undergo recombination-independent quelling associated with perturbed chromatin. These results suggested a model in which the de novo initiation of transcriptional and post-transcriptional silencing is coupled to the remodeling of perturbed chromatin.


Subject(s)
Chromatin Assembly and Disassembly , Gene Silencing , Neurospora crassa , Transcription, Genetic , Neurospora crassa/genetics , Neurospora crassa/metabolism , Chromatin/metabolism , Chromatin/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Transcription Factors/metabolism , Transcription Factors/genetics , Nucleosomes/metabolism , Nucleosomes/genetics
4.
Proc Natl Acad Sci U S A ; 121(32): e2404770121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074265

ABSTRACT

Repression of facultative heterochromatin is essential for developmental processes in numerous organisms. Methylation of histone H3 lysine 27 (H3K27) by Polycomb repressive complex 2 is a prominent feature of facultative heterochromatin in both fungi and higher eukaryotes. Although this methylation is frequently associated with silencing, the detailed mechanism of repression remains incompletely understood. We utilized a forward genetics approach to identify genes required to maintain silencing at facultative heterochromatin genes in Neurospora crassa and identified three previously uncharacterized genes that are important for silencing: sds3 (NCU01599), rlp1 (RPD3L protein 1; NCU09007), and rlp2 (RPD3L protein 2; NCU02898). We found that SDS3, RLP1, and RLP2 associate with N. crassa homologs of the Saccharomyces cerevisiae Rpd3L complex and are required for repression of a subset of H3K27-methylated genes. Deletion of these genes does not lead to loss of H3K27 methylation but increases acetylation of histone H3 lysine 14 at up-regulated genes, suggesting that RPD3L-driven deacetylation is a factor required for silencing of facultative heterochromatin in N. crassa, and perhaps in other organisms.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Heterochromatin , Histones , Neurospora crassa , Neurospora crassa/genetics , Neurospora crassa/metabolism , Heterochromatin/metabolism , Heterochromatin/genetics , Histones/metabolism , Histones/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Acetylation , Gene Silencing , Methylation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics
5.
J Biol Chem ; 300(8): 107508, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944116

ABSTRACT

In the Neurospora circadian system, the White Collar Complex (WCC) formed by WC-1 and WC-2 drives expression of the frequency (frq) gene whose product FRQ feedbacks to inhibit transcriptional activity of WCC. Phosphorylation of WCC has been extensively studied, but the extent and significance of other post-translational modifications (PTM) have been poorly studied. To this end, we used mass-spectrometry to study alkylation sites on WCC, resulting in discovery of nine acetylation sites. Mutagenesis analysis showed most of the acetylation events individually do not play important roles in period determination. Moreover, mutating all the lysines falling in either half of WC-1 or all the lysine residues in WC-2 to arginines did not abolish circadian rhythms. In addition, we also found nine mono-methylation sites on WC-1, but like acetylation, individual ablation of most of the mono-methylation events did not result in a significant period change. Taken together, the data here suggest that acetylation or mono-methylation on WCC is not a determinant of the pace of the circadian feedback loop. The finding is consistent with a model in which repression of WCC's circadian activity is mainly controlled by phosphorylation. Interestingly, light-induced expression of some light-responsive genes has been modulated in certain wc-1 acetylation mutants, suggesting that WC-1 acetylation events differentially regulate light responses.


Subject(s)
Circadian Clocks , Fungal Proteins , Acetylation , Fungal Proteins/metabolism , Fungal Proteins/genetics , Neurospora crassa/metabolism , Neurospora crassa/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Light , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Processing, Post-Translational , Circadian Rhythm/physiology , Gene Expression Regulation, Fungal , Methylation , Phosphorylation
6.
Nat Commun ; 15(1): 3523, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664421

ABSTRACT

Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.


Subject(s)
Circadian Clocks , Fungal Proteins , Neurospora crassa , Neurospora crassa/genetics , Neurospora crassa/metabolism , Circadian Clocks/genetics , Circadian Clocks/physiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Protein Binding , Circadian Rhythm/physiology , Circadian Rhythm/genetics , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , CLOCK Proteins/chemistry , Mutation , Amino Acid Sequence , Gene Expression Regulation, Fungal , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Protein Array Analysis
7.
Braz J Microbiol ; 55(2): 1679-1691, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393617

