Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.635
Filter
1.
Toxins (Basel) ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38922171

ABSTRACT

Viticulture has been an important economic sector for centuries. In recent decades, global wine production has fluctuated between 250 and almost 300 million hectoliters, and in 2022, the value of wine exports reached EUR 37.6 billion. Climate change and the associated higher temperatures could favor the occurrence of ochratoxin A (OTA) in wine. OTA is a mycotoxin produced by some species of the genera Aspergillus and Penicillium and has nephrotoxic, immunotoxic, teratogenic, hepatotoxic, and carcinogenic effects on animals and humans. The presence of this toxin in wine is related to the type of wine-red wines are more frequently contaminated with OTA-and the geographical location of the vineyard. In Europe, the lower the latitude, the greater the risk of OTA contamination in wine. However, climate change could increase the risk of OTA contamination in wine in other regions. Due to their toxic effects, the development of effective and environmentally friendly methods to prevent, decontaminate, and degrade OTA is essential. This review summarises the available research on biological aspects of OTA prevention, removal, and degradation.


Subject(s)
Food Contamination , Ochratoxins , Wine , Ochratoxins/analysis , Wine/analysis , Food Contamination/analysis , Food Contamination/prevention & control , Animals , Humans
2.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1818-1825, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812194

ABSTRACT

A label-free fluorescence method based on malachite green/aptamer was developed for the detection of ochratoxin A(OTA) in traditional Chinese medicines. Malachite green itself exhibits weak fluorescence. Upon interaction with the aptamer specific to OTA, the G-quadruplex structure of the aptamer provides a protective microenvironment for malachite green, which significantly enhances its fluorescence signal. After OTA is added, preferential binding occurs between the aptamer and OTA, and malachite green will be released from the aptamer, which weakens the fluorescence signal. According to this principle, this paper established a fluorescence method with the aptamer of OTA as the recognition element and malachite green as the fluorescent probe for the detection of OTA in traditional Chinese medicines. The key experimental factors such as the concentrations of metal ions, aptamer, and malachite green were optimized to improve the performance of the method. OTA was detected under the optimal experimental conditions, and the results showed that with the increase in OTA concentration, the fluorescence signal gradually weakened. Within the range of 20-1 000 nmol·L~(-1), the OTA concentration was linearly correlated with the fluorescence signal ratio ΔF/F(ΔF=F_0-F, where F_0 is the fluorescence signal of aptamer/malachite green, and F is the fluorescence signal of OTA/aptamer/malachite green), with R~2 of 0.995. The limit of detection of the established method was 7.1 nmol·L~(-1). Furthermore, three substances structurally similar to OTA and two mycotoxins that may coexist with OTA were selected for experiments, which aimed to examine the cross-reactivity and specificity of the established method. The cross-reactivity experiments demonstrated that the interferers did not significantly affect the fluorescence signal of the detection system. The specificity experiments revealed that when mycotoxins were mixed with OTA, the fluorescence signal generated by the mixture closely resembled that of OTA itself. The results indicated that even in the presence of interferents, the established method remained unaffected and demonstrated excellent specificity. Additionally, this method exhibited remarkable reproducibility and stability. In the case of simple centrifugation and dilution of traditional Chinese medicine samples(Puerariae Lobatae Radix, Sophorae Flavescentis Radix, and Periplocae Cortex), the OTA detection method was applicable, with recovery rates ranging from 91.5% to 121.3%. Notably, this approach does not need complex pretreatment of traditional Chinese medicines while offering simple operation, low detection costs, and short detection time. Furthermore, by incorporating aptamers into the quality evaluation of traditional Chinese medicines, this method expands the application scope of aptamers.


Subject(s)
Aptamers, Nucleotide , Drugs, Chinese Herbal , Ochratoxins , Rosaniline Dyes , Rosaniline Dyes/chemistry , Rosaniline Dyes/analysis , Ochratoxins/analysis , Ochratoxins/chemistry , Aptamers, Nucleotide/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Spectrometry, Fluorescence/methods , Drug Contamination/prevention & control , Fluorescence , Medicine, Chinese Traditional
3.
ACS Sens ; 9(6): 3253-3261, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38785085

ABSTRACT

In conventional ratiometric photoelectrochemical (PEC) sensors, the detection and reference signals are output sequentially from two independent photosensitive materials. In such a "two-to-two" ratiometric mode, unavoidable difference during dual-interface modification exists, resulting in questionable ratiometric signals and detection results. To address this issue, we propose a novel "one-to-two" ratiometric PEC sensor on a single electrode interface through pH-modulated band alignment engineering. The double ratiometric signals are generated by the synergistic action of a pH-responsive CuTCPP/WS2 photoelectric substrate material and the i-motif sensing tool. Specifically, a ternary heterostructure to generate a photoanodic detection signal is formed under alkaline conditions between CuTCPP/WS2 and signal label CdS QDs binding to the i-motif. While under acidic conditions, a photocurrent polarity conversion and signaling labels detachment, induced by the band realignment of CuTCPP/WS2 and the i-motif conformational switching, produce a reliable internal reference photocathodic signal. The feasibility of this two-wing signal generation strategy is validated by detecting mycotoxin ochratoxin A, which achieves accurate and reliable ratio detection results. Overall, this work provides guidance for the design of a PEC ratiometric determination system and exhibits great potential to be applied in practical analysis research.


Subject(s)
Electrochemical Techniques , Quantum Dots , Hydrogen-Ion Concentration , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Quantum Dots/chemistry , Ochratoxins/analysis , Metal-Organic Frameworks/chemistry , Cadmium Compounds/chemistry , Sulfides/chemistry , Limit of Detection , Electrodes
4.
J Mater Chem B ; 12(24): 5861-5868, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38775046

ABSTRACT

The development of a simple, rapid, and sensitive technology for the simultaneous detection of mycotoxins is of great significance in ensuring the safety of foods and drugs. Herein, a fluorescence aptasensor with high sensitivity and reproducibility for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) was developed. In this sensing system, AFB1 and OTA aptamers were co-immobilized on the surface of magnetic beads (MBs) to form a Y-shaped structure through the principle of complementary base pairing, and were used as recognition probes to specifically capture the target. Activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) was used as a signal amplification strategy to improve the sensitivity. The initiator modified at the end of an antibody initiates the ARGET ATRP reaction. Different fluorescence signals were designed to achieve the simultaneous detection of OTA and AFB1 with limits of 426.18 and 79.55 fg mL-1 for AFB1 and OTA, respectively. In addition, experiments were conducted on three types of samples, and the recoveries of the two mycotoxins ranged from 87.30% to 109.50%, with relative standard deviations ranging from 0.50% to 4.92% under reproducible conditions. The results suggest that the developed aptasensor is sufficient to meet the different regulatory requirements of the two mycotoxins in food and drug safety and shows great potential.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Aflatoxin B1/analysis , Ochratoxins/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Polymerization , Limit of Detection , Electron Transport
5.
Food Res Int ; 183: 114214, 2024 May.
Article in English | MEDLINE | ID: mdl-38760141

ABSTRACT

Ochratoxin A (OTA) is a toxin produced by several Aspergillus species, mainly those belonging to section Circumdati and section Nigri. The presence of OTA in cheese has been reported recently in cave cheese in Italy. As artisanal cheese production in Brazil has increased, the aim of this study was to investigate the presence of ochratoxin A and related fungi in artisanal cheese consumed in Brazil. A total of 130 samples of artisanal cheeses with natural moldy rind at different periods of maturation were collected. Of this total, 79 samples were collected from 6 producers from Canastra region in the state of Minas Gerais, since this is the largest artisanal cheese producer region; 13 samples from one producer in the Amparo region in the state of São Paulo and 36 samples from markets located in these 2 states. Aspergillus section Circumdati occurred in samples of three producers and some samples from the markets. A. section Circumdati colony counts varied from 102 to 106 CFU/g. Molecular analysis revealed Aspergillus westerdijkiae (67 %) as the most frequent species, followed by Aspergillus ostianus (22 %), and Aspergillus steynii (11 %). All of these isolates of A. section Circumdati were able to produce OTA in Yeast Extract Sucrose Agar (YESA) at 25 °C/7 days. OTA was found in 22 % of the artisanal cheese samples, ranging from 1.0 to above 1000 µg/kg, but only five samples had OTA higher than 1000 µg/kg. These findings emphasize the significance of ongoing monitoring and quality control in the artisanal cheese production process to minimize potential health risks linked to OTA contamination.


Subject(s)
Aspergillus , Cheese , Food Contamination , Food Microbiology , Ochratoxins , Ochratoxins/biosynthesis , Ochratoxins/analysis , Cheese/microbiology , Cheese/analysis , Brazil , Aspergillus/metabolism , Food Contamination/analysis , Colony Count, Microbial
6.
Toxins (Basel) ; 16(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38787065

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established for its quantification in mice, the primary animal model in this field, that include pivotal tissues in this area of research, such as the intestine and brain. To address this gap, we developed and validated a highly sensitive, rapid, and simple method using HPLC-FLD for OTA determination in mice tissues (kidney, liver, brain, and intestine) as well as plasma samples. The method was rigorously validated for selectivity, linearity, accuracy, precision, recovery, dilution integrity, carry-over effect, stability, and robustness, meeting the validation criteria outlined by FDA and EMA guidelines. Furthermore, the described method enables the quantification of OTA in each individual sample using minimal tissue mass while maintaining excellent recovery values. The applicability of the method was demonstrated in a repeated low-dose OTA study in Balb/c mice, which, together with the inclusion of relevant and less common tissues in the validation process, underscore its suitability for neurodegeneration-related research.


Subject(s)
Mice, Inbred BALB C , Ochratoxins , Ochratoxins/analysis , Ochratoxins/blood , Animals , Chromatography, High Pressure Liquid/methods , Neurodegenerative Diseases , Mice , Reproducibility of Results , Male , Female , Tissue Distribution , Spectrometry, Fluorescence , Kidney/metabolism
7.
Food Res Int ; 187: 114389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763651

ABSTRACT

Ochratoxin A (OTA), zearalenone (ZEN), and deoxynivalenol (DON) are mycotoxins whose exposure is associated with various adverse health effects, including cancer and renal disorders, estrogenic effects, and immunosuppressive and gastrointestinal disorders, respectively. Infants (<2 years) are the most vulnerable group to mycotoxins, representing a unique combination of restricted food consumption types, low body weight, lower ability to eliminate toxins, and more future years to accumulate toxins. This study aimed to estimate the infant́s exposure to OTA, DON, and ZEN due to the consumption of milk formula and baby cereals in Chile. Milk formula samples (n = 41) and baby cereals (n = 30) were collected and analyzed using commercial ELISA kits for OTA, DON, and ZEA determination. Exposure was assessed by the Estimated Daily Intake (EDI) approach (mean and worst-case scenario, WCS) with the levels found in a modified Lower Bound (mLB) and Upper Bound (UB); ideal consumption (<6m, 7-12 m, and 13-24 m); adjusted by the weight of each group. The risk was estimated by comparing the EDI with a reference tolerable daily intake or by the margin of exposure (MOE) in the case of OTA. DON and OTA occurrence in infant formula were 34 % and 41 %, respectively. The co-occurrence between these mycotoxins was 22 %. Mycotoxin contents were below LOQ values except for OTA determined in one sample (0.29 ng/ml). No milk formulae were contaminated with ZEN. In the case of baby cereals, the occurrences were 17 % for OTA, 30 % for DON, and 7 % for ZEN, all below LOQ. Co-occurrence was seen in two samples between ZEN and OTA. According to exposure calculations, the MOE for OTA was less than 10,000 in all models for milk formula between 0 to 12 months of age and in the UB and WCS for cereal consumption. Health concerns were observed for DON in the WCS and UB for milk consumption in all ages and only in the UB WCS for cereal consumption. Considering the high consumption of milk formula in these age groups, regulation of OTA and other co-occurring mycotoxins in infant milk and food is strongly suggested.


Subject(s)
Dietary Exposure , Edible Grain , Food Contamination , Infant Formula , Ochratoxins , Trichothecenes , Zearalenone , Humans , Zearalenone/analysis , Infant Formula/chemistry , Chile , Edible Grain/chemistry , Infant , Trichothecenes/analysis , Food Contamination/analysis , Ochratoxins/analysis , Dietary Exposure/analysis , Dietary Exposure/adverse effects , Risk Assessment , Infant, Newborn , Infant Food/analysis
8.
Food Chem ; 451: 139427, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692237

ABSTRACT

Here, we report a monomer planarity modulation strategy for room-temperature constructing molecularly imprinted-covalent organic frameworks (MI-COFs) for selective extraction of ochratoxin A (OTA). 2,4,6-triformylphloroglucinol (Tp) was used as basic building block, while three amino monomers with different planarity were employed as modulators to explore the effect of planarity on the selectivity of MI-COFs. The MI-TpTapa constructed from Tp and the lowest planarity of monomer Tapa gave the highest selectivity for OTA, and was further used as the adsorbent for dispersed-solid phase extraction (DSPE) of OTA in alcohol samples. Coupling MI-TpTapa based DSPE with high-performance liquid chromatography allowed the matrix-effect free determination of OTA in alcohol samples with the limit of detection of 0.023 µg kg-1 and the recoveries of 91.4-97.6%. The relative standard deviation (RSD, n = 6) of intra and inter day was <3.2%. This work provides a new way to construct MI-COFs for selective extraction of hazardous targets.


Subject(s)
Food Contamination , Molecular Imprinting , Ochratoxins , Solid Phase Extraction , Ochratoxins/analysis , Ochratoxins/isolation & purification , Ochratoxins/chemistry , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Chromatography, High Pressure Liquid , Food Contamination/analysis , Adsorption , Alcohols/chemistry , Alcohols/isolation & purification , Metal-Organic Frameworks/chemistry
9.
Food Chem ; 451: 139496, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703729

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin that globally contaminates fruits and their products. Since OTA have a huge negative impact on health hazards and economic losses, it is imperative to establish an effective and safe strategy for detoxification. Here, pancreatin was immobilized on the surface of polydopamine functionalized magnetic porous chitosan (MPCTS@ PDA) for the degradation of OTA. Compared with free pancreatin, MPCTS@ PDA@ pancreatin displayed excellent thermal stability, acid resistance, storage stability and OTA detoxification in wine (>58%). Moreover, the MPCTS@ PDA@ pancreatin retained 43% initial activity after 8 reuse cycles. There was no significant change in the quality of wine after MPCTS@ PDA@ pancreatin treatment. Moreover, it did not exhibit cytotoxicity which facilitated its application in wine. These results demonstrated that MPCTS@ PDA@ pancreatin can be used as a highly effective biocatalysate for OTA detoxification in wine.


Subject(s)
Chitosan , Food Contamination , Indoles , Ochratoxins , Pancreatin , Polymers , Wine , Ochratoxins/chemistry , Ochratoxins/analysis , Wine/analysis , Indoles/chemistry , Polymers/chemistry , Chitosan/chemistry , Porosity , Pancreatin/chemistry , Pancreatin/metabolism , Food Contamination/analysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
10.
Biosens Bioelectron ; 259: 116401, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38761743

ABSTRACT

Rapid, portable, and accurate detection tools for monitoring ochratoxin A (OTA) in food are essential for the guarantee of food safety and human health. Herein, as a proof-of-concept, this study proposed a ratiometric bioluminescence immunosensor (RBL-immunosensor) for homogeneous detection of OTA in pepper. The construct of the RBL-immunosensor consists of three components, including the large fragment of the split nanoluciferase (NanoLuc)-tagged nanobody (NLg), the small fragment of the split NanoLuc-tagged mimotope peptide heptamer (MPSm), and the calibrator luciferase (GeNL). The specific nanobody-mimotope peptide interaction between NLg and MPSm induces the reconstitution of the NanoLuc, which catalyzes the Nano-Glo substrate and produces a blue emission peak at 458 nm. Meanwhile, GeNL can produce a green emission peak at 518 nm upon substrate conversion via bioluminescent resonance energy transfer (BRET). Therefore, the concentration of OTA can be linked to the variation of the bioluminescence signal (λ458/λ518) measured by microplate reader and the variation of the blue/green ratio measured by smartphone via the competitive immunoreaction where OTA competes with MPSm to bind NLg. The immunosensor is ready-to-use and works by simply mixing the components in a one-step incubation of 10 min for readout. It has a limit of detection (LOD) of 0.98 ng/mL by a microplate reader and an LOD of 1.89 ng/mL by a smartphone. Good selectivity and accuracy were confirmed for the immunosensor by cross-reaction analysis and recovery experiments. The contents of OTA in 10 commercial pepper powder samples were tested by the RBL-immunosensor and validated by high-performance liquid chromatography. Hence, the ready-to-use RBL-immunosensor was demonstrated as a highly reliable tool for detection of OTA in food.


Subject(s)
Biosensing Techniques , Capsicum , Food Contamination , Limit of Detection , Luminescent Measurements , Ochratoxins , Ochratoxins/analysis , Biosensing Techniques/methods , Food Contamination/analysis , Luminescent Measurements/methods , Immunoassay/methods , Capsicum/chemistry , Humans
11.
Food Chem ; 453: 139651, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761736

ABSTRACT

The food contamination with Ochratoxin A (OTA) has highlighted the need to create precise, sensitive, and convenient techniques. Herein, we proposed a label-free and immobilization-free ratiometric homogeneous electrochemical aptasensor based on dual catalytic hairpin self-assembly (CHA) for OTA detection. Methylene blue (MB) and ferrocene (Fc) in solution were utilized as label-free signaling molecules, generating a response signal (IMB) and a reference signal (IFc), respectively. The ratio of IMB/IFc was utilized as a measure to quantify OTA. Dual CHA was exploited to increase the ratiometric signal and enhance the amplification efficiency. This aptasensor achieved trace-level detection for OTA over a linear range of lower concentrations (1.0 × 10-3 ng/mL-1.0 × 103 ng/mL) with LOD of 92 fg/mL. The aptasensor was successfully applied to detect OTA in cereal and wine, with comparable results of HPLC-MS/MS. This strategy provided a viable platform for rapid, sensitive, and accurate detection of OTA in food.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Food Contamination , Limit of Detection , Ochratoxins , Wine , Ochratoxins/analysis , Food Contamination/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Wine/analysis , Edible Grain/chemistry , Catalysis
12.
Food Chem ; 453: 139623, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761730

ABSTRACT

Ochratoxin A (OTA) in food poses a serious challenge to public health. Herein, using the nanobody-driven controllable aggregation of gold nanoparticles (AuNPs) in a glucose oxidase-tyramine-horseradish peroxidase (GOx-TYR-HRP) system, we propose a direct competitive plasmonic enzyme immunoassay (dc-PEIA) for OTA detection. The OTA-GOx conjugate catalyzes glucose to produce hydrogen peroxide (H2O2), and then HRP catalyzes H2O2 to generate hydroxyl radical which induces the crosslink of TYR. Crosslinked TYR leads to aggregation of AuNPs through strong electrostatic interactions, which is tunable based on the competition of OTA-GOx and free OTA for binding the immobilized nanobody. The optimized dc-PEIA achieves an instrumental limit of detection (LOD) of 0.275 ng/mL and a visual LOD of 1.56 ng/mL. It exhibits good selectivity for OTA and accuracy in the analysis of pepper samples, with the confirmation of high-performance liquid chromatography. Overall, the dc-PEIA is demonstrated as a useful tool for detecting OTA in food.


Subject(s)
Capsicum , Food Contamination , Gold , Metal Nanoparticles , Ochratoxins , Ochratoxins/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Capsicum/chemistry , Capsicum/immunology , Food Contamination/analysis , Immunoenzyme Techniques/methods , Limit of Detection , Glucose Oxidase/chemistry , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Horseradish Peroxidase/chemistry , Biosensing Techniques
13.
Int J Biol Macromol ; 269(Pt 2): 132279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734344

ABSTRACT

Aptasensors for detection of ochratoxin A (OTA) have been extensively studied, but the majority of them require costly and large-scale equipment as signal readers. Herein, a photothermal aptasensor capable of portable detection of OTA through a thermometer was developed on basis of aptamer structural switching and rolling circle amplification (RCA)-enriched DNAzyme. Oligonucleotides and alkaline phosphatase (ALP) modified magnetic beads were prepared. The binding of aptamers to OTA led to the release of ALP labeled complementary DNA. After magnetic separation, ALP catalyzed the padlock dephosphorylation, inhibiting the subsequent RCA reaction. This process converted the OTA concentration into the amount of the photothermal reagent oxTMB produced from the catalytic reaction induced by RCA-enriched DNAzyme. Under the optimal conditions, the detection limit (LOD) of this aptasensor was 2.28 nM in a clean buffer, while the LOD reached 2.43 nM in 2 % grape juice. The good performance of the photothermal aptasensor makes it possible to measure OTA pollution in low resource environments.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Fruit and Vegetable Juices , Limit of Detection , Nucleic Acid Amplification Techniques , Ochratoxins , Vitis , Ochratoxins/analysis , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Aptamers, Nucleotide/chemistry , Nucleic Acid Amplification Techniques/methods , Fruit and Vegetable Juices/analysis , Biosensing Techniques/methods , Vitis/chemistry , Food Contamination/analysis
14.
J Chromatogr A ; 1724: 464898, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38669941

ABSTRACT

The present research work was dedicated to developing an efficient method based on liquid-liquid chromatography (centrifugal partition chromatography, CPC) applicable to routine purifications of ochratoxins (OT) from the liquid culture of the strain A. albertensis SZMC 2107. The crude extract contained numerous components in addition to OTA (90.1 %,) and OTB (1.1 %,) according to HPLC examinations. For the separation of OTs by CPC, several tertiary systems based on acetonitrile, acetone, and short-chain alcohols were examined to find the most applicable biphasic system. The hexane/i-propanol/water 35:15:50 system supplemented with 0.1 % acetic acid was found to be the most efficient for use in CPC separation. Using liquid-liquid instrumental separation, the two OTs, namely OTA (2.23 mg) and OTB (0.031 mg), were successfully isolated with 96.3 % and-72.8 % purity, respectively, from 1 L ferment broth. The identities and purities of the purified components were confirmed and the performance parameters of each separation step and the whole procedure were determined. The developed method could be used effectively to purify OTs for analytical or toxicological applications.


Subject(s)
Ochratoxins , Ochratoxins/analysis , Ochratoxins/isolation & purification , Ochratoxins/chemistry , Chromatography, High Pressure Liquid/methods , Centrifugation/methods , Chromatography, Liquid/methods , Acetonitriles/chemistry , Acetone/chemistry
15.
Anal Methods ; 16(18): 2897-2904, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38647424

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin that can contaminate a variety of agricultural commodities, including fruit juices and wines. The capability of a magnetic solid-phase extraction (MSPE) method with a magnetic metal-organic framework (MOF) material having a three-layer core-shell structure to improve the detection of OTA in food matrices using high performance liquid chromatography is described. Analysis of the material through X-ray diffraction (XRD) indicated the successful synthesis of the magnetic nanomaterial Fe3O4@SiO2@UiO66-NH2. Scanning electron microscopy (SEM) and Zetasizer lab indicated its nano-sized morphological features. The conditions affecting the magnetic solid-phase extraction procedure, such as material dosage, pH, composition and amount of eluent, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under optimized conditions, the recoveries of spiked analytes at three different concentrations ranged from 95.83 to 101.5%, and the relative standard deviations were below 5%. Coupling with HPLC allowed the limit of detection to be 0.3 µg kg-1. This method is simple and specific, and can effectively avoid the influence of coexisting elements and improve the sensitivity of determination through fast MSPE of OTA. It has broad development prospects in OTA detection pre-treatment.


Subject(s)
Arachis , Food Contamination , Metal-Organic Frameworks , Ochratoxins , Solid Phase Extraction , Ochratoxins/analysis , Ochratoxins/isolation & purification , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Arachis/chemistry , Food Contamination/analysis , Metal-Organic Frameworks/chemistry , Limit of Detection , Silicon Dioxide/chemistry , Magnetite Nanoparticles/chemistry
16.
Article in English | MEDLINE | ID: mdl-38598095

ABSTRACT

Ochratoxin A (OTA) is a toxic fungal metabolite that is commonly found in cereals and animal feed. It is economically damaging and potentially hazardous to human health. Herein, we propose an electrochemical immunosensor for the rapid detection of OTA using anti-OTA antibodies and diazonium-functionalized, screen-printed electrodes. We attached 4-aminobenzoic acid to an electrode surface, activated the carboxyl groups on the surface with carbodiimide, and attached an antibody to the diazo layer. Subsequently, we used bovine serum protein as a blocker to prevent non-specific antigens from binding to the antibody. We evaluated the performance of the sensor by cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. The sensor is highly specific and sensitive, has good linear responses in the range 20-200 ng/mL, a limit of detection of 0.5 ng/mL, and good recoveries of 90.5%-100.9% in spiked samples. It can be stored at 4 °C for approximately 2 weeks, and is highly stable, with a current response variation of no more than 4.6%.


Subject(s)
Electrochemical Techniques , Food Contamination , Ochratoxins , Ochratoxins/analysis , Food Contamination/analysis , Electrodes , Immunoassay/methods , Food Analysis , Diazonium Compounds/chemistry , Biosensing Techniques , Animals
17.
Food Chem ; 446: 138872, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38442680

ABSTRACT

Developing sensitive and accurate Ochratoxin A (OTA) detection methods is essential for food safety. Herein, a simple and reliable strategy for regulating interenzyme distance based on a rigid DNA quadrangular prism as a scaffold was proposed to establish a new electrochemical biosensor for ultrasensitive detection of OTA. The interenzyme distances were precisely adjusted by changing the sequences of the hybridized portions of hairpins SH1 and SH2 to the DNA quadrangular prism, avoiding the complexity and instability of the previous DNA scaffold-based enzyme spacing adjustment strategies. The electrochemical biosensor constructed at the optimal interenzyme distance (10.4 nm) achieved sensitive detection of OTA in a dynamic concentration range from 10 fg/mL to 250 ng/mL with a detection limit of 3.1 fg/mL. In addition, the biosensor was applied to quantify OTA in real samples, exhibiting great application potential in food safety.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , DNA , Ochratoxins/analysis , Biosensing Techniques/methods , Limit of Detection , Electrochemical Techniques/methods
18.
Talanta ; 273: 125935, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38503123

ABSTRACT

Target specificity, one of aptamer characteristics that determine recognition efficiency of biosensors, is generally considered to be an intrinsic property of aptamer. However, a high-affinity aptamer may have additional target binding specificity, little is known about the specificity of aptamer binding to multiple targets, which may result in false-positive results that hinder the accuracy of detection. Herein, an aptamer OBA3 with dual target ochratoxin A (OTA) and norfloxacin (NOR) was used as an example to explore the binding specificity mechanism and developed rapid fluorescent aptasensing methods. The nucleotide 15th T of aptamer OBA3 was demonstrated to be critical for specificity and affinity binding of target OTA via site-saturation mutagenesis. Substituting the 15th T base for C base could directly improve recognition specificity of aptamer for NOR and remove the binding affinity for OTA. The combination of π-π stacking interactions, salt bridges and hydrogen bonds between loop pocket of aptamer and quinolone skeleton, piperazinyl group may contributes to the fluoroquinolone antibiotics (NOR and difloxacin)-aptamer recognition interaction. Based on this understanding, a dual-aptamer fluorescent biosensor was fabricated for simultaneous detection of OTA and NOR, which has a linear detection range of 50-6000 nM with a detection limit of 31 nM for OTA and NOR. Combined with T15C biosensor for eliminating interference of OTA, the assay was applied to milk samples with satisfactory recovery (94.06-100.93%), which can achieve detection of OTA and NOR individually within 40 min.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Animals , Norfloxacin , Milk/chemistry , Limit of Detection , Aptamers, Nucleotide/chemistry , Ochratoxins/analysis , Coloring Agents , Biosensing Techniques/methods
19.
Phytomedicine ; 128: 155367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493720

ABSTRACT

BACKGROUND: Mycotoxins have been reported to be present in medicinal plants. With the growing usage of medicinal plants, contamination of mycotoxins has emerged as one of the biggest threats to global food hygiene and ecological environment, posing a severe threat to human health. PURPOSE: This study aimed to determine the mycotoxin prevalence and levels in medicinal plants and conduct a risk assessment by conducting a systematic review and meta-analysis. METHODS: A thorough search on Web of Science and PubMed was conducted for the last decade, resulting in 54 studies (meeting the inclusion criteria) with 2829 data items that were included in the meta-analysis. RESULTS: The combined prevalence of mycotoxins in medicinal plants was 1.7% (95% confidence interval, CI = 1.1% - 2.4%), with a mean mycotoxin concentration in medicinal plants of 3.551 µg/kg (95% CI = 3.461 - 3.641 µg/kg). Risk assessment results indicated that aflatoxins and ochratoxin A found in several medicinal plants posed a health risk to humans; additionally, emerging enniatins exhibited possible health risks. CONCLUSION: Therefore, the study underlines the need for establishing stringent control measures to reduce the severity of mycotoxin contamination in medicinal plants.


Subject(s)
Mycotoxins , Plants, Medicinal , Plants, Medicinal/chemistry , Mycotoxins/analysis , Risk Assessment , Humans , Ochratoxins/analysis , Food Contamination/analysis , Aflatoxins/analysis
20.
Anal Chim Acta ; 1299: 342442, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38499422

ABSTRACT

Self-powered electrochemical sensors based on photofuel cells have attracted considerable research interest because their unique advantage of not requiring an external electric source, but their application in portable and multiplexed targets assay is limited by the inherent mechanism. In this work, a portable self-powered sensor constructed with multichannel photofuel cells was developed for the ratiometric detection of mycotoxins, namely ochratoxin A (OTA) and patulin (PAT). The spatially resolved CdS/Bi2S3-modified photoanodes and a shared Prussian Blue cathode were integrated on an etched indium-tin oxide slide to fabricate the multichannel photofuel cell. The aptamers of OTA and PAT were covalently bonded to individual photoanode regions to build sensitive interfaces, and the specific recognition of analytes impaired the output performance of constructed PFC. Accordingly, ratiometric sensing of OTA and PAT was achieved by utilizing the output performance of a control PFC as a reference signal. This approach effectively eliminates the impact of light intensity on the accuracy of the detection. Under the optimal conditions, the proposed sensing chip exhibited linear ranges of 2.0-1000 nM and 5.0-500 nM for OTA and PAT, respectively. The detection limits (3 S/N) were determined to be 0.25 nM for OTA and 0.27 nM for PAT. The developed ratiometric sensing method demonstrated good selectivity and stability in the simultaneous detection of OTA and PAT. It was successfully utilized for the analysis of OTA and PAT real samples. This work provides a new perspective for construction of portable and ratiometric self-powered sensing platform.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Mycotoxins , Ochratoxins , Patulin , Mycotoxins/analysis , Ochratoxins/analysis , Patulin/analysis , Light , Electrochemical Techniques/methods , Limit of Detection , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...