Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Int J Mol Med ; 54(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963023

ABSTRACT

Metformin has been the go­to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP­activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.


Subject(s)
Intervertebral Disc Degeneration , Metformin , Metformin/therapeutic use , Metformin/pharmacology , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/prevention & control , Intervertebral Disc Degeneration/metabolism , Humans , Animals , Disease Progression , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Autophagy/drug effects
2.
Int J Biol Macromol ; 273(Pt 1): 132828, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834125

ABSTRACT

Intervertebral disc degeneration arises from damage or degeneration of the nucleus pulposus (NP). In this study, we developed a photo-crosslinkable hydrogel incorporating FG4592 to support the growth and differentiation of bone-marrow-derived mesenchymal stem cells (BMSC). Initially, hyaluronic acid was modified with tyramine and combined with collagen to introduce riboflavin as a photo-crosslinker. This hydrogel transitioned from liquid to gel upon exposure to blue light in 3 min. The results showed that the hydrogel was biodegradable and had mechanical properties comparable to those of human NP tissues. Scanning electron microscopy after BMSC seeding in the hydrogel revealed an even distribution, and cells adhered to the collagen fibers in the hydrogel with minimal cell mortality. The effect of FG4592 on BMSC proliferation and differentiation was examined, revealing the capability of FG4592 to promote BMSC proliferation and direct differentiation resembling human NP cells. After cultivating BMSCs in the photo-crosslinked hydrogel, there was an upregulation in the expression of glycosaminoglycans, aggrecan, type II collagen, and keratin 19 proteins. Cross-species analyses of rat and human BMSCs revealed consistent results. For potential clinical applications, BMSC loaded with photo-crosslinked hydrogels can be injected into damaged intervertebral disc to facilitate NP regeneration.


Subject(s)
Cell Differentiation , Cell Proliferation , Collagen , Hyaluronic Acid , Hydrogels , Mesenchymal Stem Cells , Nucleus Pulposus , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Nucleus Pulposus/cytology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Collagen/chemistry , Rats , Cross-Linking Reagents/chemistry , Rats, Sprague-Dawley , Anilides , Phthalic Acids
3.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 192-198, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836662

ABSTRACT

Intervertebral disc degeneration (IDD) is characterized by the decreased function and number of nucleus pulposus cells (NPCs) caused by excessive intervertebral disc (IVD) pressure. This research aims to provide novel insights into IDD prevention and treatment by clarifying the effect of andrographolide (ANDR) on IDD cell autophagy and oxidative stress under mechanical stress. Human primary NPCs were extracted from the nucleus pulposus tissue of non-IDD trauma patients. An IDD cell model was established by posing mechanical traction on NPCs. Through the construction of an IDD rat model, the influence of ANDR on IDD pathological changes was explored in vivo. The proliferation and autophagy of NPCs were decreased while the apoptosis rate and oxidative stress reaction were increased by mechanical traction. ANDR intervention obviously alleviated this situation. MiR-9 showed upregulated expression in IDD cell model, while FoxO3 and PINK1/Parkin were downregulated. Decreased proliferation and autophagy as well as enhanced apoptosis and oxidative stress response of NPCs were observed following miR-9 mimics and H89 intervention, while the opposite trend was observed after FoxO3 overexpression. FoxO3 is a direct target downstream miR-9. The in vivo experiments revealed that after ANDR intervention, the number of apoptotic cells in rat IVD tissue decreased and the autophagy increased. In conclusion, ANDR improves NPC proliferation, and autophagy, inhibits apoptosis and oxidative stress, and alleviates the pathological changes of IDD via the miR-9/FoxO3/PINK1/Parkin axis, which may be a new and effective treatment for IDD in the future.


Subject(s)
Autophagy , Diterpenes , Forkhead Box Protein O3 , Intervertebral Disc Degeneration , MicroRNAs , Nucleus Pulposus , Oxidative Stress , Protein Kinases , Rats, Sprague-Dawley , Stress, Mechanical , Ubiquitin-Protein Ligases , MicroRNAs/metabolism , MicroRNAs/genetics , Autophagy/drug effects , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Oxidative Stress/drug effects , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Diterpenes/pharmacology , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Male , Apoptosis/drug effects , Cell Proliferation/drug effects , Signal Transduction/drug effects , Female , Adult , Disease Models, Animal
4.
Free Radic Biol Med ; 221: 245-256, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38806104

ABSTRACT

Low back pain (LBP) may profoundly impact the quality of life across the globe, and intervertebral disc degeneration (IVDD) is the major cause of LBP; however, targeted pharmaceutical interventions for IVDD are still lacking. Ferroptosis is a novel form of iron-dependent programmed cell death. Studies have showed that ferroptosis may closely associate with IVDD; thus, targeting ferroptosis may have great potential for IVDD therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are the first-line medications for LBP, while nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key inhibitory protein for ferroptosis. In the current study, we conducted a molecular docking screening between NSAIDs library and Nrf2 protein. Tinoridine was shown to have a high binding affinity to Nrf2. The in vitro study in nucleus pulposus (NP) cells showed that Tinoridine may promote the expression and activity of Nrf2, it may also rescue RSL3-induced ferroptosis in NP cells. Knockdown of Nrf2 reverses the protective effect of Tinoridine on RSL3-induced ferroptosis in NP cells, suggesting that the inhibitory effect of Tinoridine on ferroptosis is through Nrf2. In vivo study demonstrated that Tinoridine may attenuate the progression of IVDD in rats. As NSAIDs are already clinically used for LBP therapy, the current study supports Tinoridine's application from the view of ferroptosis inhibition.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Ferroptosis , Intervertebral Disc Degeneration , NF-E2-Related Factor 2 , Ferroptosis/drug effects , Animals , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Rats , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Humans , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Molecular Docking Simulation , Male , Rats, Sprague-Dawley , Low Back Pain/drug therapy , Low Back Pain/pathology
5.
Mil Med Res ; 11(1): 28, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711073

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Subject(s)
Cell Cycle Proteins , Glutamine , Intervertebral Disc Degeneration , Mannose , Intervertebral Disc Degeneration/drug therapy , Mannose/pharmacology , Mannose/therapeutic use , Animals , Rats , Glutamine/pharmacology , Glutamine/metabolism , Male , Rats, Sprague-Dawley , Humans , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism
6.
Commun Biol ; 7(1): 539, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714886

ABSTRACT

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Subject(s)
Cellular Senescence , Endoplasmic Reticulum Stress , Intervertebral Disc Degeneration , Lipid Droplets , Nucleus Pulposus , Palmitic Acid , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/cytology , Endoplasmic Reticulum Stress/drug effects , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Cellular Senescence/drug effects , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Lipid Droplets/metabolism , Male , Female , Adult , Middle Aged
7.
J Orthop Surg Res ; 19(1): 308, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773639

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IDD) is an increasingly important cause of low back pain (LBP) that results in substantial health and economic burdens. Inflammatory pathway activation and the production of reactive oxygen species (ROS) play vital roles in the progression of IDD. Several studies have suggested that phillyrin has a protective role and inhibits inflammation and the production of ROS. However, the role of phillyrin in IDD has not been confirmed. PURPOSE: The purpose of this study was to investigate the role of phillyrin in IDD and its mechanisms. STUDY DESIGN: To establish IDD models in vivo, ex-vivo, and in vitro to verify the function of phillyrin in IDD. METHOD: The effects of phillyrin on extracellular matrix (ECM) degeneration, inflammation, and oxidation in nucleus pulposus (NP) cells were assessed using immunoblotting and immunofluorescence analysis. Additionally, the impact of phillyrin administration on acupuncture-mediated intervertebral disc degeneration (IDD) in rats was evaluated using various techniques such as MRI, HE staining, S-O staining, and immunohistochemistry (IHC). RESULT: Pretreatment with phillyrin significantly inhibited the IL-1ß-mediated reduction in the degeneration of ECM and apoptosis by alleviating activation of the NF-κB inflammatory pathway and the generation of ROS. In addition, in vivo and ex-vivo experiments verified the protective effect of phillyrin against IDD. CONCLUSION: Phillyrin can attenuate the progression of IDD by reducing ROS production and activating inflammatory pathways.


Subject(s)
Disease Progression , Intervertebral Disc Degeneration , NF-kappa B , Rats, Sprague-Dawley , Reactive Oxygen Species , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Animals , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Rats , Male , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Signal Transduction/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Disease Models, Animal , Cells, Cultured , Humans , Apoptosis/drug effects
8.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728878

ABSTRACT

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Subject(s)
Apoptosis , Bradykinin , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Rats, Sprague-Dawley , tert-Butylhydroperoxide , Animals , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , tert-Butylhydroperoxide/toxicity , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Humans , Male , Bradykinin/pharmacology , Apoptosis/drug effects , Oxidative Stress/drug effects , Rats , Cells, Cultured , Receptor, Bradykinin B2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Female , Microspheres , Signal Transduction/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal
9.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38640717

ABSTRACT

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Subject(s)
Apoptosis , Cellular Senescence , Flavonoids , Intervertebral Disc Degeneration , Signal Transduction , Animals , Humans , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis/drug effects , Cellular Senescence/drug effects , Disease Models, Animal , Flavonoids/pharmacology , Flavonoids/therapeutic use , Integrin alpha2/metabolism , Integrin alpha2/genetics , Interleukin-1beta/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects
10.
Int J Biol Macromol ; 266(Pt 2): 131337, 2024 May.
Article in English | MEDLINE | ID: mdl-38574911

ABSTRACT

Utilization of injectable hydrogels stands as a paradigm of minimally invasive intervention in the context of intervertebral disc degeneration treatment. Restoration of nucleus pulposus (NP) function exerts a profound influence in alleviating back pain. This study introduces an innovative class of injectable shear-thinning hydrogels, founded on quaternized chitosan (QCS), gelatin (GEL), and laponite (LAP) with the capacity for sustained release of the anti-inflammatory drug, celecoxib (CLX). First, synthesis of Magnesium-Aluminum-Layered double hydroxide (LDH) was achieved through a co-precipitation methodology, as a carrier for celecoxib and a source of Mg ions. Intercalation of celecoxib within LDH layers (LDH-CLX) was verified through a battery of analytical techniques, including FTIR, XRD, SEM, EDAX, TGA and UV-visible spectroscopy confirmed a drug loading efficiency of 39.22 ± 0.09 % within LDH. Then, LDH-CLX was loaded in the optimal GEL-QCS-LAP hydrogel under physiological conditions. Release behavior (15 days profile), mechanical properties, swelling ratio, and degradation rate of the resulting composite were evaluated. A G* of 15-47 kPa was recorded for the hydrogel at 22-40 °C, indicating gel stability in this temperature range. Self-healing properties and injectability of the composite were proved by rheological measurements. Also, ex vivo injection into intervertebral disc of sheep, evidenced in situ forming and NP cavity filling behavior of the hydrogel. Support of GEL-QCS-LAP/LDH-CLX (containing mg2+ ions) for viability and proliferation (from ~94 % on day 1 to ~134 % on day 7) of NP cells proved using MTT assay, DAPI and Live/Dead assays. The hydrogel could significantly upregulate secretion of glycosaminoglycan (GAG, from 4.68 ± 0.1 to 27.54 ± 1.0 µg/ml), when LHD-CLX3% was loaded. We conclude that presence of mg2+ ion and celecoxib in the hydrogel can lead to creation of a suitable environment that encourages GAG secretion. In conclusion, the formulated hydrogel holds promise as a minimally invasive candidate for degenerative disc repair.


Subject(s)
Celecoxib , Chitosan , Gelatin , Hydrogels , Silicates , Hydrogels/chemistry , Hydrogels/pharmacology , Celecoxib/pharmacology , Celecoxib/chemistry , Celecoxib/administration & dosage , Chitosan/chemistry , Gelatin/chemistry , Silicates/chemistry , Silicates/pharmacology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Animals , Drug Liberation , Drug Carriers/chemistry , Drug Delivery Systems , Injections , Rheology
11.
Arch Biochem Biophys ; 756: 109990, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636690

ABSTRACT

Nucleus pulposus (NP) cell apoptosis is a significant indication of accelerated intervertebral disc degeneration; however, the precise mechanism is unelucidated as of yet. Ephrin B2 (EFNB2), the only gene down-regulated in the three degraded intervertebral disc tissue microarray groups (GSE70362, GSE147383 and GSE56081), was screened for examination in this study. Subsequently, EFNB2 was verified to be down-regulated in degraded NP tissue samples. Interleukin-1 (IL-1ß) treatment of NP cells to simulate the IDD environment indicated that IL-1ß treatment decreased EFNB2 expression. In degenerative NP cells stimulated by IL-1ß, EFNB2 knockdown significantly increased the rate of apoptosis as well as the apoptosis-related molecules cleaved-caspase-3 and the Bax to Bcl-2 ratio. EFNB2 was found to promote AKT, PI3K, and mTOR phosphorylation; the PI3K/AKT signaling role was investigated using the PI3K inhibitor LY294002. EFNB2 overexpression significantly increased PI3K/AKT pathway activity in IL-1ß-stimulated NP cells than the normal control. Moreover, EFNB2 partially alleviated NP cell apoptosis induced by IL-1ß, reduced the cleaved-cas3 level, and decreased the Bax/Bcl-2 ratio after the addition of the inhibitor LY294002. Additionally, EFNB2 overexpression inhibited the ERK1/2 phosphorylation; the effects of EFNB2 overexpression on ERK1/2 phosphorylation, degenerative NP cell viability, and cell apoptosis were partially reversed by ERK signaling activator Ceramide C6. EFNB2 comprehensively inhibited the apoptosis of NP cells by activating the PI3K/AKT signaling and inhibiting the ERK signaling, obviating the exacerbation of IDD. EFNB2 could be a potential target to protect against degenerative disc changes.


Subject(s)
Apoptosis , Ephrin-B2 , Intervertebral Disc Degeneration , Nucleus Pulposus , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Nucleus Pulposus/drug effects , Apoptosis/drug effects , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/genetics , Ephrin-B2/metabolism , Ephrin-B2/genetics , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Interleukin-1beta/metabolism , Signal Transduction/drug effects , Male , Adult , Female , TOR Serine-Threonine Kinases/metabolism , Cells, Cultured , Middle Aged
12.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 776-788, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38495003

ABSTRACT

Intervertebral disc degeneration (IDD) is the cause of low back pain (LBP), and recent research has suggested that inflammatory cytokines play a significant role in this process. Maslinic acid (MA), a natural compound found in olive plants ( Olea europaea), has anti-inflammatory properties, but its potential for treating IDD is unclear. The current study aims to investigate the effects of MA on TNFα-induced IDD in vitro and in other in vivo models. Our findings suggest that MA ameliorates the imbalance of the extracellular matrix (ECM) and mitigates senescence by upregulating aggrecan and collagen II levels as well as downregulating MMP and ADAMTS levels in nucleus pulposus cells (NPCs). It can also impede the progression of IDD in rats. We further find that MA significantly affects the PI3K/AKT and NF-κB pathways in TNFα-induced NPCs determined by RNA-seq and experimental verification, while the AKT agonist Sc-79 eliminates these signaling cascades. Furthermore, molecular docking simulation shows that MA directly binds to PI3K. Dysfunction of the PI3K/AKT pathway and ECM metabolism has also been confirmed in clinical specimens of degenerated nucleus pulposus. This study demonstrates that MA may hold promise as a therapeutic agent for alleviating ECM metabolism disorders and senescence to treat IDD.


Subject(s)
Intervertebral Disc Degeneration , NF-kappa B , Nucleus Pulposus , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Triterpenes , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Animals , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , NF-kappa B/metabolism , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Male , Triterpenes/pharmacology , Rats , Humans , Molecular Docking Simulation , Tumor Necrosis Factor-alpha/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Female , Cells, Cultured , Oleanolic Acid/analogs & derivatives
13.
Adv Mater ; 36(19): e2313248, 2024 May.
Article in English | MEDLINE | ID: mdl-38299823

ABSTRACT

Low back pain resulting from intervertebral disc degeneration (IVDD) is a prevalent global concern; however, its underlying mechanism remains elusive. Single-cell sequencing analyses revealed the critical involvement of pyroptosis in IVDD. Considering the involvement of reactive oxygen species (ROS) as the primary instigator of pyroptosis and the lack of an efficient intervention approach, this study developed carbonized Mn-containing nanodots (MCDs) as ROS-scavenging catalytic biomaterials to suppress pyroptosis of nucleus pulposus (NP) cells to efficiently alleviate IVDD. Catalytic MCDs have superior efficacy in scavenging intracellular ROS and rescuing homeostasis in the NP microenvironment compared with N-acetylcysteine, a classical antioxidant. The data validates that pyroptosis plays a vital role in mediating the protective effects of catalytic MCDs against oxidative stress. Systematic in vivo assessments substantiate the effectiveness of MCDs in rescuing a puncture-induced IVDD rat model, further demonstrating their ability to suppress pyroptosis. This study highlights the potential of antioxidant catalytic nanomedicine as a pyroptosis inhibitor and mechanistically unveils an efficient strategy for the treatment of IVDD.


Subject(s)
Antioxidants , Intervertebral Disc Degeneration , Nucleus Pulposus , Pyroptosis , Reactive Oxygen Species , Pyroptosis/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Animals , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Catalysis , Humans , Oxidative Stress/drug effects , Nanoparticles/chemistry , Disease Models, Animal , Rats, Sprague-Dawley
14.
Eur Rev Med Pharmacol Sci ; 26(13): 4816-4827, 2022 07.
Article in English | MEDLINE | ID: mdl-35856374

ABSTRACT

OBJECTIVE: Recent drug design studies suggest that inflammation is among the most important factors in the development of both intervertebral disc (IVD) degeneration (IVDD) and osteoarthritis (OA) due to cartilage damage. This study aimed to investigate whether the anti-inflammatory drug oseltamivir has a toxic effect on IVD and cartilage tissue cells. It assessed what effect oseltamivir has on hypoxia-inducible factor (HIF)-1 alpha (HIF1α), which plays an important role in anabolic pathways in IVD and cartilage tissue. In addition, the study analyzed whether oseltamivir could inhibit the release of inflammatory interleukin-1 beta (IL-1ß) via the nuclear factor kappa-B (NF-κB) signaling pathway by activating the nucleotide-binding oligomerization domain and leucine-rich repeat protein-3 (NLRP3) inflammasome. MATERIALS AND METHODS: Human lumbar IVD (n = 8) tissues were isolated for annulus fibrosus (AF) and nucleus pulposus (NP) primary cell cultures, and human tibial and femoral cartilage tissues (n = 8) were isolated for primary chondrocyte cultures. Untreated groups served as the control and oseltamivir-treated groups as the study sample. Cell viability and cytotoxicity were evaluated at 0, 24, 48, and 72 h in all groups for changes in HIF-1α, IL-1ß, NF-κB, and the NLRP3-inflammasome protein expressions using Western blotting. The α significance value was < 0.05. RESULTS: In the oseltamivir-treated groups, cell proliferation decreased in both AF/NP cell and chondrocyte cultures obtained from IVD cartilage tissues. After Western blotting analysis, changes were observed in the protein expressions of HIF-1α, IL-1ß, NF-κB, and the NLRP3 inflammasome in both AF/NP cells and chondrocytes. The results were statistically significant (p < 0.05). CONCLUSIONS: Oseltamivir treatment may be a promising regenerative strategy to manage IVDD and osteoarthritic cartilage tissues.


Subject(s)
Chondrocytes , Intervertebral Disc Degeneration , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Nucleus Pulposus , Cellular Senescence/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Oseltamivir
15.
Oxid Med Cell Longev ; 2022: 6179444, 2022.
Article in English | MEDLINE | ID: mdl-35251479

ABSTRACT

Oxidative stress and apoptosis play important roles in the pathogenesis of various degenerative diseases. Previous studies have shown that naringin can exert therapeutic effects in multiple degenerative diseases by resisting oxidative stress and inhibiting apoptosis. Although naringin is effective in treating degenerative disc disease, the underlying mechanism remains unclear. This study is aimed at investigating the effects of naringin on oxidative stress, apoptosis, and intervertebral disc degeneration (IVDD) induced by cyclic stretch and the underlying mechanisms in vitro and in vivo. Abnormal cyclic stretch was applied to rat annulus fibrosus cells, which were then treated with naringin, to observe the effects of naringin on apoptosis, oxidative stress, mitochondrial function, and the nuclear factor- (NF-) κB signaling pathway. Subsequently, a rat model of IVDD induced by dynamic and static imbalance was established to evaluate the effects of naringin on the degree of degeneration (using imaging and histology), apoptosis, and oxidative stress in the serum and the intervertebral disc. Naringin inhibited the cyclic stretch-induced apoptosis of annulus fibrosus cells, reduced oxidative stress, improved mitochondrial function, enhanced the antioxidant capacity, and suppressed the activation of the NF-κB signaling pathway. Additionally, it reduced the degree of IVDD (evaluated using magnetic resonance imaging) and the level of oxidative stress and inhibited apoptosis and p-P65 expression in the intervertebral discs of rats. Thus, naringin can inhibit cyclic stretch-induced apoptosis and delay IVDD, and the underlying mechanism may be related to the inhibition of oxidative stress and activation of the NF-κB signaling pathway. Naringin may be an effective drug for treating degenerative disc disease.


Subject(s)
Annulus Fibrosus/cytology , Annulus Fibrosus/metabolism , Antioxidants/administration & dosage , Apoptosis/drug effects , Flavanones/administration & dosage , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , NF-kappa B/metabolism , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Animals , Annulus Fibrosus/drug effects , Disease Models, Animal , Male , Mitochondria/metabolism , Nucleus Pulposus/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Treatment Outcome
16.
Oxid Med Cell Longev ; 2022: 7655142, 2022.
Article in English | MEDLINE | ID: mdl-35265264

ABSTRACT

Activation of the proinflammatory-associated cytokine, tumor necrosis factor-α (TNF-α), in nucleus pulposus (NP) cells is essential for the pathogenesis of intervertebral disc degeneration (IDD). Restoring autophagic flux has been shown to effectively protect against IDD and is a potential target for treatment. The goal of this study was to explore particular autophagic signalings responsible for the protective effects of naringin, a known autophagy activator, on human NP cells. The results showed that significantly increased autophagic flux was observed in NP cells treated with naringin, with pronounced decreases in the inflammatory response and oxidative stress, which rescued the disturbed cellular homeostasis induced by TNF-α activation. Autophagic flux inhibition was detectable in NP cells cotreated with 3-methyladenine (3-MA, an autophagy inhibitor), partially offsetting naringin-induced beneficial effects. Naringin promoted the expressions of autophagy-associated markers via SIRT1 (silent information regulator-1) activation by AMPK (AMP-activated protein kinase) phosphorylation. Either AMPK inhibition by BML-275 or SIRT1 silencing partially counteracted naringin-induced autophagic flux enhancement. These findings indicate that naringin boosts autophagic flux through SIRT1 upregulation via AMPK activation, thus protecting NP cells against inflammatory response, oxidative stress, and impaired cellular homeostasis. Naringin can be a promising inducer of restoration autophagic flux restoration for IDD.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Flavanones/therapeutic use , Homeostasis/drug effects , Inflammation/drug therapy , Nucleus Pulposus/drug effects , Sirtuin 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Flavanones/pharmacology , Humans , Oxidative Stress/drug effects , Transfection
17.
Mol Biol Rep ; 49(5): 3783-3792, 2022 May.
Article in English | MEDLINE | ID: mdl-35179667

ABSTRACT

BACKGROUND: Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3ß is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3ß inhibition protects human NP cell against apoptosis under oxidative stress. METHODS AND RESULTS: Immunofluorescence staining was used to show the expression of GSK-3ß in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot (WB) were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3ß specific inhibitor SB216763. Co-Immunoprecipitation (Co-IP) was used to demonstrate the interaction between GSK-3ß and Bcl-2. We delineated the protective effect of GSK-3ß specific inhibitor SB216763 on human NPCs apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3ß inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. CONCLUSIONS: We concluded that the GSK-3ß inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3ß and Bcl-2 and subsequently reducing cytochrome c(Cyto-C) release and caspase-3 activation. Together, inhibition of GSK-3ß using SB216763 in NPCs may be a favorable therapeutic strategy to slow intervertebral disc degeneration.


Subject(s)
Glycogen Synthase Kinase 3 beta , Nucleus Pulposus , Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Indoles/pharmacology , Maleimides/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism
18.
Pharm Biol ; 60(1): 427-436, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35175176

ABSTRACT

CONTEXT: Cyanidin has been shown to have therapeutic potential in osteoarthritis. However, it is unclear whether cyanidin prevents the progression of intervertebral disc degeneration (IVDD). OBJECTIVE: This study evaluates the effects of cyanidin on IVDD in vitro and in vivo. MATERIALS AND METHODS: Nucleus pulposus cells (NPCs) isolated from lumbar IVD of 4-week-old male Sprague-Dawley (SD) rats were exposed to 20 ng/mL IL-1ß, and then treated with different doses (0-120 µM) of cyanidin for 24 h. SD rats were classified into three groups (n = 8) and treated as follows: control (normal saline), IVDD (vehicle), IVDD + cyanidin (50 mg/kg). Cyanidin was administered intraperitoneally for 8 weeks. RESULTS: The IC50 of cyanidin for NPCs was 94.78 µM, and cyanidin had no toxicity at concentrations up to 500 mg/kg in SD rats. Cyanidin inhibited the apoptosis of NPCs induced by IL-1ß (12.73 ± 0.61% vs. 18.54 ± 0.60%), promoted collagen II (0.82-fold) and aggrecan (0.81-fold) expression, while reducing MMP-13 (1.02-fold) and ADAMTS-5 (1.40-fold) expression. Cyanidin increased the formation of autophagosomes in IL-1ß-induced NPCs, and promoted LC3II/LC3I (0.83-fold) and beclin-1 (0.85-fold) expression, which could be reversed by chloroquine. Cyanidin inhibited the phosphorylation of JAK2 (0.47-fold) and STAT3 (0.53-fold) in IL-1ß-induced NPCs. The effects of cyanidin could be enhanced by AG490. Furthermore, cyanidin mitigated disc degeneration in IVDD rats in vivo. DISCUSSION AND CONCLUSIONS: Cyanidin improved the function of NPCs in IVDD by regulating the JAK2/STAT3 pathway, which may provide a novel alternative strategy for IVDD. The mechanism of cyanidin improving IVDD still needs further work for in-depth investigation.


Subject(s)
Anthocyanins/pharmacology , Apoptosis/drug effects , Intervertebral Disc Degeneration/prevention & control , Nucleus Pulposus/drug effects , Animals , Anthocyanins/administration & dosage , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Interleukin-1beta/administration & dosage , Janus Kinase 2/metabolism , Male , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
19.
Bioengineered ; 13(1): 1399-1410, 2022 01.
Article in English | MEDLINE | ID: mdl-34974796

ABSTRACT

Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. We aimed to investigate the role of dezocine (DEZ) in the development of IDD. Human nucleus pulposus cells (HNPCs) induced by interleukin (IL)-1ß was used as a cellular model of IDD. After treatment with DEZ, HNPCs viability was evaluated with a CCK-8 assay. Then, the levels of inflammatory factors, including IL-6 and tumor necrosis factor-α (TNF-α), and oxidative stress-related markers, including reactive oxygen species (ROS), malondialdehyde (MDA) and reduced glutathione (GSH), were tested by RT-qPCR or kits. TUNEL staining was employed to detect cell apoptosis and Western blot was used to determine the expression of proteins related to inflammation, oxidative stress, apoptosis, endoplasmic reticulum stress (ERS) and MAPK signaling. Afterward, PMA, a MAPK signaling pathway agonist, was adopted for exploring the regulatory effects of DEZ on MAPK pathway. Results indicated that DEZ enhanced cell viability of HNPCs after IL-1ß exposure. DEZ alleviated the inflammation and oxidative stress, evidenced by decreased levels of IL-6, TNF-α, ROS, MDA, p-NF-κB p65, NF-κB p65 in nucleus, cox-2 and increased levels of NF-κB p65 in cytoplasm, GSH, SOD1 and SOD2. Moreover, DEZ notably inhibited IL-1ß-induced apoptosis of HNPCs. Furthermore, DEZ suppressed the levels of ERS-related proteins. The levels of related proteins in MAPK signaling including p-P38 and p-ERK1/2 were remarkably reduced after DEZ administration. By contrast, PMA crippled the impacts of DEZ on inflammation, oxidative stress and apoptosis of HNPCs induced by IL-1ß. Collectively, DEZ ameliorates IL-1ß-induced HNPCs injury via inhibiting MAPK signaling.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Interleukin-1beta/adverse effects , Intervertebral Disc Degeneration/genetics , Nucleus Pulposus/cytology , Tetrahydronaphthalenes/pharmacology , Apoptosis/drug effects , Cell Line , Gene Expression Regulation/drug effects , Humans , Interleukin-6/genetics , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , MAP Kinase Signaling System/drug effects , Models, Biological , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Oxidative Stress/drug effects , Tumor Necrosis Factor-alpha/genetics
20.
Carbohydr Polym ; 277: 118828, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893245

ABSTRACT

Hyaluronic acid (HA) is a key component of the intervertebral disc (IVD) that is widely investigated as an IVD biomaterial. One persisting challenge is introducing materials capable of supporting cell encapsulation and function, yet with sufficient mechanical stability. In this study, a hybrid interpenetrating polymer network (IPN) was produced as a non-covalent hydrogel, based on a covalently cross-linked HA (HA-BDDE) and HA-poly(N-isopropylacrylamide) (HA-pNIPAM). The hybrid IPN was investigated for its physicochemical properties, with histology and gene expression analysis to determine matrix deposition in vitro and in an ex vivo model. The IPN hydrogel displayed cohesiveness for at least one week and rheological properties resembling native nucleus pulposus (NP) tissue. When implanted in an ex vivo IVD organ culture model, the IPN supported cell viability, phenotype expression of encapsulated NP cells and IVD matrix production over four weeks under physiological loading. Overall, our results indicate the therapeutic potential of this HA-based IPN hydrogel for IVD regeneration.


Subject(s)
Acrylic Resins/pharmacology , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Intervertebral Disc/drug effects , Nucleus Pulposus/drug effects , Acrylic Resins/chemistry , Animals , Cattle , Drug Carriers/chemistry , Intervertebral Disc/pathology , Nucleus Pulposus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...