ABSTRACT

Fungal plant pathogens are responsible for serious losses in many economically important crop species worldwide. Due to the use of fungicides and the fungi genome plasticity, multi-drug resistant strains are emerging as a new generation of pathogens, causing an expansive range of superficial and systemic plant infections, or new opportunistic fungal pathogens for humans. The group of antagonistic fungi Trichoderma spp. has been widely used to enhance plant growth and for the control of different pathogens affecting crops. Although Neurospora crassa is not a mycoparasitic fungus, its secretion of secondary metabolites with antimicrobial activity has been described. In this work, the effect of crude extract of the monoculture of Trichoderma asperellum T8a or the co-culture with N. crassa as an inhibitory treatment against the fungal pathogens Botrytis cinerea and Fusarium solani was evaluated. The findings demonstrate that the secondary metabolites contained in the T. asperellum crude extract have a clear fungistatic activity against B. cinerea and F. solani. Interestingly, this fungistatic activity highly increases when T. asperellum is co-cultivated with the non-pathogenic fungus N. crassa. Moreover, the co-culture crude extract also showed antifungal activity on post-harvest fruits, and no toxic effects on Murine fibroblast L929 (CCL-1) and murine macrophages RAW 264.7 (TIB-71) were observed. All these results together are solid evidence of the potential of the co-culture crude extract of T. asperellum and N. crassa, as an antifungal agent against phytopathogenic fungi, or post-harvest fruits during the transportation or commercialization time.


Subject(s)
Botrytis , Coculture Techniques , Fruit , Fusarium , Trichoderma , Fusarium/drug effects , Fusarium/growth & development , Fruit/microbiology , Fruit/chemistry , Botrytis/drug effects , Botrytis/growth & development , Trichoderma/metabolism , Trichoderma/genetics , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Neurospora crassa/drug effects , Neurospora crassa/metabolism , RAW 264.7 Cells , Complex Mixtures/pharmacology , Complex Mixtures/chemistry
8.
Curr Opin Struct Biol ; 84: 102743, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091925

ABSTRACT

Cellular circadian clocks, the molecular timers that coordinate physiology to the day/night cycle across the domains of life, are widely regulated by disordereddisordered protein interactions. Here, we review the disordered-disordered protein interactions in the circadian clock of Neurospora crassa (N. crassa), a filamentous fungus which is a model organism for clocks in higher eukaryotes. We focus on what is known about the interactions between the intrinsically disordered core negative arm protein FREQUENCEY (FRQ), the other proteins comprising the transcription-translation feedback loop, and the proteins that control output. We compare and contrast this model with other models of eukaryotic clocks, illustrating that protein disorder is a conserved and essential mechanism in the maintenance of circadian clock across species.


Subject(s)
Circadian Clocks , Neurospora crassa , Circadian Rhythm/physiology , Neurospora crassa/metabolism , Fungal Proteins/metabolism
9.
Protein Expr Purif ; 216: 106416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38104790

ABSTRACT

A major cellobiohydrolase of Neurospora crassa CBH2 was successfully expressed in Pichia pastoris. The maximum Avicelase activity in shake flask among seven transformants which selected on 4.0 g/L G418 plates was 0.61 U/mL. The optimal pH and temperature for Avicelase activity of the recombinant CBH2 were determined to be 4.8 and 60 °C, respectively. The new CBH2 maintained 63.5 % Avicelase activity in the range of pH 4.0-10.4, and 60.2 % Avicelase activity in the range of 30-90 °C. After incubation at 70-90 °C for 1 h, the Avicelase activity retained 60.5 % of its initial activity. The presence of Zn2+, Ca2+ or Cd2+ enhanced the Avicelase activity of the CBH2, of which Cd2+ at 10 mM causing the highest increase. The recombinant CBH2 was used to enhance the Avicel hydrolysis by improving the exo-exo-synergism between CBH2 and CBH1 in N.crassa cellulase. The enzymatic hydrolysis yield was increased by 38.1 % by adding recombinant CBH2 and CBH1, and the yield was increased by 215.4 % when the temperature is raised to 70 °C. This work provided a CBH2 with broader pH range and better heat resistance, which is a potential enzyme candidate in food, textile, pulp and paper industries, and other industrial fields.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase , Neurospora crassa , Saccharomycetales , Cellulose 1,4-beta-Cellobiosidase/genetics , Neurospora crassa/genetics , Neurospora crassa/metabolism , Cadmium , Pichia/genetics , Pichia/metabolism , Cloning, Molecular , Recombinant Proteins
10.
BMC Biotechnol ; 23(1): 50, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38031036

ABSTRACT

BACKGROUND: Filamentous fungi are efficient degraders of plant biomass and the primary producers of commercial cellulolytic enzymes. While the transcriptional regulation mechanisms of cellulases have been continuously explored in lignocellulolytic fungi, the induction of cellulase production remains a complex multifactorial system, with several aspects still largely elusive. RESULTS: In this study, we identified a Zn2Cys6 transcription factor, designated as Clr-5, which regulates the expression of cellulase genes by influencing amino acid metabolism in Neurospora crassa during growth on cellulose. The deletion of clr-5 caused a significant decrease in secreted protein and cellulolytic enzyme activity of N. crassa, which was partially alleviated by supplementing with yeast extract. Transcriptomic profiling revealed downregulation of not only the genes encoding main cellulases but also those related to nitrogen metabolism after disruption of Clr-5 under Avicel condition. Clr-5 played a crucial role in the utilization of multiple amino acids, especially leucine and histidine. When using leucine or histidine as the sole nitrogen source, the Δclr-5 mutant showed significant growth defects on both glucose and Avicel media. Comparative transcriptomic analysis revealed that the transcript levels of most genes encoding carbohydrate-active enzymes and those involved in the catabolism and uptake of histidine, branched-chain amino acids, and aromatic amino acids, were remarkably reduced in strain Δclr-5, compared with the wild-type N. crassa when grown in Avicel medium with leucine or histidine as the sole nitrogen source. These findings underscore the important role of amino acid metabolism in the regulation of cellulase production in N. crassa. Furthermore, the function of Clr-5 in regulating cellulose degradation is conserved among ascomycete fungi. CONCLUSIONS: These findings regarding the novel transcription factor Clr-5 enhance our comprehension of the regulatory connections between amino acid metabolism and cellulase production, offering fresh prospects for the development of fungal cell factories dedicated to cellulolytic enzyme production in bio-refineries.


Subject(s)
Cellulase , Cellulases , Neurospora crassa , Cellulase/metabolism , Neurospora crassa/genetics , Neurospora crassa/metabolism , Histidine/genetics , Histidine/metabolism , Leucine/genetics , Leucine/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cellulose/metabolism , Cellulases/genetics , Nitrogen/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal
11.
Proc Natl Acad Sci U S A ; 120(47): e2311249120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37963248

ABSTRACT

Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain-like structures formed by heterochromatic region aggregation. However, insufficient data exist on how histone posttranslational modifications (PTMs), including acetylation, affect genome organization. In Neurospora, the HCHC complex [composed of the proteins HDA-1, CDP-2 (Chromodomain Protein-2), Heterochromatin Protein-1, and CHAP (CDP-2 and HDA-1 Associated Protein)] deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation, and alters the methylation of cytosines in DNA. Here, we assess whether the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and interchromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone PTMs genome-wide, as CDP-2 deletion increases heterochromatic H4K16 acetylation, yet smaller heterochromatic regions lose H3K9 trimethylation and gain interheterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.


Subject(s)
Histones , Neurospora crassa , Histones/genetics , Histones/metabolism , Neurospora crassa/genetics , Neurospora crassa/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , DNA Methylation/genetics , Protein Processing, Post-Translational/genetics , DNA/metabolism , Cytosine/metabolism
12.
mSphere ; 8(6): e0046023, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37847028

ABSTRACT

IMPORTANCE: Neurospora is a quintessential tip-growing organism, which is well known for packaging and longitudinal transport of tip-building blocks. Thus far, however, little attention has been paid to the co-essential process of reclamation, that is-taking apart of upstream, older structural elements, otherwise known as "autophagy". We are not yet prepared to set out the chemistry of that elaborate process, but its morphological start alone is worthy of attention. Carbon starvation triggers significant autophagic changes, beginning with prolific vacuolation along the plasma membrane, and eventual filling of 70% (or more) of cytoplasmic volume. Additionally, the Neurospora plasma membrane elaborates a variety of phagophores which themselves often look lytic. These have either dual enclosing membranes, like the familiar autophagosomes, can be doubled and have four wrapping membranes, or can be compounded with multiple membrane layers. These reclamation processes must be accommodated by the mechanism of tip growth.


Subject(s)
Neurospora crassa , Neurospora crassa/metabolism , Autophagy , Cell Membrane/metabolism
13.
J Biol Chem ; 299(9): 105094, 2023 09.
Article in English | MEDLINE | ID: mdl-37507015

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.


Subject(s)
Mixed Function Oxygenases , Peroxidases , Polysaccharides , Reducing Agents , Ascorbic Acid/metabolism , Biocatalysis , Copper/metabolism , Enzyme Stability , Half-Life , Hydrogen Peroxide/metabolism , Kinetics , Mixed Function Oxygenases/metabolism , Neurospora crassa/enzymology , Neurospora crassa/metabolism , Peroxidases/metabolism , Polysaccharides/metabolism , Reducing Agents/metabolism , Serratia marcescens/enzymology , Serratia marcescens/metabolism , Streptomyces coelicolor/enzymology , Streptomyces coelicolor/metabolism
14.
Genetics ; 224(4)2023 08 09.
Article in English | MEDLINE | ID: mdl-37313736

ABSTRACT

A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.


Subject(s)
Neurospora crassa , Neurospora , Neurospora crassa/genetics , Neurospora crassa/metabolism , Genes, Fungal , Permissiveness , Phenotype , Giant Cells/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Neurospora/genetics
15.
Nat Commun ; 14(1): 3371, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291101

ABSTRACT

In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency (frq). FRQ interacts with FRH (FRQ-interacting RNA helicase) and CKI, forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8, that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone h2a.z, and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.


Subject(s)
Circadian Clocks , Neurospora crassa , Circadian Clocks/genetics , Neurospora crassa/metabolism , Circadian Rhythm/genetics , RNA Helicases/metabolism , Chromatin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal
16.
J Biol Chem ; 299(7): 104850, 2023 07.
Article in English | MEDLINE | ID: mdl-37220856

ABSTRACT

In the negative feedback loop composing the Neurospora circadian clock, the core element, FREQUENCY (FRQ), binds with FRQ-interacting RNA helicase (FRH) and casein kinase 1 to form the FRQ-FRH complex (FFC) which represses its own expression by interacting with and promoting phosphorylation of its transcriptional activators White Collar-1 (WC-1) and WC-2 (together forming the White Collar complex, WCC). Physical interaction between FFC and WCC is a prerequisite for the repressive phosphorylations, and although the motif on WCC needed for this interaction is known, the reciprocal recognition motif(s) on FRQ remains poorly defined. To address this, we assessed FFC-WCC in a series of frq segmental-deletion mutants, confirming that multiple dispersed regions on FRQ are necessary for its interaction with WCC. Biochemical analysis shows that interaction between FFC and WCC but not within FFC or WCC can be disrupted by high salt, suggesting that electrostatic forces drive the association of the two complexes. As a basic sequence on WC-1 was previously identified as a key motif for WCC-FFC assembly, our mutagenetic analysis targeted negatively charged residues of FRQ, leading to identification of three Asp/Glu clusters in FRQ that are indispensable for FFC-WCC formation. Surprisingly, in several frq Asp/Glu-to-Ala mutants that vastly diminish FFC-WCC interaction, the core clock still oscillates robustly with an essentially wildtype period, indicating that the interaction between the positive and negative elements in the feedback loop is required for the operation of the circadian clock but is not a determinant of the period length.


Subject(s)
Circadian Clocks , Fungal Proteins , Neurospora crassa , Circadian Clocks/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Neurospora crassa/drug effects , Neurospora crassa/genetics , Neurospora crassa/metabolism , Transcription Factors/metabolism , Protein Domains , Gene Deletion , Sodium Chloride/pharmacology , Mutation , Gene Expression
17.
Article in English | MEDLINE | ID: mdl-37207739

ABSTRACT

Fluoroacetic acid (FAA) is a poison commonly used for the lethal control of invasive species in Australia and New Zealand. Despite its widespread use and long history as a pesticide, no effective treatment for accidental poisoning exists. Although it is known to inhibit the tricarboxylic acid (TCA) cycle, specific details of FAA toxicology have remained elusive, with hypocalcemia suggested to be involved in the neurological symptoms prior to death. Here, we study the effects of FAA on cell growth and mitochondrial function using the filamentous fungi Neurospora crassa as model organism. FAA toxicosis in N. crassa is characterized by an initial hyperpolarization and subsequent depolarization of the mitochondrial membranes, followed by a significant intracellular decrease in ATP and increase in Ca2+. The development of mycelium was markedly affected within 6 h, and growth impaired after 24 h of FAA exposure. Although the activity of mitochondrial complexes I, II and IV was impaired, the activity of citrate synthase was not affected. Supplementation with Ca2+ exacerbated the effects of FAA in cell growth and membrane potential. Our findings suggest that an imbalance created in the ratio of ions within the mitochondria may lead to conformational changes in ATP synthase dimers due to mitochondrial Ca2+ uptake, that ultimately result in the opening of the mitochondrial permeability transition pore (MPTP), a decrease in membrane potential, and cell death. Our findings suggest new approaches for the treatment research, as well as the possibility to use N. crassa as a high-throughput screening assay to evaluate a large number of FAA antidote candidates.


