Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.607
Filter
1.
Front Immunol ; 15: 1344637, 2024.
Article in English | MEDLINE | ID: mdl-38962013

ABSTRACT

Disulfidptosis, a regulated form of cell death, has been recently reported in cancers characterized by high SLC7A11 expression, including invasive breast carcinoma, lung adenocarcinoma, and hepatocellular carcinoma. However, its role in colon adenocarcinoma (COAD) has been infrequently discussed. In this study, we developed and validated a prognostic model based on 20 disulfidptosis-related genes (DRGs) using LASSO and Cox regression analyses. The robustness and practicality of this model were assessed via a nomogram. Subsequent correlation and enrichment analysis revealed a relationship between the risk score, several critical cancer-related biological processes, immune cell infiltration, and the expression of oncogenes and cell senescence-related genes. POU4F1, a significant component of our model, might function as an oncogene due to its upregulation in COAD tumors and its positive correlation with oncogene expression. In vitro assays demonstrated that POU4F1 knockdown noticeably decreased cell proliferation and migration but increased cell senescence in COAD cells. We further investigated the regulatory role of the DRG in disulfidptosis by culturing cells in a glucose-deprived medium. In summary, our research revealed and confirmed a DRG-based risk prediction model for COAD patients and verified the role of POU4F1 in promoting cell proliferation, migration, and disulfidptosis.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/diagnosis , Prognosis , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Biomarkers, Tumor/genetics , Female , Cell Line, Tumor , Male , Cell Proliferation/genetics , Gene Expression Profiling , Transcriptome , Nomograms , Octamer Transcription Factor-3/genetics , Cell Movement/genetics
2.
PLoS One ; 19(7): e0306969, 2024.
Article in English | MEDLINE | ID: mdl-38990953

ABSTRACT

Docetaxel (Doc) plays a crucial role in clinical antineoplastic practice. However, it is continuously documented that tumors frequently develop chemoresistance and relapse, which may be related to polyploid giant cancer cells (PGCCs). The aim of this study was investigate the formation mechanism and biological behavior of PGCCs induced by Doc. Ovarian cancer cells were treated with Doc, and then the effect of Doc on cellular viability was evaluated by MTT assay and microscopic imaging analysis. The biological properties of PGCCs were further evaluated by Hoechst 33342 staining, cell cycle and DNA content assay, DNA damage response (DDR) signaling detection, ß-galactosidase staining, mitochondrial membrane potential detection, and reverse transcription-quantitative polymerase chain reaction. The results indicated that Doc reduced cellular viability; however, many cells were still alive, and were giant and polyploid. Doc increased the proportion of cells stayed in the G2/M phase and reduced the number of cells. In addition, the expression of γ-H2A.X was constantly increased after Doc treatment. PGCCs showed senescence-associated ß-galactosidase activity and an increase in the monomeric form of JC-1. The mRNA level of octamer-binding transcription factor 4 (OCT4) and krüppel-like factor 4 (KLF4) was significantly increased in PGCCs. Taken together, our results suggest that Doc induces G2/M cell cycle arrest, inhibits the proliferation and activates persistent DDR signaling to promote the formation of PGCCs. Importantly, PGCCs exhibit a senescence phenotype and express stem cell markers.


Subject(s)
Cellular Senescence , Docetaxel , Kruppel-Like Factor 4 , Neoplastic Stem Cells , Ovarian Neoplasms , Polyploidy , Humans , Docetaxel/pharmacology , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Cellular Senescence/drug effects , Cell Line, Tumor , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Giant Cells/drug effects , Giant Cells/metabolism , Antineoplastic Agents/pharmacology , Phenotype , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Taxoids/pharmacology , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
3.
Life Sci ; 352: 122905, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38992573

ABSTRACT

AIMS: Colon cancer poses a major threat to human health and a heavy burden on the national economy. As a member of the SOX transcription factor family, SRY-box transcription factor 21 (SOX21) is associated with various cancers, but its mechanism of action in colon cancer remains unclear. This study focused on the molecular mechanisms of transcription factor SOX21 in proliferation and metastasis of colon cancer cells. MAIN METHODS: We analyzed SOX21 expression level and its impact on survival in colon cancer patients by bioinformatics analysis. We used public databases for gene correlation, GSEA enrichment analysis. Cell function experiments (colony formation assay, wound healing assay, Transwell migration and invasion assay) were utilized to determine the impact of SOX21 silencing and over-expression on cell proliferation and metastasis. The luciferase reporter assay, CUT&RUN-qPCR assay and Methylation Specific PCR were used to explore SOX21-POU class 4 homeobox 2 (POU4F2) molecular interactions. The molecular mechanisms were verified by Quantitative real-time PCR and Western blot analysis. KEY FINDINGS: SOX21 is highly expressed and affects the overall survival of colon cancer patients. SOX21 can attenuates POU4F2 methylation state by binding with it. In addition, this interaction facilitate its transcriptional activation of Hedgehog pathway, mediates epithelial-mesenchymal transition (EMT), consequently promoting the proliferation and metastasis of colon cancer cells. SIGNIFICANCE: Our study reveals that SOX21 is an oncogenic molecule and suggests its regulatory role in colon carcinogenesis and progression, providing new insights into the treatment of this disease.


Subject(s)
Cell Proliferation , Colonic Neoplasms , Epithelial-Mesenchymal Transition , Hedgehog Proteins , Signal Transduction , Humans , Epithelial-Mesenchymal Transition/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Neoplasm Metastasis , Cell Movement , SOXB2 Transcription Factors/metabolism , SOXB2 Transcription Factors/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics
4.
Clin Exp Pharmacol Physiol ; 51(8): e13908, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39075744

ABSTRACT

M. Luo , Z. Liu , H. Hao , T. Lu , M. Chen , M. Lei , C.M. Verfaillie , and Z. Liu , "High Glucose Facilitates Cell Cycle Arrest of Rat Bone Marrow Multipotent Adult Progenitor Cells through Transforming Growth Factor-ß1 and Extracellular Signal-Regulated Kinase 1/2 Signalling without Changing Oct4 Expression," Clinical and Experimental Pharmacology and Physiology 39, no. 10 (2012): 843-851. https://doi.org/10.1111/j.1440-1681.2012.05747.x This Expression of Concern is for the above article, published online on 14 July 2012, in Wiley Online Library (wileyonlinelibrary.com), and has been issued by agreement between the journal Editor-in-Chief, Yang Yang, and the Publisher, John Wiley & Sons Australia, Ltd. The Expression of Concern has been agreed due to concerns raised by a third party after publication regarding the similarity of certain blots in Figures 2 and 3 and the underlying data that they represent. The authors did not respond to multiple requests for the original data. The journal is issuing this Expression of Concern because the concerns regarding the integrity of the data and the results presented cannot be resolved.


Subject(s)
Cell Cycle Checkpoints , Glucose , MAP Kinase Signaling System , Octamer Transcription Factor-3 , Transforming Growth Factor beta1 , Animals , Rats , Glucose/metabolism , Transforming Growth Factor beta1/metabolism , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , MAP Kinase Signaling System/drug effects , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Adult Stem Cells/metabolism , Adult Stem Cells/cytology
5.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39069943

ABSTRACT

Naïve epiblast cells in the embryo and pluripotent stem cells in vitro undergo developmental progression to a formative state competent for lineage specification. During this transition, transcription factors and chromatin are rewired to encode new functional features. Here, we examine the role of mitogen-activated protein kinase (ERK1/2) signalling in pluripotent state transition. We show that a primary consequence of ERK activation in mouse embryonic stem cells is elimination of Nanog, which precipitates breakdown of the naïve state gene regulatory network. Variability in pERK dynamics results in heterogeneous loss of Nanog and metachronous state transition. Knockdown of Nanog allows exit without ERK activation. However, transition to formative pluripotency does not proceed and cells collapse to an indeterminate identity. This outcome is due to failure to maintain expression of the central pluripotency factor Oct4. Thus, during formative transition ERK signalling both dismantles the naïve state and preserves pluripotency. These results illustrate how a single signalling pathway can both initiate and secure transition between cell states.


Subject(s)
MAP Kinase Signaling System , Nanog Homeobox Protein , Octamer Transcription Factor-3 , Pluripotent Stem Cells , Animals , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Mice , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cell Differentiation/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Germ Layers/metabolism , Germ Layers/cytology , Gene Regulatory Networks , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics
6.
Sci Rep ; 14(1): 15760, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38977828

ABSTRACT

Manufacturing regenerative medicine requires continuous monitoring of pluripotent cell culture and quality assessment while eliminating cell destruction and contaminants. In this study, we employed a novel method to monitor the pluripotency of stem cells through image analysis, avoiding the traditionally used invasive procedures. This approach employs machine learning algorithms to analyze stem cell images to predict the expression of pluripotency markers, such as OCT4 and NANOG, without physically interacting with or harming cells. We cultured induced pluripotent stem cells under various conditions to induce different pluripotent states and imaged the cells using bright-field microscopy. Pluripotency states of induced pluripotent stem cells were assessed using invasive methods, including qPCR, immunostaining, flow cytometry, and RNA sequencing. Unsupervised and semi-supervised learning models were applied to evaluate the results and accurately predict the pluripotency of the cells using only image analysis. Our approach directly links images to invasive assessment results, making the analysis of cell labeling and annotation of cells in images by experts dispensable. This core achievement not only contributes for safer and more reliable stem cell research but also opens new avenues for real-time monitoring and quality control in regenerative medicine manufacturing. Our research fills an important gap in the field by providing a viable, noninvasive alternative to traditional invasive methods for assessing pluripotency. This innovation is expected to make a significant contribution to improving regenerative medicine manufacturing because it will enable a more detailed and feasible understanding of cellular status during the manufacturing process.


Subject(s)
Biomarkers , Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Biomarkers/metabolism , Humans , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Image Processing, Computer-Assisted/methods , Machine Learning , Regenerative Medicine/methods , Flow Cytometry/methods , Animals , Cell Differentiation , Cells, Cultured
7.
Cancer Cell ; 42(8): 1352-1369.e13, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39029464

ABSTRACT

Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.


Subject(s)
Gene Expression Regulation, Neoplastic , Lung Neoplasms , Small Cell Lung Carcinoma , Transcription Factors , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Mice , Cell Line, Tumor , Cell Proliferation , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics
8.
Cancer Cell ; 42(8): 1336-1351.e9, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39029462

ABSTRACT

The POU2F3-POU2AF2/3 transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we identify a specific dependence of the POU2F3 molecular subtype of SCLC (SCLC-P) on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. Treatment of SCLC-P cells with a proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases evicts POU2F3 and its coactivators from chromatin and attenuates downstream signaling. B cell malignancies which are dependent on the POU2F1/2 cofactor, POU2AF1, are also sensitive to mSWI/SNF ATPase degraders, with treatment leading to chromatin eviction of POU2AF1 and IRF4 and decreased IRF4 signaling in multiple myeloma cells. An orally bioavailable mSWI/SNF ATPase degrader significantly inhibits tumor growth in preclinical models of SCLC-P and multiple myeloma without signs of toxicity. This study suggests that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Transcription Factors , Humans , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Xenograft Model Antitumor Assays , Signal Transduction , Gene Expression Regulation, Neoplastic , Octamer Transcription Factor-2
9.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928458

ABSTRACT

Pediatric ovarian tumors exhibit unique diagnostic and therapeutic challenges. This study evaluates the expression of SALL4 and OCT3/4 biomarkers in pediatric ovarian tumors and their associations with tumor subtype, stage, and clinical outcome. A retrospective analysis was conducted on 64 patients under 18 years old, examining demographic data, tumor characteristics, immunohistochemical staining, and clinical outcomes. Our results show that SALL4 was significantly expressed in adenocarcinoma, dysgerminoma (DSG), mixed germ cell tumors (GCTs), and immature teratoma, while OCT3/4 was highly expressed in DSG and mixed GCTs. Both markers are associated with a higher tumor grade and stage, indicating a more aggressive disease. The SALL4 positivity expression was correlated with high alpha fetoprotein (AFP) and lactate dehydrogenase (LDH) levels, while OCT3/4 positivity significantly predicted the risk of subsequent metastasis. The mean progression-free survival (PFS) was notably shorter in patients with positive markers. These findings underscore the diagnostic and prognostic value of SALL4 and OCT3/4 in pediatric ovarian tumors, aligning with previous research and supporting their use in clinical practice for better disease management and patient outcomes.


Subject(s)
Biomarkers, Tumor , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Biomarkers, Tumor/metabolism , Child , Adolescent , Child, Preschool , Retrospective Studies , Prognosis , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Romania/epidemiology , Infant , Transcription Factors/metabolism , Teratoma/metabolism , Teratoma/diagnosis , Teratoma/pathology , Teratoma/genetics
10.
Medicina (Kaunas) ; 60(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38929487

ABSTRACT

Background and Objectives: Lung adenocarcinoma is a leading cause of cancer-related mortality despite recent therapeutic advances. Cancer stem cells have gained increasing attention due to their ability to induce cancer cell proliferation through self-renewal and differentiation into multiple cell lineages. OCT4 and LIN28 (and their homologs A and B) have been identified as key regulators of pluripotency in mammalian embryonic (ES) and induced stem (IS) cells, and they are the crucial regulators of cancer progression. However, their exact role in lung adenocarcinoma has not yet been clarified. Materials and Methods: The aim of this study was to explore the role of the pluripotency factors OCT4 and LIN28 in a cohort of surgically resected human lung adenocarcinomas to reveal possible biomarkers for lung adenocarcinoma prognosis and potential therapeutic targets. The expressions of OCT4, LIN28A and LIN28B were analyzed in formalin-fixed, paraffin-embedded tissue samples from 96 patients with lung adenocarcinoma by immunohistochemistry. The results were analyzed with clinicopathologic parameters and were related to the prognosis of patients. Results: Higher OCT4 expression was related to an improved 5-year overall survival (OS) rate (p < 0.001). Nuclear LIN28B expression was lower in stage I and II tumors (p < 0.05) compared to advanced stage tumors. LIN28B cytoplasmic expression was associated with 5-year OS rates not only in univariate (p < 0.005), but also in multivariate analysis (where age, gender, histopathological subtype and stage were used as cofactors, p < 0.01 HR = 2.592). Patients with lower LIN28B expression showed improved 5-year OS rates compared to patients with increased LIN28B expression. Conclusions: Our findings indicate that OCT4 and LIN28B are implicated in lung adenocarcinoma progression and prognosis outcome; thus, they serve as promising prognostic biomarkers and putative therapeutic targets in lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Octamer Transcription Factor-3 , RNA-Binding Proteins , Humans , Octamer Transcription Factor-3/analysis , Octamer Transcription Factor-3/metabolism , Male , Female , RNA-Binding Proteins/analysis , Middle Aged , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/mortality , Aged , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Prognosis , Biomarkers, Tumor/analysis , Adult , Survival Analysis , Immunohistochemistry , Aged, 80 and over
11.
In Vivo ; 38(4): 1767-1774, 2024.
Article in English | MEDLINE | ID: mdl-38936924

ABSTRACT

BACKGROUND/AIM: Dermal papilla (DP) stem cells are known for their remarkable regenerative capacity, making them a valuable model for assessing the effects of natural products on cellular processes, including stemness, and autophagy. MATERIALS AND METHODS: Autophagy and stemness characteristics were assessed using real-time RT-PCR to analyze mRNA levels, along with immunofluorescence and western blot techniques for protein level evaluation. RESULTS: Butterfly Pea, Emblica Fruits, Kaffir Lime, and Thunbergia Laurifolia extracts induced autophagy in DP cells. Kaffir Lime-treated cells exhibited increase in the OCT4, NANOG, and SOX2 mRNA (6-, 5, and 5.5-fold, respectively), and protein levels (4-, 3-, and 1.5-fold, respectively). All extracts activated the survival protein kinase B (Akt) in DP cells. CONCLUSION: Natural products are a promising source for promoting hair growth by rejuvenating hair stem cells.


Subject(s)
Autophagy , Biological Products , Hair Follicle , Plant Extracts , Stem Cells , Autophagy/drug effects , Humans , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Biological Products/pharmacology , Plant Extracts/pharmacology , Hair Follicle/drug effects , Hair Follicle/cytology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Cell Differentiation/drug effects
12.
Cell Cycle ; 23(6): 645-661, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38842275

ABSTRACT

Bladder cancer (BC) is one of the most common malignant neoplasms worldwide. Competing endogenous RNA (ceRNA) networks may identify potential biomarkers associated with the progression and prognosis of BC. The OCT4-pg5/miR-145-5p/OCT4B ceRNA network was found to be related to the progression and prognosis of BC. OCT4-pg5 expression was significantly higher in BC cell lines than in normal bladder cells, with OCT4-pg5 expression correlating with OCT4B expression and advanced tumor grade. Overexpression of OCT4-pg5 and OCT4B promoted the proliferation and invasion of BC cells, whereas miR-145-5p suppressed these activities. The 3' untranslated region (3'UTR) of OCT4-pg5 competed for miR-145-5p, thereby increasing OCT4B expression. In addition, OCT4-pg5 promoted epithelial-mesenchymal transition (EMT) by activating the Wnt/ß-catenin pathway and upregulating the expression of matrix metalloproteinases (MMPs) 2 and 9 as well as the transcription factors zinc finger E-box binding homeobox (ZEB) 1 and 2. Elevated expression of OCT4-pg5 and OCT4B reduced the sensitivity of BC cells to cisplatin by reducing apoptosis and increasing the proportion of cells in G1. The OCT4-pg5/miR-145-5p/OCT4B axis promotes the progression of BC by inducing EMT via the Wnt/ß-catenin pathway and enhances cisplatin resistance. This axis may represent a therapeutic target in patients with BC.


Subject(s)
Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs , Octamer Transcription Factor-3 , Up-Regulation , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Up-Regulation/genetics , Epithelial-Mesenchymal Transition/genetics , Pseudogenes/genetics , Wnt Signaling Pathway/genetics , Male , Female , Animals , Middle Aged , Neoplasm Invasiveness , Drug Resistance, Neoplasm/genetics , Cisplatin/pharmacology , Mice , Cell Movement/genetics , Mice, Nude
13.
Cell ; 187(15): 4010-4029.e16, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38917790

ABSTRACT

Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an in vitro population similar to the early PrE in vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.


Subject(s)
Blastocyst , Cell Differentiation , Endoderm , Animals , Endoderm/metabolism , Endoderm/cytology , Mice , Blastocyst/metabolism , Blastocyst/cytology , Cell Lineage , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Signal Transduction , Embryonic Development , Janus Kinases/metabolism , Gene Expression Regulation, Developmental , STAT Transcription Factors/metabolism , Transcription Factors/metabolism , Female , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology
14.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928444

ABSTRACT

Long non-coding RNAs (lncRNAs) are nucleotide sequences that participate in different biological processes and are associated with different pathologies, including cancer. Long intergenic non-protein-coding RNA 662 (LINC00662) has been reported to be involved in different cancers, including colorectal, prostate, and breast cancer. However, its role in gallbladder cancer has not yet been described. In this article, we hypothesize that LINC00662 has an important role in the acquisition of aggressiveness traits such as a stem-like phenotype, invasion, and chemoresistance in gallbladder cancer. Here, we show that LINC00662 is associated with larger tumor size and lymph node metastasis in patients with gallbladder cancer. Furthermore, we show that the overexpression of LINC00662 promotes an increase in CD133+/CD44+ cell populations and the expression of stemness-associated genes. LINC00662 promotes greater invasive capacity and the expression of genes associated with epithelial-mesenchymal transition. In addition, the expression of LINC00662 promotes resistance to cisplatin and 5-fluorouracil, associated with increased expression of chemoresistance-related ATP-binding cassette (ABC) transporters in gallbladder cancer (GBC) cell lines. Finally, we show that the mechanism by which LINC00662 exerts its function is through a decrease in microRNA 335-5p (miR-335-5p) and an increase in octamer-binding transcription factor 4 (OCT4) in GBC cells. Thus, our data allow us to propose LINC00662 as a biomarker of poor prognosis and a potential therapeutic target for patients with GBC.


Subject(s)
Gallbladder Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , Octamer Transcription Factor-3 , RNA, Long Noncoding , Humans , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Female , Epithelial-Mesenchymal Transition/genetics , Drug Resistance, Neoplasm/genetics , Male , Neoplasm Invasiveness , Cisplatin/pharmacology , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Fluorouracil/pharmacology , Lymphatic Metastasis
15.
Mol Ther ; 32(8): 2563-2583, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38879755

ABSTRACT

The extensive degeneration of functional somatic cells and the depletion of endogenous stem/progenitor populations present significant challenges to tissue regeneration in degenerative diseases. Currently, a cellular reprogramming approach enabling directly generating corresponding progenitor populations from degenerative somatic cells remains elusive. The present study focused on intervertebral disc degeneration (IVDD) and identified a three-factor combination (OCT4, FOXA2, TBXT [OFT]) that could induce the dedifferentiation-like reprogramming of degenerative nucleus pulposus cells (dNPCs) toward induced notochordal-like cells (iNCs). Single-cell transcriptomics dissected the transitions of cell identity during reprogramming. Further, OCT4 was found to directly interact with bromodomain PHD-finger transcription factor to remodel the chromatin during the early phases, which was crucial for initiating this dedifferentiation-like reprogramming. In rat models, intradiscal injection of adeno-associated virus carrying OFT generated iNCs from in situ dNPCs and reversed IVDD. These results collectively present a proof-of-concept for dedifferentiation-like reprogramming of degenerated somatic cells into corresponding progenitors through the development of a factor-based strategy, providing a promising approach for regeneration in degenerative disc diseases.


Subject(s)
Cell Dedifferentiation , Cellular Reprogramming , Intervertebral Disc Degeneration , Notochord , Nucleus Pulposus , Nucleus Pulposus/metabolism , Nucleus Pulposus/cytology , Nucleus Pulposus/pathology , Animals , Cellular Reprogramming/genetics , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Rats , Notochord/metabolism , Notochord/cytology , Humans , Disease Models, Animal , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Single-Cell Analysis , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Cells, Cultured
16.
Nucleic Acids Res ; 52(14): 8146-8164, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38850157

