Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 527
Filter
1.
Sci Rep ; 14(1): 20701, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237647

ABSTRACT

The Gram-negative bacterium Klebsiella pneumoniae is an important human pathogen. Its treatment has been complicated by the emergence of multi-drug resistant strains. The human complement system is an important part of our innate immune response that can directly kill Gram-negative bacteria by assembling membrane attack complex (MAC) pores into the bacterial outer membrane. To resist this attack, Gram-negative bacteria can modify their lipopolysaccharide (LPS). Especially the decoration of the LPS outer core with the O-antigen polysaccharide has been linked to increased bacterial survival in serum, but not studied in detail. In this study, we characterized various clinical Klebsiella pneumoniae isolates and show that expression of the LPS O1-antigen correlates with resistance to complement-mediated killing. Mechanistic data reveal that the O1-antigen does not inhibit C3b deposition and C5 conversion. In contrast, we see more efficient formation of C5a, and deposition of C6 and C9 when an O-antigen is present. Further downstream analyses revealed that the O1-antigen prevents correct insertion and polymerization of the final MAC component C9 into the bacterial membrane. Altogether, we show that the LPS O1-antigen is a key determining factor for complement resistance by K. pneumoniae and provide insights into the molecular basis of O1-mediated MAC evasion.


Subject(s)
Complement C9 , Klebsiella pneumoniae , O Antigens , Klebsiella pneumoniae/immunology , O Antigens/immunology , O Antigens/metabolism , Humans , Complement C9/metabolism , Complement C9/immunology , Complement Membrane Attack Complex/metabolism , Complement Membrane Attack Complex/immunology , Lipopolysaccharides , Polymerization , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Complement C3b/metabolism , Complement C3b/immunology
2.
Microbiology (Reading) ; 170(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39177453

ABSTRACT

Escherichia coli (E. coli) is a major cause of urinary tract infections, bacteraemia, and sepsis. CFT073 is a prototypic, urosepsis isolate of sequence type (ST) 73. This laboratory, among others, has shown that strain CFT073 is resistant to serum, with capsule and other extracellular polysaccharides imparting resistance. The interplay of such polysaccharides remains under-explored. This study has shown that CFT073 mutants deficient in lipopolysaccharide (LPS) O-antigen and capsule display exquisite serum sensitivity. Additionally, O-antigen and LPS outer core mutants displayed significantly decreased surface K2 capsule, coupled with increased unbound K2 capsule being detected in the supernatant. The R1 core and O6 antigen are involved in the tethering of K2 capsule to the CFT073 cell surface, highlighting the importance of the R1 core in serum resistance. The dependence of capsule on LPS was shown to be post-transcriptional and related to changes in cell surface hydrophobicity. Furthermore, immunofluorescence microscopy suggested that the surface pattern of capsule is altered in such LPS core mutants, which display a punctate capsule pattern. Finally, targeting LPS biosynthesis using sub-inhibitory concentrations of a WaaG inhibitor resulted in increased serum sensitivity and decreased capsule in CFT073. Interestingly, the dependency of capsule on LPS has been observed previously in other Enterobacteria, indicating that the synergy between these polysaccharides is not just strain, serotype or species-specific but may be conserved across several pathogenic Gram-negative species. Therefore, using WaaG inhibitor derivatives to target LPS is a promising therapeutic strategy to reduce morbidity and mortality by reducing or eliminating surface capsule.


Subject(s)
Bacterial Capsules , Lipopolysaccharides , Lipopolysaccharides/metabolism , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , Humans , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/metabolism , O Antigens/genetics , O Antigens/metabolism , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mutation
3.
Nat Commun ; 15(1): 6504, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090110

ABSTRACT

The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.