Subject(s)
Neurospora crassa , Neurospora crassa/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Citric Acid , Homeostasis , Citrates , Adenosine Triphosphate , Calcium/metabolism
18.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37193664

ABSTRACT

The Ca2+ signaling genes cpe-1, plc-1, ncs-1, splA2, camk-1, camk-2, camk-3, camk-4, cmd, and cnb-1 are necessary for a normal circadian period length in Neurospora crassa. In addition, the Q10 values ranged between 0.8 and 1.2 for the single mutants lacking cpe-1, splA2, camk-1, camk-2, camk-3, camk-4, and cnb-1, suggesting that the circadian clock exhibits standard temperature compensation. However, the Q10 value for the ∆plc-1 mutant was 1.41 at 25 and 30 °C, 1.53 and 1.40 for the ∆ncs-1 mutant at 20 and 25 °C, and at 20 and 30 °C, respectively, suggesting a partial loss of temperature compensation in these two mutants. Moreover, expression of frq, a regulator of the circadian period, and the blue light receptor wc-1, were increased >2-fold in the Δplc-1, ∆plc-1; ∆cpe-1, and the ∆plc-1; ∆splA2 mutants at 20 °C. The frq mRNA level was increased >2-fold in the Δncs-1 mutant compared to the ras-1bd strain at 20 °C. Therefore, multiple Ca2+ signaling genes regulate the circadian period, by influencing expression of the frq and wc-1 genes that are critical for maintaining the normal circadian period length in N. crassa.


Subject(s)
Neurospora crassa , Phospholipases A2, Secretory , Neurospora crassa/genetics , Neurospora crassa/metabolism , Circadian Rhythm/genetics , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Calcium/metabolism , Phospholipases A2, Secretory/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
19.
PLoS One ; 18(4): e0282989, 2023.
Article in English | MEDLINE | ID: mdl-37093794

ABSTRACT

The hyphal tips of Neurospora crassa have prevacuolar compartments (PVCs) of unusual size and shape. They appear to function as late endosomes/multivesicular bodies. PVCs are highly variable in size (1-3 microns) and exhibit rapid changes in structure. When visualized with tagged integral membrane proteins of the vacuole the PVCs appear as ring or horseshoe-shaped structures. Some soluble molecules that fill the lumen of mature spherical vacuoles do not appear in the lumen of the PVC but are seen in the ring or horseshoe-shaped structures. By using super-resolution microscopy I have achieved a better understanding of the structure of the PVCs. The PVC appears to form a pouch with an open end. The walls of the pouch are composed of small vesicles or tubules, approximately 250 nm in diameter. The shape of the PVC can change in a few seconds, caused by the apparent movement of the vesicles/tubules. In approximately 85% of the PVCs dynein and dynactin were observed as poorly defined lumps inside the pouch-shaped PVCs. Within the PVCs they were not attached to microtubules nor did they appear to be in direct contact with the vesicles and tubules that formed the PVCs. In the future, the structure and relatively large size of the Neurospora PVC may allow us to visualize protein-sorting events that occur in the formation of vacuoles.


Subject(s)
Neurospora crassa , Neurospora crassa/metabolism , Microscopy , Endosomes , Vacuoles/metabolism , Multivesicular Bodies
20.
G3 (Bethesda) ; 13(8)2023 08 09.
Article in English | MEDLINE | ID: mdl-37052947

ABSTRACT

During the sexual phase of Neurospora crassa, unpaired genes are subject to a silencing mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD targets the transcripts of an unpaired gene and utilizes typical RNA interference factors for its process. Using a reverse genetic screen, we have identified a meiotic silencing gene called sad-9, which encodes a DEAD-box RNA helicase. While not essential for vegetative growth, SAD-9 plays a crucial role in both sexual development and MSUD. Our results suggest that SAD-9, with the help of the SAD-2 scaffold protein, recruits the SMS-2 Argonaute to the perinuclear region, the center of MSUD activity.


Subject(s)
Meiosis , Neurospora crassa , Meiosis/genetics , DNA, Fungal/genetics , Fungal Proteins/genetics , Neurospora crassa/metabolism , DEAD-box RNA Helicases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL