Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.059
Filter
1.
PLoS One ; 19(8): e0308792, 2024.
Article in English | MEDLINE | ID: mdl-39146282

ABSTRACT

BACKGROUND: The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS: We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS: Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION: GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Glutathione , Occipital Lobe , Humans , Male , Female , Glutathione/metabolism , Glutathione/analysis , Adult , Occipital Lobe/metabolism , Occipital Lobe/diagnostic imaging , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Young Adult , Proton Magnetic Resonance Spectroscopy , Frontal Lobe/metabolism , Oxidative Stress , Middle Aged , Prefrontal Cortex/metabolism , Prefrontal Cortex/diagnostic imaging
2.
Nat Commun ; 15(1): 5531, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982092

ABSTRACT

In everyday life, people need to respond appropriately to many types of emotional stimuli. Here, we investigate whether human occipital-temporal cortex (OTC) shows co-representation of the semantic category and affective content of visual stimuli. We also explore whether OTC transformation of semantic and affective features extracts information of value for guiding behavior. Participants viewed 1620 emotional natural images while functional magnetic resonance imaging data were acquired. Using voxel-wise modeling we show widespread tuning to semantic and affective image features across OTC. The top three principal components underlying OTC voxel-wise responses to image features encoded stimulus animacy, stimulus arousal and interactions of animacy with stimulus valence and arousal. At low to moderate dimensionality, OTC tuning patterns predicted behavioral responses linked to each image better than regressors directly based on image features. This is consistent with OTC representing stimulus semantic category and affective content in a manner suited to guiding behavior.


Subject(s)
Emotions , Magnetic Resonance Imaging , Occipital Lobe , Semantics , Temporal Lobe , Humans , Female , Male , Magnetic Resonance Imaging/methods , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Adult , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging , Young Adult , Emotions/physiology , Brain Mapping , Photic Stimulation , Affect/physiology , Arousal/physiology
3.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39077920

ABSTRACT

Contextual features are integral to episodic memories; yet, we know little about context effects on pattern separation, a hippocampal function promoting orthogonalization of overlapping memory representations. Recent studies suggested that various extrahippocampal brain regions support pattern separation; however, the specific role of the parahippocampal cortex-a region involved in context representation-in pattern separation has not yet been studied. Here, we investigated the contribution of the parahippocampal cortex (specifically, the parahippocampal place area) to context reinstatement effects on mnemonic discrimination, using functional magnetic resonance imaging. During scanning, participants saw object images on unique context scenes, followed by a recognition task involving the repetitions of encoded objects or visually similar lures on either their original context or a lure context. Context reinstatement at retrieval improved item recognition but hindered mnemonic discrimination. Crucially, our region of interest analyses of the parahippocampal place area and an object-selective visual area, the lateral occipital cortex indicated that while during successful mnemonic decisions parahippocampal place area activity decreased for old contexts compared to lure contexts irrespective of object novelty, lateral occipital cortex activity differentiated between old and lure objects exclusively. These results imply that pattern separation of contextual and item-specific memory features may be differentially aided by scene and object-selective cortical areas.


Subject(s)
Magnetic Resonance Imaging , Occipital Lobe , Parahippocampal Gyrus , Pattern Recognition, Visual , Recognition, Psychology , Humans , Female , Male , Parahippocampal Gyrus/physiology , Parahippocampal Gyrus/diagnostic imaging , Young Adult , Adult , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging , Pattern Recognition, Visual/physiology , Recognition, Psychology/physiology , Brain Mapping/methods , Photic Stimulation/methods , Memory, Episodic
4.
PLoS One ; 19(6): e0303796, 2024.
Article in English | MEDLINE | ID: mdl-38905236

ABSTRACT

Visual processing relies on the identification of both local and global features of visual stimuli. While well investigated at the behavioral level, the underlying brain mechanisms are less clear, especially in the context of aging. Using fMRI, we aimed to investigate the neural correlates underlying local and global processing in early and late adulthood. We recruited 77 healthy adults aged 19-77 who completed a visual search task based on 2-level hierarchical stimuli made of squares and/or circles. Participants were instructed to detect a target (a square) at either a local (small) or global (large) level of a hierarchical geometrical form, in the presence or absence of other hierarchical geometrical forms (distractors). At the behavioral level, we revealed high accuracy for all participants, but older participants were slower to detect local targets, specifically in presence of distractors. At the brain level, while both local and global processing were associated with occipital activation, local processing also recruited the anterior insula and dorsal anterior cingulate cortex, that are core regions of the salience network. However, while the presence of distractors in the local condition elicited specifically stronger activation within the right anterior insula for the young group, it was not observed for older participants. In addition, older participants showed less activation than younger participants in the occipital cortex, especially for the most complex conditions. Our findings suggest that the brain correlates underlying local and global processing change with aging, especially for complex visual patterns. These results are discussed in terms of top-down reduction effects from the salience network on primary visual areas, that may lead to specific difficulties to process local visual details in older adults.


Subject(s)
Magnetic Resonance Imaging , Humans , Adult , Male , Female , Middle Aged , Aged , Young Adult , Brain Mapping , Visual Perception/physiology , Photic Stimulation , Brain/physiology , Brain/diagnostic imaging , Aging/physiology , Reaction Time/physiology , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging
5.
Asian J Psychiatr ; 97: 104093, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823080

ABSTRACT

BACKGROUND: Childhood maltreatment (CM) is a well-established risk factor for major depressive disorder (MDD). The neural mechanisms linking childhood maltreatment experiences to changes in brain functional networks and the onset of depression are not fully understood. METHODS: In this study, we enrolled 66 patients with MDD and 31 healthy controls who underwent resting-state fMRI scans and neuropsychological assessments. We employed multivariate linear regression to examine the neural associations of CM and depression, specifically focusing on the bilateral occipital functional connectivity (OFC) networks relevant to MDD. Subsequently, a two-step mediation analysis was conducted to assess whether the OFC network mediated the relationship between CM experiences and the severity of depression. RESULTS: Our study showed that patients with MDD exhibited reduced OFC strength, particularly in the occipito-temporal, parietal, and premotor regions. These reductions were negatively correlated with CM scores and the severity of depression. Notably, the overlapping regions in the bilateral OFC networks, affected by both CM experiences and depressive severity, were primarily observed in the bilateral cuneus, left angular and calcarine, as well as the right middle frontal cortex and superior parietal cortex. Furthermore, the altered strengths of the OFC networks were identified as positive mediators of the impact of CM history on depression symptoms in patients with MDD. CONCLUSION: We have demonstrated that early exposure to CM may increase vulnerability to depression by influencing the brain's network. These findings provide new insights into understanding the pathological mechanism underlying depressive symptoms induced by CM.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Nerve Net , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Female , Adult , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Occipital Lobe/physiopathology , Occipital Lobe/diagnostic imaging , Connectome , Adult Survivors of Child Abuse , Middle Aged , Young Adult
6.
Behav Brain Res ; 471: 115110, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38871131

ABSTRACT

Visual features of separable dimensions conjoin to represent an integrated entity. We investigated how visual features bind to form a complex visual scene. Specifically, we focused on features important for visually guided navigation: direction and distance. Previously, separate works have shown that directions and distances of navigable paths are coded in the occipital place area (OPA). Using functional magnetic resonance imaging (fMRI), we tested how separate features are concurrently represented in the OPA. Participants saw eight types of scenes, in which four of them had one path and the other four had two paths. In single-path scenes, path direction was either to the left or to the right. In double-path scenes, both directions were present. A glass wall was placed in some paths to restrict navigational distance. To test how the OPA represents path directions and distances, we took three approaches. First, the independent-features approach examined whether the OPA codes each direction and distance. Second, the integrated-features approach explored how directions and distances are integrated into path units, as compared to pooled features, using double-path scenes. Finally, the integrated-paths approach asked how separate paths are combined into a scene. Using multi-voxel pattern similarity analysis, we found that the OPA's representations of single-path scenes were similar to other single-path scenes of either the same direction or the same distance. Representations of double-path scenes were similar to the combination of two constituent single-paths, as a combined unit of direction and distance rather than as a pooled representation of all features. These results show that the OPA combines the two features to form path units, which are then used to build multiple-path scenes. Altogether, these results suggest that visually guided navigation may be supported by the OPA that automatically and efficiently combines multiple features relevant for navigation and represent a navigation file.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Male , Female , Adult , Young Adult , Space Perception/physiology , Visual Perception/physiology , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging , Photic Stimulation/methods , Pattern Recognition, Visual/physiology , Spatial Navigation/physiology
7.
Aerosp Med Hum Perform ; 95(7): 375-380, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38915163

ABSTRACT

INTRODUCTION: Modular organization in brain regions often performs specific biological functions and is largely based on anatomically and/or functionally related brain areas. The current study aimed to explore changes in whole-brain modular organization affected by flight training.METHODS: The study included 25 male flight cadets and 24 male controls. The first assessment was performed in 2019, when the subjects were university freshmen. The second assessment was completed in 2022. High spatial resolution structural imaging (T1) and resting-state functional MRI data were collected. Then, 90 cerebral regions were organized into 6 brain modules. The intensity of intra- and intermodular communication was calculated.RESULTS: Mixed-effect regression model analysis identified significantly increased interconnections between the parietal and occipital modules in the cadet group, but significantly decreased interconnections in the control group. This change was largely attributed to flight training.DISCUSSION: Pilots need to control the aircraft (e.g., attitude, heading, etc.) using the stick and pedal in response to the current state of the aircraft displayed by the instrument panel; as such, flying requires a large amount of hand-eye coordination. Day-to-day flight training appeared to intensify the connection between the parietal and occipital modules among cadets.Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased functional connectivity between the parietal and occipital modules among flight cadets. Aerosp Med Hum Perform. 2024; 95(7):375-380.


Subject(s)
Magnetic Resonance Imaging , Occipital Lobe , Parietal Lobe , Pilots , Humans , Male , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Young Adult , Adult , Case-Control Studies , Aerospace Medicine
8.
World Neurosurg ; 188: e223-e232, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777318

ABSTRACT

OBJECTIVE: Surgery is a good treatment option for drug-resistant temporal lobe epilepsy (TLE). 2-deoxy-2-(18F) fluoro-D-glucose (FDG) positron emission tomography (PET) is used to detect epileptic foci as hypometabolic lesions in presurgical evaluation. Visual field defects (VFDs) in the contralateral homonymous upper quadrant are common postoperative complications in TLE. This study aimed to quantify VFDs using pattern deviation probability plots (PDPPs) and examine the effect of hypometabolism in FDG-PET on VFDs. METHODS: This study included 40 patients. Both visual fields were assessed using the Humphrey field analyzer preoperatively and 3 months and 2 years postoperatively. PDPPs with <0.5% confidence level counted in the contralateral homonymous upper quadrant. FDG-PET results were compared between groups with (15 patients) and without (24 patients) hypometabolism in the optic radiation. RESULTS: All 40 patients were evaluated by Humphrey field analyzer at 3 months postoperatively and 39 at 2 years postoperatively. The incidence of VFDs 3 months postoperatively was 35/40 (87.5%), and 17/40 (42.5%) patients had severe VFDs. In cases of surgery on the left temporal lobe, ipsilateral eyes appeared to be more significantly affected than contralateral eyes. VFDs were more severe in patients with FDG hypometabolism than in those without hypometabolism in posteromedial temporal and medial occipital cortex (P < 0.01); however, 85% of patients with FDG hypometabolism had a reduced VFD 2 years postoperatively. CONCLUSIONS: PDPP counting is useful for quantifying VFDs. Preoperative dysfunction indicated by preoperative FDG-PET in the posteromedial temporal and medial occipital cortex could enhance VFDs early after TLE surgery.


Subject(s)
Epilepsy, Temporal Lobe , Fluorodeoxyglucose F18 , Occipital Lobe , Positron-Emission Tomography , Postoperative Complications , Temporal Lobe , Humans , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/metabolism , Female , Male , Adult , Positron-Emission Tomography/methods , Retrospective Studies , Occipital Lobe/diagnostic imaging , Occipital Lobe/metabolism , Occipital Lobe/surgery , Temporal Lobe/metabolism , Temporal Lobe/diagnostic imaging , Temporal Lobe/surgery , Follow-Up Studies , Middle Aged , Young Adult , Postoperative Complications/metabolism , Postoperative Complications/diagnostic imaging , Visual Fields/physiology , Radiopharmaceuticals , Adolescent , Vision Disorders/etiology , Vision Disorders/diagnostic imaging , Vision Disorders/metabolism , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/metabolism
9.
J Perinatol ; 44(8): 1178-1185, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38802655

ABSTRACT

OBJECTIVE: This study was to systematically assess the occipital lobe gray and white matter volume of isolated ventriculomegaly (IVM) fetuses with MRI and to follow up the neurodevelopment of participants. METHOD: MRI was used to evaluate 37 IVM fetuses and 37 control fetuses. The volume of gray and white matter in each fetal occipital gyrus was manually segmented and compared, and neurodevelopment was followed up and assessed in infancy and early childhood. RESULT: Compared with the control group, the volume of gray matter in occipital lobe increased in the IVM group, and the incidence of neurodevelopmental delay increased. CONCLUSION: We tested the hypothesis that prenatal diagnosis IVM represents a biological marker for development in fetal occipital lobe. Compared with the control group, the IVM group showed differences in occipital gray matter development and had a higher risk of neurodevelopmental delay.


Subject(s)
Hydrocephalus , Magnetic Resonance Imaging , Occipital Lobe , Humans , Female , Occipital Lobe/diagnostic imaging , Hydrocephalus/diagnostic imaging , Pregnancy , Infant , Male , Neurodevelopmental Disorders/diagnostic imaging , Case-Control Studies , Gray Matter/diagnostic imaging , Prenatal Diagnosis/methods , Infant, Newborn , White Matter/diagnostic imaging , Adult , Gestational Age , Child, Preschool
10.
Auris Nasus Larynx ; 51(4): 728-732, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821026

ABSTRACT

This case report presents a rare case of infantile nystagmus syndrome (INS) in which the direction of infantile nystagmus (IN) was vertical. A 66-year-old woman was referred to our department for investigation of abnormal eye movements. She showed a disordered field of view with a homonymous hemianopia in the lower left quadrant and vertical gaze-evoked nystagmus, but there were no other abnormal neurological findings. She did not complain of an oscillopsia. Imaging revealed that the cause of hemianopia was atrophy and low cerebral blood flow in the right occipital lobe. The vertical nystagmus became strong when attempting to fixate to stationary targets. A reversed optokinetic nystagmus response was observed in the vertical optokinetic nystagmus test. From these eye movements, we diagnosed her nystagmus as vertical IN. Patients with INS see everything by saccades. IN consists of the alternate appearance of saccades and preceding slow eye movements. For these eye movements, a wide visual field is necessary. In this case, vertical IN was caused by the wider vertical than horizontal visual field resulting from homonymous hemianopia. Therefore, the direction of IN is horizontal in most patients with INS because their horizontal visual field is the widest field.


Subject(s)
Hemianopsia , Nystagmus, Congenital , Visual Fields , Humans , Female , Aged , Hemianopsia/physiopathology , Hemianopsia/etiology , Nystagmus, Congenital/physiopathology , Visual Fields/physiology , Magnetic Resonance Imaging , Occipital Lobe/physiopathology , Occipital Lobe/diagnostic imaging , Nystagmus, Optokinetic/physiology , Saccades/physiology , Atrophy , Nystagmus, Pathologic/physiopathology
11.
Cortex ; 176: 129-143, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781910

ABSTRACT

Does the human brain represent perspectival shapes, i.e., viewpoint-dependent object shapes, especially in relatively higher-level visual areas such as the lateral occipital cortex? What is the temporal profile of the appearance and disappearance of neural representations of perspectival shapes? And how does attention influence these neural representations? To answer these questions, we employed functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and multivariate decoding techniques to investigate spatiotemporal neural representations of perspectival shapes. Participants viewed rotated objects along with the corresponding objective shapes and perspectival shapes (i.e., rotated round, round, and oval) while we measured their brain activities. Our results revealed that shape classifiers trained on the basic shapes (i.e., round and oval) consistently identified neural representations in the lateral occipital cortex corresponding to the perspectival shapes of the viewed objects regardless of attentional manipulations. Additionally, this classification tendency toward the perspectival shapes emerged approximately 200 ms after stimulus presentation. Moreover, attention influenced the spatial dimension as the regions showing the perspectival shape classification tendency propagated from the occipital lobe to the temporal lobe. As for the temporal dimension, attention led to a more robust and enduring classification tendency towards perspectival shapes. In summary, our study outlines a spatiotemporal neural profile for perspectival shapes that suggests a greater degree of perspectival representation than is often acknowledged.


Subject(s)
Attention , Brain Mapping , Magnetic Resonance Imaging , Magnetoencephalography , Humans , Magnetoencephalography/methods , Magnetic Resonance Imaging/methods , Attention/physiology , Male , Female , Adult , Young Adult , Brain Mapping/methods , Photic Stimulation/methods , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging , Pattern Recognition, Visual/physiology , Form Perception/physiology , Brain/physiology , Brain/diagnostic imaging
12.
World Neurosurg ; 187: 124-132, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641246

ABSTRACT

OBJECTIVE: Magnetic resonance imaging-guided laser interstitial thermal therapy (MRIgLITT) has been proven safe and effective for the treatment of focal epilepsy of different etiologies. It has also been used to disconnect brain tissue in more extensive or diffuse epilepsy, such as corpus callosotomy and hemispherotomy. METHODS: In this study, we report a case of temporo-parieto-occipital disconnection surgery performed using MRIgLITT assisted by a robotic arm for refractory epilepsy of the posterior quadrant. A highly realistic cadaver simulation was performed before the actual surgery. RESULTS: The patient was a 14-year-old boy whose seizures began at the age of 8. The epilepsy was a result of a left perinatal ischemic event that caused a porencephalic cyst, and despite receiving multiple antiepileptic drugs, the patient continued to experience daily seizures which led to the recommendation of surgery. CONCLUSIONS: A Wada test lateralized language in the right hemisphere. Motor and sensory function was confirmed in the left hemisphere through magnetic resonance imaging functional studies and NexStim. The left MRIgLITT temporo-parieto-occipital disconnection disconnection was achieved using 5 laser fibers. The patient followed an excellent postoperative course and was seizure-free, with no additional neurological deficits 24 months after the surgery.


Subject(s)
Drug Resistant Epilepsy , Laser Therapy , Magnetic Resonance Imaging , Occipital Lobe , Robotic Surgical Procedures , Humans , Male , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Adolescent , Laser Therapy/methods , Occipital Lobe/surgery , Occipital Lobe/diagnostic imaging , Robotic Surgical Procedures/methods , Parietal Lobe/surgery , Parietal Lobe/diagnostic imaging , Temporal Lobe/surgery , Temporal Lobe/diagnostic imaging , Surgery, Computer-Assisted/methods , Neurosurgical Procedures/methods
13.
Nat Commun ; 15(1): 3407, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649694

ABSTRACT

The perception and neural processing of sensory information are strongly influenced by prior expectations. The integration of prior and sensory information can manifest through distinct underlying mechanisms: focusing on unexpected input, denoted as prediction error (PE) processing, or amplifying anticipated information via sharpened representation. In this study, we employed computational modeling using deep neural networks combined with representational similarity analyses of fMRI data to investigate these two processes during face perception. Participants were cued to see face images, some generated by morphing two faces, leading to ambiguity in face identity. We show that expected faces were identified faster and perception of ambiguous faces was shifted towards priors. Multivariate analyses uncovered evidence for PE processing across and beyond the face-processing hierarchy from the occipital face area (OFA), via the fusiform face area, to the anterior temporal lobe, and suggest sharpened representations in the OFA. Our findings support the proposition that the brain represents faces grounded in prior expectations.


Subject(s)
Brain Mapping , Facial Recognition , Magnetic Resonance Imaging , Humans , Male , Female , Adult , Young Adult , Facial Recognition/physiology , Brain/physiology , Brain/diagnostic imaging , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Face , Photic Stimulation , Neural Networks, Computer , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging , Pattern Recognition, Visual/physiology , Visual Perception/physiology
14.
J Cell Mol Med ; 28(8): e18245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613356

ABSTRACT

Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (H3/IDH-wt-pHGG) is a newly defined entity amongst brain tumours, primarily reported in children. It is a rare, ill-defined type of tumour and the only method to diagnose it is DNA methylation profiling. The case we report here carries new knowledge about this tumour which may, in fact, occur in elderly patients, be devoid of evocative genomic abnormalities reported in children and harbour a misleading mutation.


Subject(s)
Brain Neoplasms , Glioma , White Matter , Aged , Female , Humans , Child , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Genomics , Occipital Lobe/diagnostic imaging
15.
PeerJ ; 12: e17228, 2024.
Article in English | MEDLINE | ID: mdl-38618564

ABSTRACT

Background: Driving is a complex skill involving various cognitive activities. Previous research has explored differences in the brain structures related to the navigational abilities of drivers compared to non-drivers. However, it remains unclear whether changes occur in the structures associated with low-level sensory and higher-order cognitive abilities in drivers. Methods: Gray matter volume, assessed via voxel-based morphometry analysis of T1-weighted images, is considered a reliable indicator of structural changes in the brain. This study employs voxel-based morphological analysis to investigate structural differences between drivers (n = 22) and non-drivers (n = 20). Results: The results indicate that, in comparison to non-drivers, drivers exhibit significantly reduced gray matter volume in the middle occipital gyrus, middle temporal gyrus, supramarginal gyrus, and cerebellum, suggesting a relationship with driving-related experience. Furthermore, the volume of the middle occipital gyrus, and middle temporal gyrus, is found to be marginally negative related to the years of driving experience, suggesting a potential impact of driving experience on gray matter volume. However, no significant correlations were observed between driving experiences and frontal gray matter volume. Conclusion: These findings suggest that driving skills and experience have a pronounced impact on the cortical areas responsible for low-level sensory and motor processing. Meanwhile, the influence on cortical areas associated with higher-order cognitive function appears to be minimal.


Subject(s)
Brain , Gray Matter , Gray Matter/diagnostic imaging , Brain/diagnostic imaging , Cerebellum , Cognition , Occipital Lobe/diagnostic imaging
16.
J Affect Disord ; 355: 265-282, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38554884

ABSTRACT

N-acetyl aspartate (NAA) is a marker of neuronal integrity and metabolism. Deficiency in neuronal plasticity and hypometabolism are implicated in Major Depressive Disorder (MDD) pathophysiology. To test if cerebral NAA concentrations decrease progressively over the MDD course, we conducted a pre-registered meta-analysis of Proton Magnetic Resonance Spectroscopy (1H-MRS) studies comparing NAA concentrations in chronic MDD (n = 1308) and first episode of depression (n = 242) patients to healthy controls (HC, n = 1242). Sixty-two studies were meta-analyzed using a random-effect model for each brain region. NAA concentrations were significantly reduced in chronic MDD compared to HC within the frontal lobe (Hedges' g = -0.330; p = 0.018), the occipital lobe (Hedges' g = -0.677; p = 0.007), thalamus (Hedges' g = -0.673; p = 0.016), and frontal (Hedges' g = -0.471; p = 0.034) and periventricular white matter (Hedges' g = -0.478; p = 0.047). We highlighted a gap of knowledge regarding NAA levels in first episode of depression patients. Sensitivity analyses indicated that antidepressant treatment may reverse NAA alterations in the frontal lobe. We highlighted field strength and correction for voxel grey matter as moderators of NAA levels detection. Future studies should assess NAA alterations in the early stages of the illness and their longitudinal progression.


Subject(s)
Aspartic Acid , Depressive Disorder, Major , Proton Magnetic Resonance Spectroscopy , Humans , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Occipital Lobe/metabolism , Occipital Lobe/diagnostic imaging , Frontal Lobe/metabolism , Frontal Lobe/diagnostic imaging , Chronic Disease , Thalamus/metabolism , Thalamus/diagnostic imaging , White Matter/diagnostic imaging , White Matter/metabolism
17.
Hum Brain Mapp ; 45(2): e26583, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339902

ABSTRACT

Although it has been established that cross-modal activations occur in the occipital cortex during auditory processing among congenitally and early blind listeners, it remains uncertain whether these activations in various occipital regions reflect sensory analysis of specific sound properties, non-perceptual cognitive operations associated with active tasks, or the interplay between sensory analysis and cognitive operations. This fMRI study aimed to investigate cross-modal responses in occipital regions, specifically V5/MT and V1, during passive and active pitch perception by early blind individuals compared to sighted individuals. The data showed that V5/MT was responsive to pitch during passive perception, and its activations increased with task complexity. By contrast, widespread occipital regions, including V1, were only recruited during two active perception tasks, and their activations were also modulated by task complexity. These fMRI results from blind individuals suggest that while V5/MT activations are both stimulus-responsive and task-modulated, activations in other occipital regions, including V1, are dependent on the task, indicating similarities and differences between various visual areas during auditory processing.


Subject(s)
Occipital Lobe , Pitch Perception , Humans , Occipital Lobe/diagnostic imaging , Pitch Perception/physiology , Auditory Perception/physiology , Blindness/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Mapping/methods
18.
Commun Biol ; 7(1): 165, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38337012

ABSTRACT

Adaptive decision-making often requires one to infer unobservable states based on incomplete information. Bayesian logic prescribes that individuals should do so by estimating the posterior probability by integrating the prior probability with new information, but the neural basis of this integration is incompletely understood. We record fMRI during a task in which participants infer the posterior probability of a hidden state while we independently modulate the prior probability and likelihood of evidence regarding the state; the task incentivizes participants to make accurate inferences and dissociates expected value from posterior probability. Here we show that activation in a region of left parieto-occipital cortex independently tracks the subjective posterior probability, combining its subcomponents of prior probability and evidence likelihood, and reflecting the individual participants' systematic deviations from objective probabilities. The parieto-occipital cortex is thus a candidate neural substrate for humans' ability to approximate Bayesian inference by integrating prior beliefs with new information.


Subject(s)
Cerebral Cortex , Occipital Lobe , Humans , Bayes Theorem , Cerebral Cortex/physiology , Probability , Occipital Lobe/diagnostic imaging
19.
Brain ; 147(7): 2522-2529, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38289871

ABSTRACT

Lesions in the language-dominant ventral occipitotemporal cortex (vOTC) can result in selective impairment of either reading or naming, resulting in alexia or anomia. Yet, functional imaging studies that show differential activation for naming and reading do not reveal activity exclusively tuned to one of these inputs. To resolve this dissonance in the functional architecture of the vOTC, we used focused stimulation to the vOTC in 49 adult patients during reading and naming, and generated a population-level, probabilistic map to evaluate if reading and naming are clearly dissociable within individuals. Language mapping (50 Hz, 2829 stimulations) was performed during passage reading (216 positive sites) and visual naming (304 positive sites). Within the vOTC, we isolated sites that selectively disrupted reading (24 sites in 11 patients) or naming (27 sites in 12 patients), and those that disrupted both processes (75 sites in 21 patients). The anteromedial vOTC had a higher probability of producing naming disruption, while posterolateral regions resulted in greater reading-specific disruption. Between them lay a multi-modal region where stimulation disrupted both reading and naming. This work provides a comprehensive view of vOTC organization-the existence of a heteromodal cortex critical to both reading and naming, along with a causally dissociable unimodal naming cortex, and a reading-specific visual word form area in the vOTC. Their distinct roles as associative regions may thus relate to their connectivity within the broader language network that is disrupted by stimulation, more than to highly selective tuning properties. Our work also implies that pre-surgical mapping of both reading and naming is essential for patients requiring vOTC resections, as these functions are not co-localized, and such mapping may prevent the occurrence of unexpected deficits.


Subject(s)
Brain Mapping , Occipital Lobe , Reading , Temporal Lobe , Humans , Male , Female , Middle Aged , Occipital Lobe/diagnostic imaging , Occipital Lobe/physiopathology , Adult , Temporal Lobe/physiopathology , Temporal Lobe/diagnostic imaging , Brain Mapping/methods , Aged , Magnetic Resonance Imaging , Young Adult , Language , Photic Stimulation/methods
20.
BMC Complement Med Ther ; 24(1): 43, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245739

ABSTRACT

OBJECTIVE: To investigate the changes in amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) values before and after acupuncture in young women with non-menstrual migraine without aura (MWoA) through rest blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS: Patients with non-menstrual MWoA (Group 1, n = 50) and healthy controls (Group 2, n = 50) were recruited. fMRI was performed in Group 1 at 2 time points: before acupuncture (time point 1, TP1); and after the end of all acupuncture sessions (time point 2, TP2), and performed in Group 2 as a one-time scan. Patients in Group 1 were assessed with the Migraine Disability Assessment Questionnaire (MIDAS) and the Short-Form McGill Pain Questionnaire (SF-MPQ) at TP1 and TP2 after fMRI was performed. The ALFF and DC values were compared within Group 1 at two time points and between Group 1 and Group2. The correlation between ALFF and DC values with the statistical differences and the clinical scales scores were analyzed. RESULTS: Brain activities increased in the left fusiform gyrus and right angular gyrus, left middle occipital gyrus, and bilateral prefrontal cortex and decreased in left inferior parietal lobule in Group 1, which had different ALFF values compared with Group 2 at TP1. The bilateral fusiform gyrus, bilateral inferior temporal gyrus and right middle temporal gyrus increased and right angular gyrus, right superior marginal gyrus, right inferior parietal lobule, right middle occipital gyrus, right superior frontal gyrus, right middle frontal gyrus, right anterior central gyrus, and right supplementary motor area decreased in activity in Group 1 had different DC values compared with Group 2 at TP1. ALFF and DC values of right inferior temporal gyrus, right fusiform gyrus and right middle temporal gyrus were decreased in Group1 at TP1 compared with TP2. ALFF values in the left middle occipital area were positively correlated with the pain degree at TP1 in Group1 (correlation coefficient r, r = 0.827, r = 0.343; P < 0.01, P = 0.015). The DC values of the right inferior temporal area were positively correlated with the pain degree at TP1 in Group 1 (r = 0.371; P = 0.008). CONCLUSION: Spontaneous brain activity and network changes in young women with non-menstrual MwoA were altered by acupuncture. The right temporal area may be an important target for acupuncture modulated brain function in young women with non-menstrual MwoA.


Subject(s)
Acupuncture Therapy , Migraine without Aura , Humans , Female , Magnetic Resonance Imaging/methods , Occipital Lobe/diagnostic imaging , Pain
SELECTION OF CITATIONS
SEARCH DETAIL