Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Cell Mol Life Sci ; 81(1): 273, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900294

ABSTRACT

Long-term memory formation requires de novo RNA and protein synthesis. Using differential display PCR, we found that the NCoR1 cDNA fragment is differentially expressed between fast learners and slow learners, with fast learners showing a lower expression level than slow learners in the water maze learning task. Fast learners also show lower NCoR1 mRNA and protein expression levels. In addition, spatial training decreases both NCoR1 mRNA and protein expression, whereas NCoR1 conditional knockout (cKO) mice show enhanced spatial memory. In studying the molecular mechanism, we found that spatial training decreases the association between NCoR1 and DEC2. Both NCoR1 and DEC2 suppress the expression of BDNF, integrin α3 and SGK1 through C/EBPα binding to their DNA promoters, but overexpression of DEC2 in NCoR1 cKO mice rescues the decreased expression of these proteins compared with NCoR1 loxP mice overexpressing DEC2. Further, spatial training decreases DEC2 expression. Spatial training also enhances C/EBPα binding to Bdnf, Itga3 and Sgk1 promoters, an effect also observed in fast learners, and both NCoR1 and DEC2 control C/EBPα activity. Whereas knockdown of BDNF, integrin α3 or SGK1 expression impairs spatial learning and memory, it does not affect Y-maze performance, suggesting that BDNF, integrin α3 and SGK1 are involved in long-term memory formation, but not short-term memory formation. Moreover, NCoR1 expression is regulated by the JNK/c-Jun signaling pathway. Collectively, our findings identify DEC2 as a novel interacting protein of NCoR1 and elucidate the novel roles and mechanisms of NCoR1 and DEC2 in negative regulation of spatial memory formation.


Subject(s)
Maze Learning , Mice, Knockout , Nuclear Receptor Co-Repressor 1 , Spatial Memory , Animals , Spatial Memory/physiology , Mice , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 1/genetics , Maze Learning/physiology , Male , Mice, Inbred C57BL , Promoter Regions, Genetic , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Protein Serine-Threonine Kinases , Immediate-Early Proteins
2.
Nat Metab ; 6(5): 825-836, 2024 May.
Article in English | MEDLINE | ID: mdl-38622413

ABSTRACT

Nuclear receptor corepressors (NCoRs) function in multiprotein complexes containing histone deacetylase 3 (HDAC3) to alter transcriptional output primarily through repressive chromatin remodelling at target loci1-5. In the liver, loss of HDAC3 causes a marked hepatosteatosis largely because of de-repression of genes involved in lipid metabolism6,7; however, the individual roles and contribution of other complex members to hepatic and systemic metabolic regulation are unclear. Here we show that adult loss of both NCoR1 and NCoR2 (double knockout (KO)) in hepatocytes phenocopied the hepatomegalic fatty liver phenotype of HDAC3 KO. In addition, double KO livers exhibited a dramatic reduction in glycogen storage and gluconeogenic gene expression that was not observed with hepatic KO of individual NCoRs or HDAC3, resulting in profound fasting hypoglycaemia. This surprising HDAC3-independent activation function of NCoR1 and NCoR2 is due to an unexpected loss of chromatin accessibility on deletion of NCoRs that prevented glucocorticoid receptor binding and stimulatory effect on gluconeogenic genes. These studies reveal an unanticipated, non-canonical activation function of NCoRs that is required for metabolic health.


Subject(s)
Gluconeogenesis , Histone Deacetylases , Liver , Mice, Knockout , Nuclear Receptor Co-Repressor 1 , Nuclear Receptor Co-Repressor 2 , Receptors, Glucocorticoid , Gluconeogenesis/genetics , Animals , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 1/genetics , Mice , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Nuclear Receptor Co-Repressor 2/metabolism , Nuclear Receptor Co-Repressor 2/genetics , Liver/metabolism , Hepatocytes/metabolism , Nuclear Receptor Coactivator 2/metabolism , Nuclear Receptor Coactivator 2/genetics
4.
Mol Cell ; 83(19): 3421-3437.e11, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37751740

ABSTRACT

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1ß with the NCoR/HDAC3 complex, resulting in the activation of PGC1ß and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


Subject(s)
Osteoclasts , RNA , Humans , Mice , Animals , Co-Repressor Proteins/genetics , Osteoclasts/metabolism , RANK Ligand/genetics , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Gene Expression
5.
PLoS Biol ; 21(8): e3002231, 2023 08.
Article in English | MEDLINE | ID: mdl-37590294

ABSTRACT

Mycobacterium tuberculosis (Mtb) defends host-mediated killing by repressing the autophagolysosome machinery. For the first time, we report NCoR1 co-repressor as a crucial host factor, controlling Mtb growth in myeloid cells by regulating both autophagosome maturation and lysosome biogenesis. We found that the dynamic expression of NCoR1 is compromised in human peripheral blood mononuclear cells (PBMCs) during active Mtb infection, which is rescued upon prolonged anti-mycobacterial therapy. In addition, a loss of function in myeloid-specific NCoR1 considerably exacerbates the growth of M. tuberculosis in vitro in THP1 differentiated macrophages, ex vivo in bone marrow-derived macrophages (BMDMs), and in vivo in NCoR1MyeKO mice. We showed that NCoR1 depletion controls the AMPK-mTOR-TFEB signalling axis by fine-tuning cellular adenosine triphosphate (ATP) homeostasis, which in turn changes the expression of proteins involved in autophagy and lysosomal biogenesis. Moreover, we also showed that the treatment of NCoR1 depleted cells by Rapamycin, Antimycin-A, or Metformin rescued the TFEB activity and LC3 levels, resulting in enhanced Mtb clearance. Similarly, expressing NCoR1 exogenously rescued the AMPK-mTOR-TFEB signalling axis and Mtb killing. Overall, our data revealed a central role of NCoR1 in Mtb pathogenesis in myeloid cells.


Subject(s)
Mycobacterium tuberculosis , Nuclear Receptor Co-Repressor 1 , Animals , Humans , Mice , AMP-Activated Protein Kinases , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Leukocytes, Mononuclear , Myeloid Cells , TOR Serine-Threonine Kinases , Nuclear Receptor Co-Repressor 1/metabolism
6.
Stem Cells ; 41(10): 971-985, 2023 10 08.
Article in English | MEDLINE | ID: mdl-37534584

ABSTRACT

Recent studies suggest that chromosomal cohesin complex proteins are important in regulating hematopoiesis and may contribute to myeloid malignancies. To investigate the effects of perturbing the cohesin subunit protein RAD21 on normal hematopoiesis, we used conditional knockout (cKO) mouse models. While cohesin is vital for hematopoietic stem cell (HSC) function, Rad21 haploinsufficiency (Rad21Δ/+) led to distinct hematopoietic phenotypes. Our findings revealed that Rad21Δ/+ cells exhibited decreased hematopoietic reconstitution in competitive bone marrow transplantation assays. This reduction in peripheral blood chimerism was specifically observed in the lymphoid compartment, while the chimerism in the myeloid compartment remained unaffected. Rad21 haploinsufficiency also resulted in changes in the hematopoietic stem and progenitor cells (HSPC) and myeloid progenitor compartments, with a significant accumulation of granulocyte-macrophage progenitors in the bone marrow. We observed differential gene expression in Rad21Δ/+ LSK (Lin- Sca1-Kit+) cells, including genes required for HSPC function and differentiation, such as Setdb1, Hmga2, Ncor1, and Myb. In addition, we observed a notable decrease in the expression of genes related to the interferon response and a significant reduction in the expression of genes involved in the IL2-STAT5 signaling pathways. Our studies suggest that RAD21 protein and level of its post-translational modifications in the bone marrow cells may play a potential role in hematopoiesis. Overall, Rad21 haploinsufficiency impairs hematopoietic differentiation and increases HSC self-renewal.


Subject(s)
Chromosomal Proteins, Non-Histone , Hematopoietic Stem Cell Transplantation , Mice , Animals , Cell Differentiation , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoiesis/genetics , Mice, Inbred C57BL , Nuclear Receptor Co-Repressor 1/metabolism , Cohesins
7.
Cardiovasc Diabetol ; 22(1): 144, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349757

ABSTRACT

BACKGROUND: The nuclear receptor corepressor 1 (NCOR1) plays an important role in the regulation of gene expression in immunometabolic conditions by connecting chromatin-modifying enzymes, coregulators and transcription factors. NCOR1 has been shown to be involved in cardiometabolic diseases. Recently, we demonstrated that the deletion of macrophage NCOR1 aggravates atherosclerosis by promoting CD36-triggered foam cell formation via PPARG derepression. PURPOSE: Since NCOR1 modulates the function of several key regulators involved in hepatic lipid and bile acid metabolism, we hypothesized that its deletion in hepatocytes alters lipid metabolism and atherogenesis. METHODS: To test this hypothesis, we generated hepatocyte-specific Ncor1 knockout mice on a Ldlr-/- background. Besides assessing the progression of the disease in thoracoabdominal aortae en face, we analyzed hepatic cholesterol and bile acid metabolism at expression and functional levels. RESULTS: Our data demonstrate that liver-specific Ncor1 knockout mice on an atherosclerosis-prone background develop less atherosclerotic lesions than controls. Interestingly, under chow diet, plasma cholesterol levels of liver-specific Ncor1 knockout mice were slightly higher compared to control, but strongly reduced compared to control mice after feeding them an atherogenic diet for 12 weeks. Moreover, the hepatic cholesterol content was decreased in liver-specific Ncor1 knockout compared to control mice. Our mechanistic data revealed that NCOR1 reprograms the synthesis of bile acids towards the alternative pathway, which in turn reduce bile hydrophobicity and enhances fecal cholesterol excretion. CONCLUSIONS: Our data suggest that hepatic Ncor1 deletion in mice decreases atherosclerosis development by reprograming bile acid metabolism and enhancing fecal cholesterol excretion.


Subject(s)
Atherosclerosis , Sterols , Mice , Animals , Sterols/metabolism , Liver/metabolism , Cholesterol , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Mice, Knockout , Bile Acids and Salts/metabolism , Lipid Metabolism , Mice, Inbred C57BL , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism
8.
J Biol Chem ; 299(6): 104702, 2023 06.
Article in English | MEDLINE | ID: mdl-37059182

ABSTRACT

Mitochondria are organelles known primarily for generating ATP via the oxidative phosphorylation process. Environmental signals are sensed by whole organisms or cells and markedly affect this process, leading to alterations in gene transcription and, consequently, changes in mitochondrial function and biogenesis. The expression of mitochondrial genes is finely regulated by nuclear transcription factors, including nuclear receptors and their coregulators. Among the best-known coregulators is the nuclear receptor corepressor 1 (NCoR1). Muscle-specific knockout of NCoR1 in mice induces an oxidative phenotype, improving glucose and fatty acid metabolism. However, the mechanism by which NCoR1 is regulated remains elusive. In this work, we identified the poly(A)-binding protein 4 (PABPC4) as a new NCoR1 interactor. Unexpectedly, we found that silencing of PABPC4 induced an oxidative phenotype in both C2C12 and MEF cells, as indicated by increased oxygen consumption, mitochondria content, and reduced lactate production. Mechanistically, we demonstrated that PABPC4 silencing increased the ubiquitination and consequent degradation of NCoR1, leading to the derepression of PPAR-regulated genes. As a consequence, cells with PABPC4 silencing had a greater capacity to metabolize lipids, reduced intracellular lipid droplets, and reduced cell death. Interestingly, in conditions known to induce mitochondrial function and biogenesis, both mRNA expression and PABPC4 protein content were markedly reduced. Our study, therefore, suggests that the lowering of PABPC4 expression may represent an adaptive event required to induce mitochondrial activity in response to metabolic stress in skeletal muscle cells. As such, the NCoR1-PABPC4 interface might be a new road to the treatment of metabolic diseases.


Subject(s)
Receptors, Cytoplasmic and Nuclear , Transcription Factors , Animals , Mice , Co-Repressor Proteins/metabolism , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Oxidative Phosphorylation , Receptors, Cytoplasmic and Nuclear/metabolism , Stress, Physiological , Transcription Factors/metabolism
9.
Redox Biol ; 59: 102575, 2023 02.
Article in English | MEDLINE | ID: mdl-36565644

ABSTRACT

Dendritic cells (DCs) undergo rapid metabolic reprogramming to generate signal-specific immune responses. The fine control of cellular metabolism underlying DC immune tolerance remains elusive. We have recently reported that NCoR1 ablation generates immune-tolerant DCs through enhanced IL-10, IL-27 and SOCS3 expression. In this study, we did comprehensive metabolic profiling of these tolerogenic DCs and identified that they meet their energy requirements through enhanced glycolysis and oxidative phosphorylation (OXPHOS), supported by fatty acid oxidation-driven oxygen consumption. In addition, the reduced pyruvate and glutamine oxidation with a broken TCA cycle maintains the tolerogenic state of the cells. Mechanistically, the AKT-mTOR-HIF-1α-axis mediated glycolysis and CPT1a-driven ß-oxidation were enhanced in these tolerogenic DCs. To confirm these observations, we used synthetic metabolic inhibitors and found that the combined inhibition of HIF-1α and CPT1a using KC7F2 and etomoxir, respectively, compromised the overall transcriptional signature of immunological tolerance including the regulatory cytokines IL-10 and IL-27. Functionally, treatment of tolerogenic DCs with dual KC7F2 and etomoxir treatment perturbed the polarization of co-cultured naïve CD4+ T helper (Th) cells towards Th1 than Tregs, ex vivo and in vivo. Physiologically, the Mycobacterium tuberculosis (Mtb) infection model depicted significantly reduced bacterial burden in BMcDC1 ex vivo and in CD103+ lung DCs in Mtb infected NCoR1DC-/-mice. The spleen of these infected animals also showed increased Th1-mediated responses in the inhibitor-treated group. These findings suggested strong involvement of NCoR1 in immune tolerance. Our validation in primary human monocyte-derived DCs (moDCs) showed diminished NCOR1 expression in dexamethasone-derived tolerogenic moDCs along with suppression of CD4+T cell proliferation and Th1 polarization. Furthermore, the combined KC7F2 and etomoxir treatment rescued the decreased T cell proliferative capacity and the Th1 phenotype. Overall, for the first time, we demonstrated here that NCoR1 mediated control of glycolysis and fatty acid oxidation fine-tunes immune tolerance versus inflammation balance in murine and human DCs.


Subject(s)
Interleukin-10 , Interleukin-27 , Humans , Mice , Animals , Interleukin-10/metabolism , Interleukin-27/metabolism , Dendritic Cells/metabolism , Immune Tolerance , Glycolysis , Fatty Acids/metabolism , Cell Differentiation , Cells, Cultured , Nuclear Receptor Co-Repressor 1/metabolism
10.
Cell Death Differ ; 30(3): 618-631, 2023 03.
Article in English | MEDLINE | ID: mdl-36151473

ABSTRACT

Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays critical roles in the pathogenesis of aortic aneurysm (AA). The function of nuclear receptor corepressor1 (NCOR1) in regulation of VSMC phenotype and AA is unclear. Herein, using smooth muscle NCOR1 knockout mice, we demonstrated that smooth muscle NCOR1 deficiency decreased both mRNA and protein levels of contractile genes, impaired stress fibers formation and RhoA pathway activation, reduced synthesis of elastin and collagens, and induced the expression and activity of MMPs, manifesting a switch from contractile to degradative phenotype of VSMCs. NCOR1 modulated VSMC phenotype through 3 different mechanisms. First, NCOR1 deficiency increased acetylated FOXO3a to inhibit the expression of Myocd, which downregulated contractile genes. Second, deletion of NCOR1 derepressed NFAT5 to induce the expression of Rgs1, thus impeding RhoA activation. Third, NCOR1 deficiency increased the expression of Mmp12 and Mmp13 by derepressing ATF3. Finally, a mouse model combined apoE knockout mice with angiotensin II was used to study the role of smooth muscle NCOR1 in the development of AA. The results showed that smooth muscle NCOR1 deficiency increased the incidence of aortic aneurysms and exacerbated medial degeneration in angiotensin II-induced AA mouse model. Collectively, our data illustrated that NCOR1 interacts with FOXO3a, NFAT5, and ATF3 to maintain contractile phenotype of VSMCs and suppress AA development. Manipulation of smooth muscle NCOR1 may be a potential approach for AA treatment.


Subject(s)
Aortic Aneurysm , Muscle, Smooth, Vascular , Mice , Animals , Muscle, Smooth, Vascular/metabolism , Angiotensin II/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Mice, Knockout , Phenotype , Mice, Knockout, ApoE , Homeostasis , Cells, Cultured , Nuclear Receptor Co-Repressor 1/metabolism
11.
Autophagy ; 19(3): 904-925, 2023 03.
Article in English | MEDLINE | ID: mdl-35947488

ABSTRACT

Brown adipose tissue (BAT) thermogenesis affects energy balance, and thereby it has the potential to induce weight loss and to prevent obesity. Here, we document a macroautophagic/autophagic-dependent mechanism of peroxisome proliferator-activated receptor gamma (PPARG) activity regulation that induces brown adipose differentiation and thermogenesis and that is mediated by TP53INP2. Disruption of TP53INP2-dependent autophagy reduced brown adipogenesis in cultured cells. In vivo specific-tp53inp2 ablation in brown precursor cells or in adult mice decreased the expression of thermogenic and mature adipocyte genes in BAT. As a result, TP53INP2-deficient mice had reduced UCP1 content in BAT and impaired maximal thermogenic capacity, leading to lipid accumulation and to positive energy balance. Mechanistically, TP53INP2 stimulates PPARG activity and adipogenesis in brown adipose cells by promoting the autophagic degradation of NCOR1, a PPARG co-repressor. Moreover, the modulation of TP53INP2 expression in BAT and in human brown adipocytes suggests that this protein increases PPARG activity during metabolic activation of brown fat. In all, we have identified a novel molecular explanation for the contribution of autophagy to BAT energy metabolism that could facilitate the design of therapeutic strategies against obesity and its metabolic complications.


Subject(s)
Adipose Tissue, Brown , PPAR gamma , Mice , Humans , Animals , Adipose Tissue, Brown/metabolism , PPAR gamma/metabolism , Autophagy , Obesity/metabolism , Thermogenesis/genetics , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 1/metabolism
12.
J Dent Res ; 102(1): 72-81, 2023 01.
Article in English | MEDLINE | ID: mdl-35983582

ABSTRACT

Nuclear receptor corepressor 1 (Ncor1) has been reported to regulate different transcription factors in different biological processes, including metabolism, inflammation, and circadian rhythms. However, the role of Ncor1 in periodontitis has not been elucidated. The aims of the present study were to investigate the role of Ncor1 in experimental periodontitis and to explore the underlying mechanisms through an experimental periodontitis model in myeloid cell-specific Ncor1-deficient mice. Myeloid cell-specific Ncor1 knockout (MNKO) mice were generated, and experimental periodontitis induced by ligation using 5-0 silk sutures was established. Ncor1 flox/flox mice were used as littermate controls (LC). Histological staining and micro-computed tomography scanning were used to evaluate osteoclastogenesis and alveolar bone resorption. Flow cytometry was conducted to observe the effect of Ncor1 on myeloid cells. RNA sequencing was used to explore the differentially targeted genes in osteoclastogenesis in the absence of Ncor1. Coimmunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) experiments, and dual luciferase assays were performed to explore the relationship between NCoR1 and the targeted gene. Alveolar bone resorption in the MNKO mice was significantly greater than that in the LC mice after periodontitis induction and osteoclastogenesis in vitro. The percentage of CD11b+ cells, particularly CD11b+ Ly6G+ neutrophils, was substantially higher in gingival tissues in the MNKO mice than in the LC mice. Results of RNA sequencing demonstrated that CCAAT enhancer binding protein α (Cebpα) was one of the most differentially expressed genes between the MNKO and LC groups. Mechanistically, Co-IP assays, ChIP experiments, and dual luciferase assays revealed that NCOR1 interacted with peroxisome proliferator-activated receptor gamma (PPARγ) and cooperated with HDAC3 to control the transcription of Cebpα. In conclusion, Ncor1 deficiency promoted osteoclast and neutrophil formation in mice with experimental periodontitis. It regulated the transcription of Cebpα via PPARγ to promote osteoclast differentiation.


Subject(s)
Alveolar Bone Loss , Periodontitis , Mice , Animals , Osteogenesis , PPAR gamma/metabolism , X-Ray Microtomography , Periodontitis/metabolism , Osteoclasts/metabolism , Alveolar Bone Loss/metabolism , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism
13.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361732

ABSTRACT

Adult skeletal muscle fibres are classified as type 1, 2A, 2X, and 2B. These classifications are based on the expression of the dominant myosin heavy chain isoform. Muscle fibre-specific gene expression and proportions of muscle fibre types change during development and in response to exercise, chronic electrical stimulation, or inactivity. To identify genes whose gain or loss-of-function alters type 1, 2A, 2X, or 2B muscle fibre proportions in mice, we conducted a systematic review of transgenic mouse studies. The systematic review was conducted in accordance with the 2009 PRISMA guidelines and the PICO framework. We identified 25 "muscle fibre genes" (Akirin1, Bdkrb2, Bdnf, Camk4, Ccnd3, Cpt1a, Epas1, Esrrg, Foxj3, Foxo1, Il15, Mapk12, Mstn, Myod1, Ncor1, Nfatc1, Nol3, Ppargc1a, Ppargc1b, Sirt1, Sirt3, Thra, Thrb, Trib3, and Vgll2) whose gain or loss-of-function significantly changes type 1, 2A, 2X or 2B muscle fibre proportions in mice. The fact that 15 of the 25 muscle fibre genes are transcriptional regulators suggests that muscle fibre-specific gene expression is primarily regulated transcriptionally. A reanalysis of existing datasets revealed that the expression of Ppargc1a and Vgll2 increases and Mstn decreases after exercise, respectively. This suggests that these genes help to regulate the muscle fibre adaptation to exercise. Finally, there are many known DNA sequence variants of muscle fibre genes. It seems likely that such DNA sequence variants contribute to the large variation of muscle fibre type proportions in the human population.


Subject(s)
Muscle Fibers, Skeletal , Myosin Heavy Chains , Adult , Mice , Animals , Humans , Muscle Fibers, Skeletal/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Protein Isoforms/metabolism , Electric Stimulation , Muscle, Skeletal/metabolism , RNA-Binding Proteins/metabolism , Forkhead Transcription Factors/metabolism , Nuclear Receptor Co-Repressor 1/metabolism
14.
Front Immunol ; 13: 910705, 2022.
Article in English | MEDLINE | ID: mdl-36238311

ABSTRACT

Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.


Subject(s)
Interleukin-10 , Interleukin-6 , Animals , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Interleukin-10/metabolism , Interleukin-12/metabolism , Interleukin-23/metabolism , Interleukin-6/metabolism , Mice , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 2 , STAT3 Transcription Factor , TOR Serine-Threonine Kinases/metabolism
15.
Proc Natl Acad Sci U S A ; 119(33): e2205276119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939699

ABSTRACT

Brown adipose tissue (BAT) is a key thermogenic organ whose expression of uncoupling protein 1 (UCP1) and ability to maintain body temperature in response to acute cold exposure require histone deacetylase 3 (HDAC3). HDAC3 exists in tight association with nuclear receptor corepressors (NCoRs) NCoR1 and NCoR2 (also known as silencing mediator of retinoid and thyroid receptors [SMRT]), but the functions of NCoR1/2 in BAT have not been established. Here we report that as expected, genetic loss of NCoR1/2 in BAT (NCoR1/2 BAT-dKO) leads to loss of HDAC3 activity. In addition, HDAC3 is no longer bound at its physiological genomic sites in the absence of NCoR1/2, leading to a shared deregulation of BAT lipid metabolism between NCoR1/2 BAT-dKO and HDAC3 BAT-KO mice. Despite these commonalities, loss of NCoR1/2 in BAT does not phenocopy the cold sensitivity observed in HDAC3 BAT-KO, nor does loss of either corepressor alone. Instead, BAT lacking NCoR1/2 is inflamed, particularly with respect to the interleukin-17 axis that increases thermogenic capacity by enhancing innervation. Integration of BAT RNA sequencing and chromatin immunoprecipitation sequencing data revealed that NCoR1/2 directly regulate Mmp9, which integrates extracellular matrix remodeling and inflammation. These findings reveal pleiotropic functions of the NCoR/HDAC3 corepressor complex in BAT, such that HDAC3-independent suppression of BAT inflammation counterbalances stimulation of HDAC3 activity in the control of thermogenesis.


Subject(s)
Adipose Tissue, Brown , Nuclear Receptor Co-Repressor 1 , Nuclear Receptor Co-Repressor 2 , Thermogenesis , Adipose Tissue, Brown/metabolism , Animals , Histone Deacetylases/metabolism , Inflammation/metabolism , Mice , Mice, Knockout , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 2/genetics , Nuclear Receptor Co-Repressor 2/metabolism , Receptors, Retinoic Acid/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
16.
Cell Mol Life Sci ; 79(8): 429, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35849243

ABSTRACT

Tight control of gene regulation in dendritic cells (DCs) is important to mount pathogen specific immune responses. Apart from transcription factor binding, dynamic regulation of enhancer activity through global transcriptional repressors like Nuclear Receptor Co-repressor 1 (NCoR1) plays a major role in fine-tuning of DC responses. However, how NCoR1 regulates enhancer activity and gene expression in individual or multiple Toll-like receptor (TLR) activation in DCs is largely unknown. In this study, we did a comprehensive epigenomic analysis of murine conventional type-I DCs (cDC1) across different TLR ligation conditions. We profiled gene expression changes along with H3K27ac active enhancers and NCoR1 binding in the TLR9, TLR3 and combined TLR9 + TLR3 activated cDC1. We observed spatio-temporal activity of TLR9 and TLR3 specific enhancers regulating signal specific target genes. Interestingly, we found that NCoR1 differentially controls the TLR9 and TLR3-specific responses. NCoR1 depletion specifically enhanced TLR9 responses as evident from increased enhancer activity as well as TLR9-specific gene expression, whereas TLR3-mediated antiviral response genes were negatively regulated. We validated that NCoR1 KD cDC1 showed significantly decreased TLR3 specific antiviral responses through decreased IRF3 activation. In addition, decreased IRF3 binding was observed at selected ISGs leading to their decreased expression upon NCoR1 depletion. Consequently, the NCoR1 depleted cDC1 showed reduced Sendai Virus (SeV) clearance and cytotoxic potential of CD8+ T cells upon TLR3 activation. NCoR1 directly controls the majority of these TLR specific enhancer activity and the gene expression. Overall, for the first time, we revealed NCoR1 mediates transcriptional control towards TLR9 as compared to TLR3 in cDC1.


Subject(s)
Toll-Like Receptor 3 , Toll-Like Receptor 9 , Animals , Antiviral Agents , CD8-Positive T-Lymphocytes , Dendritic Cells/metabolism , Epigenomics , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Mice , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Signal Transduction , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Toll-Like Receptors
17.
Gerontology ; 68(11): 1291-1310, 2022.
Article in English | MEDLINE | ID: mdl-35439761

ABSTRACT

OBJECTIVES: Atherosclerosis (AS) remains a major contributor to death worldwide. This study sought to explore the role of Krüppel-like factor 7 (KLF7) in AS lesions via regulating glucose metabolic reprogramming (GMR) in macrophages. METHODS: AS mouse and cell models were established via high-fat-diet feeding and oxidized low-density lipoprotein (ox-LDL) induction. KLF7, histone deacetylase 4 (HDAC4), miR-148b-3p, and nuclear receptor corepressor 1 (NCOR1) expressions in aortic tissue and cells were detected via reverse transcription quantitative polymerase chain reaction or Western blotting. Parameters of AS lesions and mouse metabolism were detected via hematoxylin-eosin, oil red O, and Masson staining, assay kits, glucose tolerance test, and enzymatic analysis. Peritoneal macrophages of mice were isolated and cellular metabolism was detected via Seahorse metabolic flux analysis, assay kits, ELISA, and Western blotting. Bindings among KLF7, HDAC4, microRNA (miR)-148b-3p, and NCOR1 were testified via the dual-luciferase assay and chromatin immunoprecipitation assay. RESULTS: KLF7 was poorly expressed in AS mice and ox-LDL-induced RAW264.7 cells. KLF7 overexpression attenuated AS lesions and rescued metabolic abnormities in AS mice, and reduced glucose intake and GMR in ox-LDL-induced RAW264.7 cells. Mechanically, KLF7 bound to the HDAC4 promoter to activate HDAC4. HDAC4 reduced H3 and H4 acetylation levels in the miR-148b promoter to inhibit miR-148b-3p and promote NCOR1 transcription. HDAC4 downregulation abolished the protective role of KLF7 overexpression in AS mice and ox-LDL-induced RAW264.7 cells via the miR-148b-3p/NCOR1 axis. CONCLUSION: KLF7 bound to the HDAC4 promoter to activate HDAC4, inhibit miR-148b-3p via reducing acetylation level, and promote NCOR1 transcription, thereby limiting GMR in macrophages and alleviating AS lesions.


Subject(s)
Atherosclerosis , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Apoptosis , Atherosclerosis/metabolism , Cell Proliferation , Glucose/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Macrophages/metabolism , Macrophages/pathology , MicroRNAs/genetics , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
18.
Acta Pharmacol Sin ; 43(9): 2351-2361, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35149852

ABSTRACT

Nuclear receptor corepressor 1 (NCoR1) is a corepressor of the epigenetic regulation of gene transcription that has important functions in metabolism and inflammation, but little is known about its role in alcohol-associated liver disease (ALD). In this study, we developed mice with hepatocyte-specific NCoR1 knockout (NCoR1Hep-/-) using the albumin-Cre/LoxP system and investigated the role of NCoR1 in the pathogenesis of ALD and the underlying mechanisms. The traditional alcohol feeding model and NIAAA model of ALD were both established in wild-type and NCoR1Hep-/- mice. We showed that after ALD was established, NCoR1Hep-/- mice had worse liver injury but less steatosis than wild-type mice. We demonstrated that hepatocyte-specific loss of NCoR1 attenuated liver steatosis by promoting fatty acid oxidation by upregulating BMAL1 (a circadian clock component that has been reported to promote peroxisome proliferator activated receptor alpha (PPARα)-mediated fatty ß-oxidation by upregulating de novo lipid synthesis). On the other hand, hepatocyte-specific loss of NCoR1 exacerbated alcohol-induced liver inflammation and oxidative stress by recruiting monocyte-derived macrophages via C-C motif chemokine ligand 2 (CCL2). In the mouse hepatocyte line AML12, NCoR1 knockdown significantly increased ethanol-induced CCL2 release. These results suggest that hepatocyte NCoR1 plays distinct roles in controlling liver inflammation and steatosis, which provides new insights into the development of treatments for steatohepatitis induced by chronic alcohol consumption.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fatty Liver , Liver Diseases, Alcoholic , Animals , Chemokines/metabolism , Disease Models, Animal , Epigenesis, Genetic , Ethanol/toxicity , Hepatocytes/metabolism , Inflammation/metabolism , Ligands , Liver/metabolism , Liver Diseases, Alcoholic/pathology , Macrophages/metabolism , Mice , Mice, Knockout , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism
19.
Neuromolecular Med ; 24(2): 113-124, 2022 06.
Article in English | MEDLINE | ID: mdl-34075570

ABSTRACT

Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Nuclear Receptor Co-Repressor 1 , Temozolomide , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioma/drug therapy , Glioma/genetics , Humans , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Interacting Protein 1 , Temozolomide/pharmacology
20.
Life Sci ; 291: 120239, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34942163

ABSTRACT

Aim Investigate whether inheritance of improved skeletal muscle mitochondrial function and its association with glycemic control are multigenerational benefits of exercise. MAIN METHODS: Male Swiss mice were subjected to 8 weeks of endurance training and mated with untrained females. KEY FINDINGS: Trained fathers displayed typical endurance training-induced adaptations. Remarkably, offspring from trained fathers also exhibited higher endurance performance, mitochondrial oxygen consumption, glucose tolerance and insulin sensitivity. However, PGC-1α expression was not increased in the offspring. In the offspring, the expression of the co-repressor NCoR1 was reduced, increasing activation of PGC-1α target genes. These effects correlated with higher DNA methylation at the NCoR1 promoter in both, the sperm of trained fathers and in the skeletal muscle of their offspring. SIGNIFICANCE: Higher skeletal muscle mitochondrial function is inherited by epigenetic de-activation of a key PGC-1α co-repressor.


Subject(s)
Mitochondria/metabolism , Physical Conditioning, Animal/physiology , Physical Exertion/physiology , Animals , DNA Methylation , Epigenesis, Genetic/genetics , Female , Male , Mice , Mitochondria/physiology , Muscle, Skeletal/physiology , Nuclear Receptor Co-Repressor 1/metabolism , Oxygen Consumption/physiology , Paternal Inheritance/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/physiology , Physical Conditioning, Animal/methods , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...