Subject(s)
O Antigens , O Antigens/genetics , O Antigens/metabolism , O Antigens/biosynthesis , Salmonella/genetics , Salmonella/metabolism , Gene Expression Regulation, Bacterial , Serogroup , Promoter Regions, Genetic , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism
4.
Methods Mol Biol ; 2851: 185-192, 2024.
Article in English | MEDLINE | ID: mdl-39210182

ABSTRACT

Gram-negative bacteria such as Escherichia coli, among intestinal bacteria, have lipopolysaccharide (LPS), which induces inflammation of human intestines. However, lactic acid bacteria (LAB) can improve human intraintestinal conditions. One reason is that ingestion of LAB prevents bacterial diarrhea. This chapter describes a method of LPS elimination using lactic acid bacteria (LAB). First, the LPS concentration is assayed using an LPS assay kit with the limulus cascade reaction made by limulus amebocyte lysate. Some LABs, four bacillus strains and one coccus strain, have LPS-elimination activity. Particularly, the coccus strain Pediococcus pentosaceus eliminates LPS to 43%. The cells fractionate and eliminate four fractions: the extracellular fraction, cell membrane fraction, cytoplasm fraction, and cell wall fraction. Only the cell wall digesting fraction eliminates LPS to 45%. Results confirm that the LAB eliminates all LPS having O-antigen under a low-sugar medium condition at temperatures of 15-30 °C. This method can be used for assay of LPS elimination by LABs exactly and easily for the probiotics field.


Subject(s)
Lactobacillales , Lipopolysaccharides , Lactobacillales/metabolism , Humans , Probiotics , Cell Wall/metabolism , Escherichia coli/metabolism , O Antigens/metabolism , O Antigens/immunology
5.
Proc Natl Acad Sci U S A ; 121(21): e2402554121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748580

ABSTRACT

Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or ß-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to ß-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.


Subject(s)
Glycosyltransferases , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosylation , Citrobacter/metabolism , Citrobacter/genetics , O Antigens/metabolism , O Antigens/chemistry , Polysaccharides/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Polysaccharides, Bacterial/metabolism
6.
J Biol Chem ; 300(7): 107420, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815868

ABSTRACT

Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.


Subject(s)
Bacterial Proteins , Klebsiella pneumoniae , O Antigens , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/genetics , O Antigens/metabolism , O Antigens/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Multigene Family
7.
Appl Environ Microbiol ; 90(6): e0220323, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38747588

ABSTRACT

The O antigen (OAg) polysaccharide is one of the most diverse surface molecules of Gram-negative bacterial pathogens. The structural classification of OAg, based on serological typing and sequence analysis, is important in epidemiology and the surveillance of outbreaks of bacterial infections. Despite the diverse chemical structures of OAg repeating units (RUs), the genetic basis of RU assembly remains poorly understood and represents a major limitation in assigning gene functions in polysaccharide biosynthesis. Here, we describe a genetic approach to interrogate the functional order of glycosyltransferases (GTs). Using Shigella flexneri as a model, we established an initial glycosyltransferase (IT)-controlled system, which allows functional order allocation of the subsequent GT in a 2-fold manner as follows: (i) first, by reporting the growth defects caused by the sequestration of UndP through disruption of late GTs and (ii) second, by comparing the molecular sizes of stalled OAg intermediates when each putative GT is disrupted. Using this approach, we demonstrate that for RfbF and RfbG, the GT involved in the assembly of S. flexneri backbone OAg RU, RfbG, is responsible for both the committed step of OAg synthesis and the third transferase for the second L-Rha. We also show that RfbF functions as the last GT to complete the S. flexneri OAg RU backbone. We propose that this simple and effective genetic approach can be also extended to define the functional order of enzymatic synthesis of other diverse polysaccharides produced both by Gram-negative and Gram-positive bacteria.IMPORTANCEThe genetic basis of enzymatic assembly of structurally diverse O antigen (OAg) repeating units (RUs) in Gram-negative pathogens is poorly understood, representing a major limitation in our understanding of gene functions for the synthesis of bacterial polysaccharides. We present a simple genetic approach to confidently assign glycosyltransferase (GT) functions and the order in which they act during assembly of the OAg RU. We employed this approach to determine the functional order of GTs involved in Shigella flexneri OAg assembly. This approach can be generally applied in interrogating GT functions encoded by other bacterial polysaccharides to advance our understanding of diverse gene functions in the biosynthesis of polysaccharides, key knowledge in advancing biosynthetic polysaccharide production.


Subject(s)
Bacterial Proteins , Glycosyltransferases , O Antigens , Shigella flexneri , Shigella flexneri/genetics , Shigella flexneri/enzymology , Shigella flexneri/metabolism , O Antigens/biosynthesis , O Antigens/genetics , O Antigens/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
mBio ; 15(3): e0301323, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349180

ABSTRACT

A fundamental feature of Gram-negative bacteria is their outer membrane that protects the cell against environmental stressors. This defense is predominantly due to its asymmetry, with glycerophospholipids located in the inner leaflet and lipopolysaccharide (LPS) or lipooligosaccharide (LOS) confined to the outer leaflet. LPS consists of a lipid A anchor, a core oligosaccharide, and a distal O-antigen while LOS lacks O-antigen. While LPS/LOS is typically essential for growth, this is not the case for Acinetobacter baumannii. Despite this unique property, the synthesis of the core oligosaccharide of A. baumannii LOS is not well-described. Here, we characterized the LOS chemotypes of A. baumannii strains with mutations in a predicted core oligosaccharide locus via tandem mass spectrometry. This allowed for an extensive identification of genes required for core assembly that can be exploited to generate precise structural LOS modifications in many A. baumannii strains. We further investigated two chemotypically identical yet phenotypically distinct mutants, ∆2903 and ∆lpsB, that exposed a possible link between LOS and the peptidoglycan cell wall-two cell envelope components whose coordination has not yet been described in A. baumannii. Selective reconstruction of the core oligosaccharide via expression of 2903 and LpsB revealed that these proteins rely on each other for the unusual tandem transfer of two residues, KdoIII and N-acetylglucosaminuronic acid. The data presented not only allow for better usage of A. baumannii as a tool to study outer membrane integrity but also provide further evidence for a novel mechanism of core oligosaccharide assembly. IMPORTANCE: Acinetobacter baumannii is a multidrug-resistant pathogen that produces lipooligosaccharide (LOS), a glycolipid that confers protective asymmetry to the bacterial outer membrane. The core oligosaccharide is a ubiquitous component of LOS that typically follows a well-established model of synthesis. In addition to providing an extensive analysis of the genes involved in the synthesis of the core region, we demonstrate that this organism has evidently diverged from the long-held archetype of core synthesis. Moreover, our data suggest that A. baumannii LOS assembly is important for cell division and likely intersects with the synthesis of the peptidoglycan cell wall, another essential component of the Gram-negative cell envelope. This connection between LOS and cell wall synthesis provides an intriguing foundation for a unique method of outer membrane biogenesis and cell envelope coordination.


Subject(s)
Acinetobacter baumannii , Lipopolysaccharides , Lipopolysaccharides/metabolism , Acinetobacter baumannii/genetics , O Antigens/metabolism , Peptidoglycan/metabolism
9.
Angew Chem Int Ed Engl ; 63(17): e202401541, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38393988

ABSTRACT

Veillonella parvula, prototypical member of the oral and gut microbiota, is at times commensal yet also potentially pathogenic. The definition of the molecular basis tailoring this contrasting behavior is key for broadening our understanding of the microbiota-driven pathogenic and/or tolerogenic mechanisms that take place within our body. In this study, we focused on the chemistry of the main constituent of the outer membrane of V. parvula, the lipopolysaccharide (LPS). LPS molecules indeed elicit pro-inflammatory and immunomodulatory responses depending on their chemical structures. Herein we report the structural elucidation of the LPS from two strains of V. parvula and show important and unprecedented differences in both the lipid and carbohydrate moieties, including the identification of a novel galactofuranose and mannitol-containing O-antigen repeating unit for one of the two strains. Furthermore, by harnessing computational studies, in vitro human cell models, as well as lectin binding solid-phase assays, we discovered that the two chemically diverse LPS immunologically behave differently and have attempted to identify the molecular determinant(s) governing this phenomenon. Whereas pro-inflammatory potential has been evidenced for the lipid A moiety, by contrast a plausible "immune modulating" action has been proposed for the peculiar O-antigen portion.


Subject(s)
Lipopolysaccharides , O Antigens , Humans , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , O Antigens/metabolism , Veillonella/metabolism , Lipid A
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159467, 2024 May.
Article in English | MEDLINE | ID: mdl-38382574

ABSTRACT

Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria Escherichia coli and Salmonella typhi via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of Salmonella LPS, but not E. coli LPS. This labeling of Salmonella LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like Salmonella. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.


Subject(s)
Escherichia coli Proteins , Lipopolysaccharides , Lipopolysaccharides/metabolism , Galactose/metabolism , O Antigens/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents
11.
Int J Biol Macromol ; 261(Pt 1): 129516, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278393

ABSTRACT

The lipopolysaccharides of Herbaspirillum lusitanum P6-12T (HlP6-12T) and H. frisingense GSF30T (HfGSF30T) was isolated by phenol-water extraction from bacterial cells and was characterized using chemical analysis and SDS-PAGE. It was shown that these bacteria produce LPSs that differ in their physicochemical properties and macromolecular organization. In this paper, the lipid A structure of the HlP6-12T LPS, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To prove the effect of the size of micelles on their bioavailability, we examined the activity of both LPSs toward the morphology of wheat seedlings. Analysis of the HlP6-12T and HfGSF30T genomes showed no significant differences between the operons that encode proteins involved in the biosynthesis of the lipids A and core oligosaccharides. The difference may be due to the composition of the O-antigen operon. HfGSF30T has two copies of the rfb operon, with the main one divided into two fragments. In contrast, the HlP6-12T genome contains only a single rfb-containing operon, and the other O-antigen operons are not comparable at all. The integrity of O-antigen-related genes may also affect LPS variability of. Specifically, we have observed a hairpin structure in the middle of the O-antigen glycosyltransferase gene, which led to the division of the gene into two fragments, resulting in incorrect protein synthesis and potential abnormalities in O-antigen production.


Subject(s)
Herbaspirillum , Lipopolysaccharides , Lipopolysaccharides/chemistry , O Antigens/metabolism , Host Microbial Interactions , Herbaspirillum/genetics , Gas Chromatography-Mass Spectrometry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
ACS Infect Dis ; 10(2): 377-383, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38252850

ABSTRACT

Shigellosis poses an ongoing global public health threat. The presence and length of the O-antigen in lipopolysaccharide play critical roles in Shigella pathogenesis. The plasmid-mediated opt gene encodes a phosphoethanolamine (PEtN) transferase that catalyzes the addition of PEtN to the O-antigen of Shigella flexneri serotype X and Y strains, converting them into serotype Xv and Yv strains, respectively. Since 2002, these modified strains have become prevalent in China. Here we demonstrate that PEtN-mediated O-antigen modification in S. flexneri increase the severity of corneal infection in guinea pigs without any adaptive cost. This heightened virulence is associated with epithelial cell adhesion and invasion, as well as an enhanced inflammatory response of macrophage. Notably, PEtN addition allow S. flexneri to attenuate the binding of complement C3 and better resist phagocytosis, potentially contributing to the retention of S. flexneri in the host environment.


Subject(s)
Ethanolamines , O Antigens , Shigella flexneri , Animals , Guinea Pigs , O Antigens/genetics , O Antigens/metabolism , Serotyping , Plasmids , Shigella flexneri/genetics , Shigella flexneri/metabolism
13.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139217

ABSTRACT

In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.


Subject(s)
Bacteriophages , O Antigens , O Antigens/metabolism , Escherichia coli/metabolism , Bacteriophages/metabolism , Coliphages/metabolism , Lipopolysaccharides/metabolism
14.
Mol Oral Microbiol ; 38(6): 471-488, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37941494

ABSTRACT

Protein glycosylation is critical to the quaternary structure and collagen-binding activity of the extracellular matrix protein adhesin A (EmaA) associated with Aggregatibacter actinomycetemcomitans. The glycosylation of this large, trimeric autotransporter adhesin is postulated to be mediated by WaaL, an enzyme with the canonical function to ligate the O-polysaccharide (O-PS) antigen with a terminal sugar of the lipid A-core oligosaccharide of lipopolysaccharide (LPS). In this study, we have determined that the Escherichia coli waaL ortholog (rflA) does not restore collagen binding of a waaL mutant strain of A. actinomycetemcomitans but does restore O-PS ligase activity following transformation of a plasmid expressing waaL. Therefore, a heterologous E. coli expression system was developed constituted of two independently replicating plasmids expressing either waaL or emaA of A. actinomycetemcomitans to directly demonstrate the necessity of ligase activity for EmaA collagen binding. Proper expression of the protein encoded by each plasmid was characterized, and the individually transformed strains did not promote collagen binding. However, coexpression of the two plasmids resulted in a strain with a significant increase in collagen binding activity and a change in the biochemical properties of the protein. These results provide additional data supporting the novel hypothesis that the WaaL ligase of A. actinomycetemcomitans shares a dual role as a ligase in LPS biosynthesis and is required for collagen binding activity of EmaA.


Subject(s)
Ligases , O Antigens , O Antigens/genetics , O Antigens/metabolism , Ligases/metabolism , Aggregatibacter actinomycetemcomitans/genetics , Aggregatibacter actinomycetemcomitans/metabolism , Lipopolysaccharides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Collagen/chemistry , Collagen/metabolism
15.
Int J Biol Macromol ; 253(Pt 4): 126993, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37739281

ABSTRACT

Glycoproteins, in which polysaccharides are usually attached to proteins, are an important class of biomolecules that are widely used as therapeutic agents in clinical treatments for decades. Uropathogenic Escherichia coli (UPEC) O21 has been identified as a serogroup that induces urinary tract infections, with a global increasing number among women and young children. Therefore, there is an urgent need to establish protective vaccines against UPEC infection. Herein, we engineered non-pathogenic E. coli MG1655 to achieve robust, cost-effective de novo biosynthesis of O21 O-antigen polysaccharide-based glycoprotein against UPEC O21. Specifically, this glycoengineered E. coli MG1655 was manipulated for high-efficient glucose-glycerol co-utilization and for the gene cluster installation and O-glycosylation machinery assembly. The key pathways of UDP-sugar precursors were also strengthened to enforce more carbon flux towards the glycosyl donors, which enhanced the glycoprotein titer by 5.6-fold. Further optimization of culture conditions yielded glycoproteins of up to 35.34 mg/L. Glycopeptide MS confirmed the preciset biosynthesis of glycoprotein. This glycoprotein elicited antigen-specific IgG immune responses and significantly reduced kidney and bladder colonization. This bacterial cell-based glyco-platform and optimized strategies can provide a guideline for the biosynthesis of other value-added glycoproteins.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Child , Female , Humans , Child, Preschool , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , O Antigens/genetics , O Antigens/metabolism , Escherichia coli Proteins/metabolism , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Glycoproteins/genetics , Glycoproteins/metabolism
16.
Virol J ; 20(1): 174, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550759

ABSTRACT

BACKGROUND: The interaction between bacteriophages and their hosts is intricate and highly specific. Receptor-binding proteins (RBPs) of phages such as tail fibers and tailspikes initiate the infection process. These RBPs bind to diverse outer membrane structures, including the O-antigen, which is a serogroup-specific sugar-based component of the outer lipopolysaccharide layer of Gram-negative bacteria. Among the most virulent Escherichia coli strains is the Shiga toxin-producing E. coli (STEC) pathotype dominated by a subset of O-antigen serogroups. METHODS: Extensive phylogenetic and structural analyses were used to identify and validate specificity correlations between phage RBP subtypes and STEC O-antigen serogroups, relying on the principle of horizontal gene transfer as main driver for RBP evolution. RESULTS: We identified O-antigen specific RBP subtypes for seven out of nine most prevalent STEC serogroups (O26, O45, O103, O104, O111, O145 and O157) and seven additional E. coli serogroups (O2, O8, O16, O18, 4s/O22, O77 and O78). Eight phage genera (Gamaleya-, Justusliebig-, Kaguna-, Kayfuna-, Kutter-, Lederberg-, Nouzilly- and Uetakeviruses) emerged for their high proportion of serogroup-specific RBPs. Additionally, we reveal sequence motifs in the RBP region, potentially serving as recombination hotspots between lytic phages. CONCLUSION: The results contribute to a better understanding of mosaicism of phage RBPs, but also demonstrate a method to identify and validate new RBP subtypes for current and future emerging serogroups.


Subject(s)
Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Humans , Serogroup , Escherichia coli Infections/microbiology , O Antigens/genetics , O Antigens/metabolism , Gene Transfer, Horizontal , Phylogeny , Shiga-Toxigenic Escherichia coli/genetics , Feces/microbiology
17.
ACS Infect Dis ; 9(8): 1610-1621, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37494550

ABSTRACT

Shigella flexneri is the primary causative agent of worldwide shigellosis. As the pathogen transverses the distinct niches of the gastrointestinal tract it necessitates dynamic adaptation strategies to mitigate host antimicrobials such as dietary fatty acids (FAs) and the bile salt, deoxycholate (DOC). This study investigates the dynamics of the S. flexneri cell envelope, by interrogating adaptations following FA or DOC exposure. We deciphered the effects of FAs and DOC on bacterial membrane fatty acid and lipopolysaccharide (LPS) compositions. We identified novel LPS-based strategies by the pathogen to support resistance to these host compounds. In particular, expression of S. flexneri very-long O antigen (VL-Oag) LPS was found to play a central role in stress mitigation, as VL-Oag protects against antimicrobial FAs, but its presence rendered S. flexneri susceptible to DOC stress. Collectively, this work underpins the importance for S. flexneri to maintain appropriate regulation of cell envelope constituents, in particular VL-Oag LPS, to adequately adapt to diverse stresses during infection.


Subject(s)
Lipopolysaccharides , Shigella flexneri , Shigella flexneri/metabolism , Lipopolysaccharides/metabolism , Bacterial Proteins/metabolism , O Antigens/metabolism , O Antigens/pharmacology , Cell Membrane
18.
Indian J Med Microbiol ; 44: 100381, 2023.
Article in English | MEDLINE | ID: mdl-37356833

ABSTRACT

OBJECTIVES: To assess if congo red could make non-serotypeable Shigella strains serotypeable and to employ molecular docking to determine the basis of the same phenomenon. METHODS: We used 42 bacterial strains of non-serotypeable Shigella collected from 2012 to 2019 for this study. Each bacterial strain was freshly inoculated onto congo red agar and incubated at 37° C for 18-24 h. Bacterial colonies obtained were re-subjected to biochemical tests followed by serotyping and serogrouping. In-silico studies to investigate the interaction between MxiC protein of T3SS and O-antigen LPS with congo red were performed. RESULTS: Of the total 42 non-serotypeable Shigella studied, (26/42)62% were capable of being serotyped following the use of congo red agar, 65% were Shigella flexneri, 19% were Shigella dysenteriae, while 2 strains (7%) each of Shigella boydii and Shigella sonnei were detected. We observed no change in their biochemical properties. The in-silico molecular docking studies revealed high binding affinity between congo red and the B-Chain of Mxi C. Out of the 5 chains of the O-Antigen, congo red showed robust binding with the B-chain with the involvement of a cluster of hydrophobic interactions between them. This may have a crucial role in the conversion of non-serotypeable strains to serotypeable strains on exposure to congo red as observed in our study. CONCLUSION: Congo red agar as a medium converts a sizeable percentage of non-serotypeable Shigella strains to serotypeable Shigella strains.


Subject(s)
Congo Red , Shigella , Humans , Agar/metabolism , Congo Red/metabolism , Serotyping , O Antigens/metabolism , Molecular Docking Simulation , Shigella flexneri/metabolism
19.
Open Biol ; 13(3): 220373, 2023 03.
Article in English | MEDLINE | ID: mdl-36944376

ABSTRACT

The enterobacterial common antigen (ECA) is a carbohydrate polymer that is associated with the cell envelope in the Enterobacteriaceae. ECA contains a repeating trisaccharide which is polymerized by WzyE, a member of the Wzy membrane protein polymerase superfamily. WzyE activity is regulated by a membrane protein polysaccharide co-polymerase, WzzE. Förster resonance energy transfer experiments demonstrate that WzyE and WzzE from Pectobacterium atrosepticum form a complex in vivo, and immunoblotting and cryo-electron microscopy (cryo-EM) analysis confirm a defined stoichiometry of approximately eight WzzE to one WzyE. Low-resolution cryo-EM reconstructions of the complex, aided by an antibody recognizing the C-terminus of WzyE, reveals WzyE sits in the central membrane lumen formed by the octameric arrangement of the transmembrane helices of WzzE. The pairing of Wzy and Wzz is found in polymerization systems for other bacterial polymers, including lipopolysaccharide O-antigens and capsular polysaccharides. The data provide new structural insight into a conserved mechanism for regulating polysaccharide chain length in bacteria.


Subject(s)
Bacteria , Polysaccharides , Cryoelectron Microscopy , Bacteria/metabolism , Oligosaccharides , Membrane Proteins , Lipids , O Antigens/chemistry , O Antigens/metabolism
20.
Biochim Biophys Acta Gen Subj ; 1867(3): 130305, 2023 03.
Article in English | MEDLINE | ID: mdl-36621513

ABSTRACT

Biomineralization on bacterial surface is affected by biomolecules of bacterial cell surface. Lipopolysaccharide (LPS) is the main and outermost component on the extracellular membrane of Gram-negative bacteria. In the present study, the molecular mechanism of LPS in affecting biomineralization of Ag+/Cl- colloids was investigated by taking advantages of two LPS structural deficient mutants of Escherichia coli. The two mutants were generated by impairing the expression of waaP or wbbH genes with CRISPR/Cas9 technology and it induced deficient polysaccharide chain of O-antigen (ΔwbbH) or phosphate groups of core oligosaccharide (ΔwaaP) in LPS structures. There were significant changes of the cell morphology and surface charge of the two mutants in comparing with that of wild type cells. LPS from ΔwaaP mutant showed increased ΔHITC upon interacting with free Ag+ ions than LPS from wild type cells or ΔwbbH mutant, implying the binding affinity of LPS to Ag+ ions is affected by the phosphate groups in core oligosaccharide. LPS from ΔwbbH mutant showed decreased endotherm (ΔQ) upon interacting with Ag+/Cl- colloids than LPS from wild type or ΔwaaP mutant cells, implying LPS polysaccharide chain structure is critical for stabilizing Ag+/Cl- colloids. Biomineralization of Ag+/Cl- colloids on ΔwbbH mutant cell surface showed distinctive morphology in comparison with that of wild type or ΔwaaP mutant cells, which confirmed the critical role of O-antigen of LPS in biomineralization. The present work provided molecular evidence of the relationship between LPS structure, ions, and ionic colloids in biomineralization on bacterial cell surface.


Subject(s)
Lipopolysaccharides , O Antigens , O Antigens/genetics , O Antigens/metabolism , Biomineralization , Escherichia coli/genetics , Escherichia coli/metabolism , Oligosaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL