Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 451
Filter
1.
Molecules ; 29(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38999073

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is pivotal in immunotherapy. Several agonists and inhibitors of the cGAS-STING pathway have been developed and evaluated for the treatment of various diseases. The agonists aim to activate STING, with cyclic dinucleotides (CDNs) being the most common, while the inhibitors aim to block the enzymatic activity or DNA binding ability of cGAS. Meanwhile, non-CDN compounds and cGAS agonists are also gaining attention. The omnipresence of the cGAS-STING pathway in vivo indicates that its overactivation could lead to undesired inflammatory responses and autoimmune diseases, which underscores the necessity of developing both agonists and inhibitors of the cGAS-STING pathway. This review describes the molecular traits and roles of the cGAS-STING pathway and summarizes the development of cGAS-STING agonists and inhibitors. The information is supposed to be conducive to the design of novel drugs for targeting the cGAS-STING pathway.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Humans , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Membrane Proteins/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/agonists , Signal Transduction/drug effects , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism
2.
Invest Ophthalmol Vis Sci ; 65(8): 16, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38980271

ABSTRACT

Purpose: The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) stimulator of interferon gene (STING) pathway is a crucial cascade in the inflammatory response initiated by the recognition of cytosolic double-stranded DNA (dsDNA). The aim of this study was to evaluate the effect of STING inhibitor in murine choroidal neovascularization (CNV). Methods: To investigate whether the cGAS-STING pathway is activated during CNV, CNV was induced using laser photocoagulation in male C57BL/6J mice. The expression of change of cGAS and STING during CNV development was confirmed by Western-blotting. H-151, a potent STING palmitoylation antagonist, was used as a STING inhibitor. H-151 was administered intravitreally immediately after laser induction. To confirm the role of the cGAS-STING pathway in CNV formation, we evaluated CNV size and performed fundus fluorescein angiography. Results: The expression levels of cGAS and STING were significantly upregulated in the RPE-choroid complex after CNV induction, and dsDNA merged with cGAS was observed in CNV lesions. Intravitreal administration of H-151 suppressed CNV development and fluorescent leakage from neovessels. In CNV lesions, the high expression of STING and cGAS was observed in infiltrating F4/80+ macrophages. H-151 administration attenuated downstream signals of the cGAS-STING pathway, including the phosphorylation of nuclear factor-κB, and downregulated the expression of interleukin 1ß. Conclusions: These findings support that the inhibition of cGAS-STING pathway treats abnormal ocular angiogenesis.


Subject(s)
Choroidal Neovascularization , Disease Models, Animal , Membrane Proteins , Mice, Inbred C57BL , Nucleotidyltransferases , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/antagonists & inhibitors , Male , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Blotting, Western , Fluorescein Angiography , Intravitreal Injections , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Choroid/metabolism , Choroid/pathology
3.
J Neuroinflammation ; 21(1): 164, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918759

ABSTRACT

The microglia-mediated neuroinflammation have been shown to play a crucial role in the ocular pathological angiogenesis process, but specific immunotherapies for neovascular ocular diseases are still lacking. This study proposed that targeting GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) might be a novel immunotherapy for these angiogenesis diseases. We found a significant upregulation of CGAS and STING genes in the RNA-seq data derived from retinal tissues of the patients with proliferative diabetic retinopathy. In experimental models of ocular angiogenesis including laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR), the cGAS-STING pathway was activated as angiogenesis progressed. Either genetic deletion or pharmacological inhibition of STING resulted in a remarkable suppression of neovascularization in both models. Furthermore, cGAS-STING signaling was specifically activated in myeloid cells, triggering the subsequent RIP1-RIP3-MLKL pathway activation and leading to necroptosis-mediated inflammation. Notably, targeted inhibition of the cGAS-STING pathway with C-176 or SN-011 could significantly suppress pathological angiogenesis in CNV and OIR. Additionally, the combination of C-176 or SN-011 with anti-VEGF therapy led to least angiogenesis, markedly enhancing the anti-angiogenic effectiveness. Together, our findings provide compelling evidence for the importance of the cGAS-STING-necroptosis axis in pathological angiogenesis, highlighting its potential as a promising immunotherapeutic target for treating neovascular ocular diseases.


