Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.093
1.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824148

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glycine max , Nitrogen , Oryza , Phosphorus , Plant Roots , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Phosphorus/metabolism , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hot Temperature , Nitrate Transporters , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Temperature , Basic-Leucine Zipper Transcription Factors
2.
BMC Genom Data ; 25(1): 46, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783179

BACKGROUND: Primulina juliae has recently emerged as a novel functional vegetable, boasting a significant biomass and high calcium content. Various breeding strategies have been employed to the domestication of P. juliae. However, the absence of genome and transcriptome information has hindered the research of mechanisms governing the taste and nutrients in this plant. In this study, we conducted a comprehensive analysis, combining the full-length transcriptomics and metabolomics, to unveil the molecular mechanisms responsible for the development of nutrients and taste components in P. juliae. RESULTS: We obtain a high-quality reference transcriptome of P. juliae by combing the PacBio Iso-seq and Illumina sequencing technologies. A total of 58,536 cluster consensus sequences were obtained, including 28,168 complete protein coding transcripts and 8,021 Long Non-coding RNAs. Significant differences were observed in the composition and content of compounds related to nutrients and taste, particularly flavonoids, during the leaf development. Our results showed a decrease in the content of most flavonoids as leaves develop. Malate and succinate accumulated with leaf development, while some sugar metabolites were decreased. Furthermore, we identified the different accumulation of amino acids and fatty acids, which are associated with taste traits. Moreover, our transcriptomic analysis provided a molecular basis for understanding the metabolic variations during leaf development. We identified 4,689 differentially expressed genes in the two developmental stages, and through a comprehensive transcriptome and metabolome analysis, we discovered the key structure genes and transcription factors involved in the pathways. CONCLUSIONS: This study provides a high-quality reference transcriptome and reveals molecular mechanisms associated with the development of nutrients and taste components in P. juliae. These findings will enhance our understanding of the breeding and utilization of P. juliae as a vegetable.


Metabolomics , Plant Leaves , Taste , Transcriptome , Taste/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling/methods , Nutrients/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Amino Acids/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Metabolome/genetics , Malates/metabolism
3.
Physiol Plant ; 176(3): e14361, 2024.
Article En | MEDLINE | ID: mdl-38801017

Nepenthes are carnivorous plants that colonize habitats poor in soil nutrients. To survive, Nepenthes develop pitchers capable of capturing and digesting attracted prey. Prey-derived nutrients are then absorbed to support plant growth and reproduction. So far, pitcher formation in Nepenthes is a poorly understood biological process. To shed light on the formation of Nepenthes pitchers, we grew dissected shoot apices of 3-month-old N. khasiana seedlings in Murashige and Skoog (MS) medium of varying strengths viz. full-strength MS (1 MS), quarter-strength MS (1/4 MS), and one-eighth strength MS (1/8 MS), including those lacking nitrogen (N), phosphorus (P), and potassium (K) and in the presence of N-1-naphthylphthalamic acid (NPA). We sequenced the transcriptome and performed gas chromatography-mass spectrometry to determine changes in gene expression patterns and primary metabolite accumulations in response to the varying nutrient conditions. Shoots grown in 1 MS or NPA-containing 1/4 MS and 1/8 MS failed to develop pitchers. Remarkably, pitcher formation is restored when N was removed from 1 MS. Transcriptomic response to nutrient-sufficient and nutrient-deficient conditions are associated with the enrichment of several defence-related genes, including two JA-mediated defence response genes, WRKY51 and WRKY11, respectively. Further, metabolomic response to the varying nutrient conditions identifies glutamic acid as a key metabolite, accumulating at lower and higher levels in shoots with and without pitchers, respectively. Together, our findings suggest that failure to form pitchers may be associated with the suppression of the JA-signalling pathway, whereas the induction of the JA-mediated defence response is linked to pitcher formation in N. khasiana.


Transcriptome , Transcriptome/genetics , Gene Expression Regulation, Plant , Nitrogen/metabolism , Metabolomics , Nutrients/metabolism , Phosphorus/metabolism , Metabolome
4.
PLoS One ; 19(5): e0302859, 2024.
Article En | MEDLINE | ID: mdl-38787870

The objective of the current study was to assess the impact of dietary phytase supplementation on Labeo rohita fingerlings and to examine the effects on growth, nutrient digestibility and chemical characteristics of diets containing rice protein concentrate (RPC) as a major protein source. Six experimental diets were made, i.e., a positive control (fishmeal-based diet with no phytase), FM0; a negative control (RPC-based diet with no phytase), RPC0; and four supplemental phytase levels (250, 500, 1000, and 2000 FTU/kg). Fingerlings with an average weight of 9.42 ± 0.02 grams (mean ± SD) were randomly distributed into six experimental groups of three replicates, each containing 25 fish per tank (75 liters of water), provided with experimental diets at a rate equivalent to 5% of their body weight for 90 days, and uneaten feed was collected after 2 hours to determine feed consumption. The feces were collected before feeding to estimate digestibility. Phytase in combination with the RPC-based diet significantly (p < 0.05) enhanced phytate phosphorus in vitro hydrolysis; growth performance; nutrient (crude protein, crude fat, moisture and gross energy) and mineral (P, Ca, Mg, Na, K, Zn, Mn and Cu) digestibility; digestive enzyme (protease, lipase and amylase) activity; and mineral deposition up to 1000 FTU/kg phytase. However, the hepatosomatic and viscerosomatic indices and carcass composition were not influenced (p > 0.05) by phytase supplementation. Increasing phytase supplementation in the RPC-based diets led to a significant (p < 0.05) decrease in the serum biochemical parameters (alkaline phosphatase activity, aspartate aminotransferase, alanine aminotransferase), which resulted in improved liver health. In conclusion, phytase-supplemented RPC-based diets improved the growth, mineral/nutrient digestibility, digestive enzymes, serum biochemistry, and mineral deposition of L. rohita fingerlings up to 1000 FTU/kg. Broken line regression analysis revealed that the optimum phytase concentration in the RPC-based diet for L. rohita was 874.19 FTU/kg.


6-Phytase , Animal Feed , Cyprinidae , Dietary Supplements , Oryza , 6-Phytase/metabolism , Animals , Animal Feed/analysis , Cyprinidae/growth & development , Cyprinidae/metabolism , Cyprinidae/physiology , Digestion/drug effects , Animal Nutritional Physiological Phenomena , Plant Proteins/metabolism , Diet/veterinary , Nutrients/metabolism
5.
BMC Genomics ; 25(1): 514, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789922

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Antioxidants , Fishes , Resveratrol , Animals , Resveratrol/pharmacology , Fishes/metabolism , Fishes/growth & development , Fishes/genetics , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Nutrients/metabolism , Animal Feed/analysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Diet/veterinary , Gene Expression Profiling
6.
Bioresour Technol ; 402: 130836, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744398

There have been extensive applications of waste activated sludge (WAS) in anaerobic co-digestion (AcoD). Nonetheless, mechanisms through which AcoD systems maintain stability, particularly under nutrient-stressed conditions, are under-appreciated. In this study, the role of WAS in a nutrient-stressed WAS-food waste AcoD system was re-evaluated. Our findings demonstrated that WAS-based co-digestion increased methane production (by 20-60%) as WAS bolsters such systems' resilience via establishing a core niche-based microbial balance. The carbon utilization investigation suggested a microbial niche balance is attainable if two conditions are satisfied: 1) hydrolysis efficiency is greater than 50%; and 2) both the acidogenesis-to-hydrolysis and acetogenesis-to-hydrolysis efficiencies surpass 0.5. Metagenomic assembly genome (MAG) analysis indicated that the versatile metabolic characteristics strengthened the microbial niche balance, rendering the system resilient and efficient through a syntrophic mode, contributing to both acidogenesis and acetogenesis. The findings of this study provide new insights into the ecological effects of WAS on AcoD.


Methane , Sewage , Sewage/microbiology , Anaerobiosis , Methane/metabolism , Bioreactors , Hydrolysis , Nutrients/metabolism , Carbon/metabolism
7.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724910

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Acetates , Antioxidants , Brassica napus , Cyclopentanes , Gibberellins , Oxylipins , Plant Growth Regulators , Soil , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Brassica napus/growth & development , Brassica napus/drug effects , Brassica napus/metabolism , Gibberellins/metabolism , Gibberellins/pharmacology , Antioxidants/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Acetates/pharmacology , Soil/chemistry , Chlorophyll/metabolism , Salt Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Nutrients/metabolism
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732128

Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.


Dietary Supplements , Micronutrients , Non-alcoholic Fatty Liver Disease , Nutrients , Nutritional Status , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/diet therapy , Nutrients/metabolism , Micronutrients/metabolism , Vitamins/metabolism , Vitamins/administration & dosage
9.
PLoS One ; 19(5): e0301459, 2024.
Article En | MEDLINE | ID: mdl-38805505

Wastewater treatment plants (WWTPs) are a point source of nutrients, emit greenhouse gases (GHGs), and produce large volumes of excess sludge. The use of aquatic organisms may be an alternative to the technical post-treatment of WWTP effluent, as they play an important role in nutrient dynamics and carbon balance in natural ecosystems. The aim of this study was therefore to assess the performance of an experimental wastewater-treatment cascade of bioturbating macroinvertebrates and floating plants in terms of sludge degradation, nutrient removal and lowering GHG emission. To this end, a full-factorial experiment was designed, using a recirculating cascade with a WWTP sludge compartment with or without bioturbating Chironomus riparius larvae, and an effluent container with or without the floating plant Azolla filiculoides, resulting in four treatments. To calculate the nitrogen (N), phosphorus (P) and carbon (C) mass balance of this system, the N, P and C concentrations in the effluent, biomass production, and sludge degradation, as well as the N, P and C content of all compartments in the cascade were measured during the 26-day experiment. The presence of Chironomus led to an increased sludge degradation of 44% compared to 25% in the control, a 1.4 times decreased transport of P from the sludge and a 2.4 times increased transport of N out of the sludge, either into Chironomus biomass or into the water column. Furthermore, Chironomus activity decreased methane emissions by 92%. The presence of Azolla resulted in a 15% lower P concentration in the effluent than in the control treatment, and a CO2 uptake of 1.13 kg ha-1 day-1. These additive effects of Chironomus and Azolla resulted in an almost two times higher sludge degradation, and an almost two times lower P concentration in the effluent. This is the first study that shows that a bio-based cascade can strongly reduce GHG and P emissions simultaneously during the combined polishing of wastewater sludge and effluent, benefitting from the additive effects of the presence of both macrophytes and invertebrates. In addition to the microbial based treatment steps already employed on WWTPs, the integration of higher organisms in the treatment process expands the WWTP based ecosystem and allows for the inclusion of macroinvertebrate and macrophyte mediated processes. Applying macroinvertebrate-plant cascades may therefore be a promising tool to tackle the present and future challenges of WWTPs.


Chironomidae , Greenhouse Gases , Sewage , Wastewater , Chironomidae/metabolism , Animals , Greenhouse Gases/metabolism , Greenhouse Gases/analysis , Wastewater/chemistry , Phosphorus/metabolism , Phosphorus/analysis , Nitrogen/metabolism , Nitrogen/analysis , Waste Disposal, Fluid/methods , Carbon/metabolism , Carbon/analysis , Biodegradation, Environmental , Water Purification/methods , Nutrients/metabolism , Nutrients/analysis , Methane/metabolism , Methane/analysis
10.
Virulence ; 15(1): 2351234, 2024 Dec.
Article En | MEDLINE | ID: mdl-38773735

Chlamydia infection is an important cause of public health diseases, and no effective vaccine is currently available. Owing to its unique intracellular lifestyle, Chlamydia requires a variety of nutrients and substrates from host cells, particularly sphingomyelin, cholesterol, iron, amino acids, and the mannose-6-phosphate receptor, which are essential for inclusion development. Here, we summarize the recent advances in Chlamydia nutrient acquisition mechanism by hijacking host cell vesicular transport, which plays an important role in chlamydial growth and development. Chlamydia obtains the components necessary to complete its intracellular developmental cycle by recruiting Rab proteins (major vesicular trafficking regulators) and Rab effector proteins to the inclusion, interfering with Rab-mediated multivesicular trafficking, reorienting the nutrition of host cells, and reconstructing the intracellular niche environment. Consequently, exploring the role of vesicular transport in nutrient acquisition offers a novel perspective on new approaches for preventing and treating Chlamydia infection.


Chlamydia Infections , Chlamydia , Host-Pathogen Interactions , Nutrients , Humans , Chlamydia Infections/microbiology , Chlamydia Infections/metabolism , Chlamydia/metabolism , Chlamydia/physiology , Chlamydia/pathogenicity , Nutrients/metabolism , Animals , Biological Transport
11.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article En | MEDLINE | ID: mdl-38697936

In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.


Bacteria , Carbon , Microbiota , Nitrogen , Nutrients , Soil Microbiology , Soil , Antarctic Regions , Nitrogen/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Nutrients/metabolism , Soil/chemistry , Carbon/metabolism , Biodiversity , RNA, Ribosomal, 16S/genetics
12.
BMC Plant Biol ; 24(1): 434, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773357

Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.


Crop Production , Glycine max , Nitrogen , Soil , Zea mays , Glycine max/growth & development , Glycine max/metabolism , Zea mays/growth & development , Zea mays/metabolism , Soil/chemistry , China , Crop Production/methods , Nitrogen/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Agriculture/methods , Fertilizers , Nutrients/metabolism , Biomass
13.
Gut Microbes ; 16(1): 2350785, 2024.
Article En | MEDLINE | ID: mdl-38725230

Interactions between diet and gastrointestinal microbiota influence health status and outcomes. Evaluating these relationships requires accurate quantification of dietary variables relevant to microbial metabolism, however current dietary assessment methods focus on dietary components relevant to human digestion only. The aim of this study was to synthesize research on foods and nutrients that influence human gut microbiota and thereby identify knowledge gaps to inform dietary assessment advancements toward better understanding of diet-microbiota interactions. Thirty-eight systematic reviews and 106 primary studies reported on human diet-microbiota associations. Dietary factors altering colonic microbiota included dietary patterns, macronutrients, micronutrients, bioactive compounds, and food additives. Reported diet-microbiota associations were dominated by routinely analyzed nutrients, which are absorbed from the small intestine but analyzed for correlation to stool microbiota. Dietary derived microbiota-relevant nutrients are more challenging to quantify and underrepresented in included studies. This evidence synthesis highlights advancements needed, including opportunities for expansion of food composition databases to include microbiota-relevant data, particularly for human intervention studies. These advances in dietary assessment methodology will facilitate translation of microbiota-specific nutrition therapy to practice.


Diet , Gastrointestinal Microbiome , Humans , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Nutrients/metabolism
14.
Ecol Evol Physiol ; 97(1): 1-10, 2024.
Article En | MEDLINE | ID: mdl-38717367

AbstractThe availability of environmental nutrients is an existential constraint for heterotrophic organisms and is thus expected to impact numerous biochemical and physiological features. The continuously proliferative polyp stage of colonial hydroids provides a useful model to study these features, allowing genetically identical replicates to be compared. Two groups of colonies of Eirene sp., defined by different feeding treatments, were grown by explanting the same founder colony onto cover glass. Colonies of both treatments were allowed to grow continuously by explanting them onto new cover glass as they reached the edge of the existing surface. The nutrient-abundant polyps grew faster and produced more clumped or "sheet-like" colonies. Compared to the founder colony, the nutrient-abundant colonies exhibited more mutations (i.e., single-nucleotide polymorphisms) than the nutrient-scarce colonies. Nevertheless, these differences were not commensurate with the differences in growth. Using a polarographic electrode, we found that the nutrient-abundant colonies exhibited lower rates of oxygen uptake relative to total protein. The probe 2',7'-dichlorodihydrofluorescein diacetate and fluorescent microscopy allowed visualization of the mitochondrion-rich cells at the base of the polyps and showed that the nutrient-abundant colonies exhibited greater amounts of reactive oxygen species than the nutrient-scarce colonies. Parallels to the Warburg effect-aerobic glycolysis, diminished oxygen uptake, and lactate secretion-found in human cancers and other proliferative cells may be suggested. However, little is known about anaerobic metabolism in cnidarians. Examination of oxygen uptake suggests an anaerobic threshold at a roughly 1-mg/L oxygen concentration. Nutrient-abundant colonies may respond more dramatically to this threshold than nutrient-scarce colonies.


Hydrozoa , Nutrients , Animals , Nutrients/metabolism
15.
Cancer Res ; 84(10): 1543-1545, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745495

Nutrient stress accompanies several stages of tumor progression, including metastasis formation. Metabolic reprogramming is a hallmark of cancer, and it has been associated with stress tolerance and anchorage-independent cell survival. Adaptive responses are required to support cancer cell survival under these conditions. In this issue of Cancer Research, Nam and colleagues showed that the extracellular matrix (ECM) receptor integrin ß3 was upregulated in lung cancer cells in response to nutrient starvation, resulting in increased cell survival that was independent from ECM binding. Delving into the molecular mechanisms responsible for this, the authors found that integrin ß3 promoted glutamine metabolism and oxidative phosphorylation (OXPHOS) by activating a Src/AMPK/PGC1α signaling pathway. Importantly, in vivo experiments confirmed that OXPHOS inhibition suppressed tumor initiation in an orthotopic model of lung cancer, while ß3 knockout completely abrogated tumor initiation. These observations indicate that targeting signaling pathways downstream of αvß3 could represent a promising therapeutic avenue to prevent lung cancer progression and metastasis. See related article by Nam et al., p. 1630.


Integrin alphaVbeta3 , Lung Neoplasms , Humans , Integrin alphaVbeta3/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Animals , Signal Transduction , Mice , Oxidative Phosphorylation , Stress, Physiological , Nutrients/metabolism
16.
J Cell Biol ; 223(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38722822

Cell growth is required for cell cycle progression. The amount of growth required for cell cycle progression is reduced in poor nutrients, which leads to a reduction in cell size. In budding yeast, nutrients can influence cell size by modulating the extent of bud growth, which occurs predominantly in mitosis. However, the mechanisms are unknown. Here, we used mass spectrometry to identify proteins that modulate bud growth in response to nutrient availability. This led to the discovery that nutrients regulate numerous components of the mitotic exit network (MEN), which controls exit from mitosis. A key component of the MEN undergoes gradual multisite phosphorylation during bud growth that is dependent upon bud growth and correlated with the extent of growth. Furthermore, activation of the MEN is sufficient to override a growth requirement for mitotic exit. The data suggest a model in which the MEN ensures that mitotic exit occurs only when an appropriate amount of bud growth has occurred.


Mitosis , Saccharomyces cerevisiae , Signal Transduction , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Nutrients/metabolism , Phosphorylation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/growth & development
17.
Microbiome ; 12(1): 88, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741135

BACKGROUND: During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS: During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS: Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.


Lakes , Microbiota , Microcystis , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , China , Lakes/microbiology , Nutrients/metabolism , Phototrophic Processes , Aerobiosis , Eutrophication , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Nitrogen/metabolism , Carbon/metabolism
18.
J Agric Food Chem ; 72(19): 10679-10691, 2024 May 15.
Article En | MEDLINE | ID: mdl-38695770

There has been a dramatic surge in the prevalence of food allergy (FA) that cannot be explained solely by genetics, identifying mechanisms of sensitization that are driven by environmental factors has become increasingly important. Diet, gut microbiota, and their metabolites have been shown to play an important role in the development of FA. In this review, we discuss the latest epidemiological evidence on the impact of two major dietary patterns and key nutrients in early life on the risk of offspring developing FA. The Western diet typically includes high sugar and high fat, which may affect the immune system of offspring and increase susceptibility to FA. In contrast, the Mediterranean diet is rich in fiber, which may reduce the risk of FA in offspring. Furthermore, we explore the potential mechanisms by which maternal dietary nutrients during a window of opportunity (pregnancy, birth, and lactation) influences the susceptibility of offspring to FA through multi-interface crosstalk. Finally, we discuss the limitations and gaps in the available evidence regarding the relationship between maternal dietary nutrients and the risk of FA in offspring. This review provides novel perspective on the regulation of offspring FA by maternal diet and nutrients.


Food Hypersensitivity , Gastrointestinal Microbiome , Maternal Nutritional Physiological Phenomena , Nutrients , Humans , Female , Food Hypersensitivity/immunology , Food Hypersensitivity/prevention & control , Food Hypersensitivity/etiology , Pregnancy , Nutrients/metabolism , Animals , Diet , Prenatal Exposure Delayed Effects
19.
Nat Commun ; 15(1): 3818, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740760

The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.


Kidney , Organ Preservation , Perfusion , Humans , Kidney/metabolism , Organ Preservation/methods , Perfusion/methods , Kidney Transplantation , Male , Organ Preservation Solutions , Female , Middle Aged , Cell-Free System , Citric Acid Cycle , Adult , Nutrients/metabolism , Lipidomics/methods , Aged
20.
Sci Rep ; 14(1): 11139, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750151

Fertilizers application are widely used to get a higher yield in agricultural fields. Nutrient management can be improved by cultivating leguminous species in order to obtain a better understanding of the mechanisms that increase the amount of available phosphorus (P) and potassium (K) through fertilizer treatments. A pot experiment was conducted to identify the leguminous species (i.e., chickpea and pea) under various fertilizer treatments. Experimental design is as follows: T0 (control: no fertilizer was applied), T1: P applied at the level of (90 kg ha-1), T2: (K applied at the level of 90 kg ha-1), and T3: (PK applied both at 90 kg ha-1). All fertilizer treatments significantly (p < 0.05) improved the nutrient accumulation abilities and enzymes activities. The T3 treatment showed highest N uptake in chickpea was 37.0%, compared to T0. While T3 developed greater N uptake in pea by 151.4% than the control. However, T3 treatment also increased microbial biomass phosphorus in both species i.e., 95.7% and 81.5% in chickpeas and peas, respectively, compared to T0 treatment. In chickpeas, T1 treatment stimulated NAGase activities by 52.4%, and T2 developed URase activities by 50.1% higher than control. In contrast, T3 treatment enhanced both BGase and Phase enzyme activities, i.e., 55.8% and 33.9%, respectively, compared to the T0 treatment. Only the T3 treatment improved the activities of enzymes in the pea species (i.e., BGase was 149.7%, URase was 111.9%, Phase was 81.1%, and NAGase was 70.0%) compared to the control. Therefore, adding combined P and K fertilizer applications to the soil can increase the activity of enzymes in both legume species, and changes in microbial biomass P and soil nutrient availability make it easier for plants to uptake the nutrients.


Biomass , Cicer , Fertilizers , Phosphorus , Soil Microbiology , Soil , Phosphorus/metabolism , Soil/chemistry , Cicer/metabolism , Cicer/growth & development , Fabaceae/metabolism , Fabaceae/growth & development , Potassium/metabolism , Pisum sativum/metabolism , Pisum sativum/growth & development , Nitrogen/metabolism , Nutrients/metabolism
...