Subject(s)
Membrane Proteins , Mice, Inbred C57BL , Neuroinflammatory Diseases , Nucleotidyltransferases , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/antagonists & inhibitors , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/antagonists & inhibitors , Animals , Humans , Mice , Neuroinflammatory Diseases/metabolism , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/drug therapy , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Knockout , Diabetic Retinopathy/metabolism
4.
Bioorg Med Chem ; 106: 117755, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749343

ABSTRACT

Translesion synthesis (TLS) is a cellular mechanism through which actively replicating cells recruit specialized, low-fidelity DNA polymerases to damaged DNA to allow for replication past these lesions. REV1 is one of these TLS DNA polymerases that functions primarily as a scaffolding protein to organize the TLS heteroprotein complex and ensure replication occurs in the presence of DNA lesions. The C-Terminal domain of REV1 (REV1-CT) forms many protein-protein interactions (PPIs) with other TLS polymerases, making it essential for TLS function and a promising drug target for anti-cancer drug development. We utilized several lead identification strategies to identify various small molecules capable of disrupting the PPI between REV1-CT and the REV1 Interacting Regions (RIR) present in several other TLS polymerases. These lead compounds were profiled in several in vitro potency and PK assays to identify two scaffolds (1 and 6) as the most promising for further development. Both 1 and 6 synergized with cisplatin in a REV1-dependent fashion and demonstrated promising in vivo PK and toxicity profiles.


Subject(s)
Nucleotidyltransferases , Small Molecule Libraries , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/metabolism , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Animals , Structure-Activity Relationship , Protein Binding , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , DNA-Directed DNA Polymerase/metabolism , Mice , Translesion DNA Synthesis
5.
J Med Chem ; 67(8): 6268-6291, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38619191

ABSTRACT

Overactivation of cyclic GMP-AMP synthase (cGAS) is implicated in the occurrence of many inflammatory and autoimmune diseases, and inhibition of cGAS with a specific inhibitor has been proposed as a potential therapeutic strategy. However, only a few low-potency cGAS inhibitors have been reported, and few are suitable for clinical investigation. As a continuation of our structural optimization on the reported cGAS inhibitor 6 (G140), we developed a series of spiro[carbazole-3,3'-pyrrolidine] derivatives bearing a unique 2-azaspiro[4.5]decane structural motif, among which compound 30d-S was identified with high cellular effects against cGAS. This compound showed improved plasma exposure, lower clearance, and an oral bioavailability of 35% in rats. Moreover, in the LPS-induced acute lung injury (ALI) mice model, oral administration of compound 30d-S at 30 mg/kg markedly reduced lung inflammation and alleviated histopathological changes. These results confirm that 30d-S is a new efficacious cGAS inhibitor and is worthy of further investigation.


Subject(s)
Acute Lung Injury , Carbazoles , Drug Design , Nucleotidyltransferases , Pyrrolidines , Acute Lung Injury/drug therapy , Animals , Mice , Male , Humans , Rats , Carbazoles/chemical synthesis , Carbazoles/pharmacology , Carbazoles/chemistry , Carbazoles/therapeutic use , Carbazoles/pharmacokinetics , Pyrrolidines/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/therapeutic use , Pyrrolidines/pharmacokinetics , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/metabolism , Lipopolysaccharides , Rats, Sprague-Dawley , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/therapeutic use , Spiro Compounds/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/chemistry , Structure-Activity Relationship , Molecular Docking Simulation
6.
ACS Nano ; 18(19): 12117-12133, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38648373

ABSTRACT

Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.


Subject(s)
Colitis, Ulcerative , Membrane Proteins , Micelles , Nucleotidyltransferases , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Membrane Proteins/metabolism , Membrane Proteins/antagonists & inhibitors , Mice , Humans , Mice, Inbred C57BL , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
7.
Curr Protein Pept Sci ; 25(6): 454-468, 2024.
Article in English | MEDLINE | ID: mdl-38314602

ABSTRACT

A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Klebsiella pneumoniae , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Aminoglycosides/pharmacology , Aminoglycosides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Drug Resistance, Bacterial/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/antagonists & inhibitors , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Microbial Sensitivity Tests
8.
Bioorg Chem ; 140: 106802, 2023 11.
Article in English | MEDLINE | ID: mdl-37666112

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) plays an important role in the inflammatory response. It has been reported that aberrant activation of cGAS is associated with a variety of immune-mediated inflammatory disorders. The development of small molecule inhibitors of cGAS has been considered as a promising therapeutic strategy for the diseases. Flavonoids, a typical class of natural products, are known for their anti-inflammatory activities. Although cGAS is closely associated with inflammation, the potential effects of natural flavonoid compounds on cGAS have been rarely studied. Therefore, we screened an in-house natural flavonoid library by pyrophosphatase (PPiase) coupling assay and identified novel cGAS inhibitors baicalein and baicalin. Subsequently, crystal structures of the two natural flavonoids in complex with human cGAS were determined, which provide mechanistic insight into the anti-inflammatory activities of baicalein and baicalin at the molecular level. After that, a virtual screening based on the crystal structures of baicalein and baicalin in complex with human cGAS was performed. As a result, compound C20 was identified to inhibit both human and mouse cGAS with IC50 values of 2.28 and 1.44 µM, respectively, and its detailed interactions with human cGAS were further revealed by the X-ray crystal structure determination. These results demonstrate the potential of natural products used as hits in drug discovery and provide valuable hints for further development of cGAS inhibitors.


Subject(s)
Biological Products , Flavonoids , Nucleotidyltransferases , Animals , Humans , Mice , Biological Products/chemistry , Biological Products/pharmacology , Drug Discovery , Flavonoids/chemistry , Flavonoids/pharmacology , Nucleotidyltransferases/antagonists & inhibitors
9.
Acta Pharmacol Sin ; 44(4): 791-800, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36229599

ABSTRACT

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, acts as a nucleotidyl transferase that catalyzes ATP and GTP to form cyclic GMP-AMP (cGAMP) and plays a critical role in innate immunity. Hyperactivation of cGAS-STING signaling contributes to hyperinflammatory responses. Therefore, cGAS is considered a promising target for the treatment of inflammatory diseases. Herein, we report the discovery and identification of several novel types of cGAS inhibitors by pyrophosphatase (PPiase)-coupled activity assays. Among these inhibitors, 1-(1-phenyl-3,4-dihydro-1H-pyrrolo[1,2-a]pyrazin-2-yl)prop-2-yn-1-one (compound 3) displayed the highest potency and selectivity at the cellular level. Compound 3 exhibited better inhibitory activity and pathway selectivity than RU.521, which is a selective cGAS inhibitor with anti-inflammatory effects in vitro and in vivo. Thermostability analysis, nuclear magnetic resonance and isothermal titration calorimetry assays confirmed that compound 3 directly binds to the cGAS protein. Mass spectrometry and mutation analysis revealed that compound 3 covalently binds to Cys419 of cGAS. Notably, compound 3 demonstrated promising therapeutic efficacy in a dextran sulfate sodium (DSS)-induced mouse colitis model. These results collectively suggest that compound 3 will be useful for understanding the biological function of cGAS and has the potential to be further developed for inflammatory disease therapies.


Subject(s)
Immunity, Innate , Inflammatory Bowel Diseases , Nucleotidyltransferases , Animals , Mice , DNA/metabolism , Inflammatory Bowel Diseases/drug therapy , Nucleotidyltransferases/antagonists & inhibitors , Signal Transduction , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology
10.
J Virol ; 96(15): e0102222, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35861515

ABSTRACT

African swine fever virus (ASFV) is a highly pathogenic swine DNA virus with high mortality that causes African swine fever (ASF) in domestic pigs and wild boars. For efficient viral infection, ASFV has developed complex strategies to evade key components of antiviral innate immune responses. However, the immune escape mechanism of ASFV remains unclear. Upon ASFV infection, cyclic GMP-AMP (2',3'-cGAMP) synthase (cGAS), a cytosolic DNA sensor, recognizes ASFV DNA and synthesizes the second messenger 2',3'-cGAMP, which triggers interferon (IFN) production to interfere with viral replication. In this study, we demonstrated a novel immune evasion mechanism of ASFV EP364R and C129R, which blocks cellular cyclic 2',3'-cGAMP-mediated antiviral responses. ASFV EP364R and C129R with nuclease homology inhibit IFN-mediated responses by specifically interacting with 2',3'-cGAMP and exerting their phosphodiesterase (PDE) activity to cleave 2',3'-cGAMP. Particularly notable is that ASFV EP364R had a region of homology with the stimulator of interferon genes (STING) protein containing a 2',3'-cGAMP-binding motif and point mutations in the Y76S and N78A amino acids of EP364R that impaired interaction with 2',3'-cGAMP and restored subsequent antiviral responses. These results highlight a critical role for ASFV EP364R and C129R in the inhibition of IFN responses and could be used to develop ASFV live attenuated vaccines. IMPORTANCE African swine fever (ASF) is a highly contagious hemorrhagic disease in domestic pigs and wild boars caused by African swine fever virus (ASFV). ASF is a deadly epidemic disease in the global pig industry, but no drugs or vaccines are available. Understanding the pathogenesis of ASFV is essential to developing an effective live attenuated ASFV vaccine, and investigating the immune evasion mechanisms of ASFV is crucial to improve the understanding of its pathogenesis. In this study, for the first time, we identified the EP364R and C129R, uncharacterized proteins that inhibit type I interferon signaling. ASFV EP364R and C129R specifically interacted with 2',3'-cGAMP, the mammalian second messenger, and exerted phosphodiesterase activity to cleave 2',3'-cGAMP. In this study, we discovered a novel mechanism by which ASFV inhibits IFN-mediated antiviral responses, and our findings can guide the understanding of ASFV pathogenesis and the development of live attenuated ASFV vaccines.


Subject(s)
Adaptor Proteins, Signal Transducing , African Swine Fever Virus , Immune Evasion , Membrane Proteins , Nucleotides, Cyclic , Nucleotidyltransferases , Signal Transduction , Viral Proteins , African Swine Fever/virology , African Swine Fever Virus/immunology , African Swine Fever Virus/metabolism , Animals , Interferons/antagonists & inhibitors , Interferons/immunology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Nucleotides, Cyclic/immunology , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/metabolism , Phosphoric Diester Hydrolases/metabolism , Sus scrofa/virology , Swine , Vaccines, Attenuated , Viral Proteins/metabolism , Viral Vaccines
11.
EMBO J ; 41(14): e109217, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35670106

ABSTRACT

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Subject(s)
Herpesvirus 3, Human , Interferon Type I , Nucleotidyltransferases , Viral Proteins , DNA/metabolism , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/immunology , Humans , Immunity, Innate , Interferon Type I/immunology , Membrane Proteins/immunology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/immunology , Viral Proteins/immunology
13.
ChemMedChem ; 17(2): e202100671, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34807508

ABSTRACT

The cGAS-STING pathway discovered ten years ago is an important component of the innate immune system. Activation of cGAS-STING triggers downstream signalling, such as TBK1-IRF3, NF-κB and autophagy, which in turn leads to antipathogen responses, durable antitumour immunity or autoimmune diseases. 2',3'-Cyclic GMP-AMP dinucleotides (2',3'-cGAMP), the key second messengers produced by cGAS, play a pivotal role in cGAS-STING signalling by binding and activating STING. Thus, 2',3'-cGAMP has immunotherapeutic potential, which in turn has stimulated research on the design and synthesis of 2',3'-cGAMP analogues for clinical applications over the past ten years. This review presents the discovery, metabolism, and function of 2',3'-cGAMP in the cGAS-STING innate immune signalling axis. The enzymatic and chemical syntheses of 2',3'-cGAMP analogues as STING-targeting therapeutics are also summarized.


Subject(s)
Immunotherapy , Membrane Proteins/antagonists & inhibitors , Neoplasms/therapy , Nucleotides, Cyclic/pharmacology , Nucleotides/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Humans , Membrane Proteins/immunology , Models, Molecular , Molecular Conformation , Neoplasms/immunology , Nucleotides/chemical synthesis , Nucleotides/chemistry , Nucleotides, Cyclic/chemical synthesis , Nucleotides, Cyclic/chemistry , Nucleotidyltransferases/immunology , Signal Transduction/drug effects , Signal Transduction/immunology
14.
Nucleic Acids Res ; 49(22): 13019-13030, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34850141

ABSTRACT

SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5' capping of viral RNAs. The formation of the 5' 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5' triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5' end of viral RNA via a 5' to 5' triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Nucleotidyltransferases/antagonists & inhibitors , RNA, Viral/biosynthesis , SARS-CoV-2/enzymology , Adenosine Triphosphate/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Genome, Viral/genetics , Guanosine/analogs & derivatives , Guanosine/metabolism , Humans , Nucleotidyltransferases/metabolism , RNA Caps/genetics , SARS-CoV-2/genetics , Vaccinia virus/enzymology , Vaccinia virus/metabolism , COVID-19 Drug Treatment
15.
Bioorg Med Chem ; 50: 116477, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34757294

ABSTRACT

The monosaccharide l-Rhamnose is an important component of bacterial cell walls. The first step in the l-rhamnose biosynthetic pathway is catalysed by glucose-1-phosphate thymidylyltransferase (RmlA), which condenses glucose-1-phosphate (Glu-1-P) with deoxythymidine triphosphate (dTTP) to yield dTDP-d-glucose. In addition to the active site where catalysis of this reaction occurs, RmlA has an allosteric site that is important for its function. Building on previous reports, SAR studies have explored further the allosteric site, leading to the identification of very potent P. aeruginosa RmlA inhibitors. Modification at the C6-NH2 of the inhibitor's pyrimidinedione core structure was tolerated. X-ray crystallographic analysis of the complexes of P. aeruginosa RmlA with the novel analogues revealed that C6-aminoalkyl substituents can be used to position a modifiable amine just outside the allosteric pocket. This opens up the possibility of linking a siderophore to this class of inhibitor with the goal of enhancing bacterial cell wall permeability.


Subject(s)
Drug Design , Nucleotidyltransferases/antagonists & inhibitors , Pyrimidinones/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Models, Molecular , Molecular Structure , Nucleotidyltransferases/metabolism , Pseudomonas aeruginosa/enzymology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship
16.
ACS Chem Biol ; 16(10): 1841-1865, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34569792

ABSTRACT

Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.


Subject(s)
Gram-Negative Bacteria/chemistry , O Antigens/metabolism , Enzyme Inhibitors/pharmacology , Glycosyltransferases/antagonists & inhibitors , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Gram-Negative Bacteria/enzymology , Humans , Metabolic Engineering , Molecular Probes/chemistry , Molecular Probes/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , O Antigens/chemistry , Protein Engineering , Substrate Specificity/genetics
17.
Mol Cell ; 81(19): 4008-4025.e7, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34508659

ABSTRACT

BRCA1/2 mutant tumor cells display an elevated mutation burden, the etiology of which remains unclear. Here, we report that these cells accumulate ssDNA gaps and spontaneous mutations during unperturbed DNA replication due to repriming by the DNA primase-polymerase PRIMPOL. Gap accumulation requires the DNA glycosylase SMUG1 and is exacerbated by depletion of the translesion synthesis (TLS) factor RAD18 or inhibition of the error-prone TLS polymerase complex REV1-Polζ by the small molecule JH-RE-06. JH-RE-06 treatment of BRCA1/2-deficient cells results in reduced mutation rates and PRIMPOL- and SMUG1-dependent loss of viability. Through cellular and animal studies, we demonstrate that JH-RE-06 is preferentially toxic toward HR-deficient cancer cells. Furthermore, JH-RE-06 remains effective toward PARP inhibitor (PARPi)-resistant BRCA1 mutant cells and displays additive toxicity with crosslinking agents or PARPi. Collectively, these studies identify a protective and mutagenic role for REV1-Polζ in BRCA1/2 mutant cells and provide the rationale for using REV1-Polζ inhibitors to treat BRCA1/2 mutant tumors.


Subject(s)
DNA Breaks, Single-Stranded , DNA Primase/metabolism , DNA Replication , DNA, Neoplasm/biosynthesis , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Multifunctional Enzymes/metabolism , Neoplasms/enzymology , Nucleotidyltransferases/metabolism , Recombinational DNA Repair , Animals , Antineoplastic Agents/pharmacology , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Cell Line, Tumor , DNA Primase/genetics , DNA, Neoplasm/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Female , HEK293 Cells , Humans , Mice, Nude , Multifunctional Enzymes/genetics , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Nucleic Acid Synthesis Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism , Xenograft Model Antitumor Assays
18.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L859-L871, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34524912

ABSTRACT

Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Mitochondrial dysfunction including release of mitochondrial DNA (mtDNA) is a feature of senescence, which led us to investigate the role of the DNA-sensing guanine monophosphate-adenine monophosphate (GMP-AMP) synthase (cGAS) in IPF, with a focus on AEC senescence. cGAS expression in fibrotic tissue from lungs of patients with IPF was detected within cells immunoreactive for epithelial cell adhesion molecule (EpCAM) and p21, epithelial and senescence markers, respectively. Submerged primary cultures of AECs isolated from lung tissue of patients with IPF (IPF-AECs, n = 5) exhibited higher baseline senescence than AECs from control donors (Ctrl-AECs, n = 5-7), as assessed by increased nuclear histone 2AXγ phosphorylation, p21 mRNA, and expression of senescence-associated secretory phenotype (SASP) cytokines. Pharmacological cGAS inhibition using RU.521 diminished IPF-AEC senescence in culture and attenuated induction of Ctrl-AEC senescence following etoposide-induced DNA damage. Short interfering RNA (siRNA) knockdown of cGAS also attenuated etoposide-induced senescence of the AEC line, A549. Higher levels of mtDNA were detected in the cytosol and culture supernatants of primary IPF- and etoposide-treated Ctrl-AECs when compared with Ctrl-AECs at baseline. Furthermore, ectopic mtDNA augmented cGAS-dependent senescence of Ctrl-AECs, whereas DNAse I treatment diminished IPF-AEC senescence. This study provides evidence that a self-DNA-driven, cGAS-dependent response augments AEC senescence, identifying cGAS as a potential therapeutic target for IPF.


Subject(s)
Alveolar Epithelial Cells/pathology , Cellular Senescence/physiology , DNA Damage/genetics , Idiopathic Pulmonary Fibrosis/pathology , Nucleotidyltransferases/metabolism , A549 Cells , Benzofurans/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytokines/biosynthesis , DNA, Mitochondrial/metabolism , Deoxyribonuclease I/pharmacology , Epithelial Cell Adhesion Molecule/metabolism , Etoposide/pharmacology , Humans , Mitochondria/genetics , Mitochondria/pathology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/physiology
19.
Nucleic Acids Res ; 49(16): 9389-9403, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34387695

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is a key DNA sensor that detects aberrant cytosolic DNA arising from pathogen invasions or genotoxic stresses. Upon binding to DNA, cGAS is activated and catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which induces potent antimicrobial and antitumor responses. Kaposi sarcoma-associated herpesvirus (KSHV) is a human DNA tumor virus that causes Kaposi sarcoma and several other malignancies. We previously reported that KSHV inhibitor of cGAS (KicGAS) encoded by ORF52, inhibits cGAS enzymatic activity, but the underlying mechanisms remained unclear. To define the inhibitory mechanisms, here we performed in-depth biochemical and functional characterizations of KicGAS, and mapped its functional domains. We found KicGAS self-oligomerizes and binds to double stranded DNA cooperatively. This self-oligomerization is essential for its DNA binding and cGAS inhibition. Interestingly, KicGAS forms liquid droplets upon binding to DNA, which requires collective multivalent interactions with DNA mediated by both structured and disordered domains coordinated through the self-oligomerization of KicGAS. We also observed that KicGAS inhibits the DNA-induced phase separation and activation of cGAS. Our findings reveal a novel mechanism by which DNA viruses target the host protein phase separation for suppression of the host sensing of viral nucleic acids.


Subject(s)
Herpesvirus 8, Human/genetics , Host-Pathogen Interactions/genetics , Nucleotidyltransferases/genetics , Sarcoma, Kaposi/genetics , Cytosol/enzymology , Cytosol/microbiology , DNA Breaks, Double-Stranded/drug effects , DNA Damage/genetics , DNA, Viral/genetics , DNA-Binding Proteins/genetics , Herpesvirus 8, Human/pathogenicity , Humans , Immune Evasion/drug effects , Immunity, Innate/genetics , Nucleotides, Cyclic/genetics , Nucleotidyltransferases/antagonists & inhibitors , Sarcoma, Kaposi/drug therapy , Sarcoma, Kaposi/virology , Viral Proteins/genetics
20.
Aging Cell ; 20(9): e13468, 2021 09.
Article in English | MEDLINE | ID: mdl-34459078

ABSTRACT

Ataxia-telangiectasia (A-T) is a genetic disorder caused by the lack of functional ATM kinase. A-T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A-T remains elusive. Here, we utilize human pluripotent stem cell-derived cortical brain organoids to study A-T neuropathology. Mechanistically, we show that the cGAS-STING pathway is required for the recognition of micronuclei and induction of a senescence-associated secretory phenotype (SASP) in A-T olfactory neurosphere-derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self-DNA-triggered SASP expression in A-T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A-T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A-T and constitutes a novel therapeutic target for treating neuropathology in A-T patients.


Subject(s)
Aspirin/pharmacology , Astrocytes/drug effects , Ataxia Telangiectasia/drug therapy , Cellular Senescence/drug effects , Membrane Proteins/antagonists & inhibitors , Nucleotidyltransferases/antagonists & inhibitors , Ataxia Telangiectasia/metabolism , Brain/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Organoids/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...