ABSTRACT

During early development, gene expression is tightly regulated. However, how genome organization controls gene expression during the transition from naïve embryonic stem cells to epiblast stem cells is still poorly understood. Using single-molecule microscopy approaches to reach nanoscale resolution, we show that genome remodeling affects gene transcription during pluripotency transition. Specifically, after exit from the naïve pluripotency state, chromatin becomes less compacted, and the OCT4 transcription factor has lower mobility and is more bound to its cognate sites. In epiblast cells, the active transcription hallmark, H3K9ac, decreases within the Oct4 locus, correlating with reduced accessibility of OCT4 and, in turn, with reduced expression of Oct4 nascent RNAs. Despite the high variability in the distances between active pluripotency genes, distances between Nodal and Oct4 decrease during epiblast specification. In particular, highly expressed Oct4 alleles are closer to nuclear speckles during all stages of the pluripotency transition, while only a distinct group of highly expressed Nodal alleles are in close proximity to Oct4 when associated with a nuclear speckle in epiblast cells. Overall, our results provide new insights into the role of the spatiotemporal genome remodeling during mouse pluripotency transition and its correlation with the expression of key pluripotency genes.


Subject(s)
Genome , Germ Layers , Mouse Embryonic Stem Cells , Octamer Transcription Factor-3 , Animals , Mice , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Germ Layers/cytology , Germ Layers/metabolism , Genome/genetics , Gene Expression Regulation, Developmental , Chromatin/metabolism , Chromatin/genetics , Cell Differentiation/genetics , Single Molecule Imaging/methods , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Histones/metabolism , Histones/genetics , Chromatin Assembly and Disassembly
17.
Sci Rep ; 14(1): 10420, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710730

ABSTRACT

In the mouse embryo, the transition from the preimplantation to the postimplantation epiblast is governed by changes in the gene regulatory network (GRN) that lead to transcriptional, epigenetic, and functional changes. This transition can be faithfully recapitulated in vitro by the differentiation of mouse embryonic stem cells (mESCs) to epiblast-like cells (EpiLCs), that reside in naïve and formative states of pluripotency, respectively. However, the GRN that drives this conversion is not fully elucidated. Here we demonstrate that the transcription factor OCT6 is a key driver of this process. Firstly, we show that Oct6 is not expressed in mESCs but is rapidly induced as cells exit the naïve pluripotent state. By deleting Oct6 in mESCs, we find that knockout cells fail to acquire the typical morphological changes associated with the formative state when induced to differentiate. Additionally, the key naïve pluripotency TFs Nanog, Klf2, Nr5a2, Prdm14, and Esrrb were expressed at higher levels than in wild-type cells, indicating an incomplete dismantling of the naïve pluripotency GRN. Conversely, premature expression of Oct6 in naïve cells triggered a rapid morphological transformation mirroring differentiation, that was accompanied by the upregulation of the endogenous Oct6 as well as the formative genes Sox3, Zic2/3, Foxp1, Dnmt3A and FGF5. Strikingly, we found that OCT6 represses Nanog in a bistable manner and that this regulation is at the transcriptional level. Moreover, our findings also reveal that Oct6 is repressed by NANOG. Collectively, our results establish OCT6 as a key TF in the dissolution of the naïve pluripotent state and support a model where Oct6 and Nanog form a double negative feedback loop which could act as an important toggle mediating the transition to the formative state.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , Mouse Embryonic Stem Cells , Nanog Homeobox Protein , Animals , Mice , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Differentiation/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Germ Layers/metabolism , Germ Layers/cytology , Mice, Knockout
18.
Mol Biol Rep ; 51(1): 691, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796671

ABSTRACT

BACKGROUND: Altered glycosylation plays a role in carcinogenesis. GALNT14 promotes cancer stem-like properties and drug resistance. GDF-15 is known to induces drug resistance and stemness markers for maintenance of breast cancer (BC) stem-like cell state. Currently there is lack of data on association of GDF-15 and GALNTs. In this study, the expression and interaction of GALNT14 and GDF-15 with stemness (OCT4 and SOX2) and drug resistance (ABCC5) markers were evaluated in BC. METHODS: We investigated tumour tissue from 30 BC patients and adjacent non-tumour tissues. Expression of serum GALNT14 from BC patients and matched healthy controls was evaluated. Expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and ß-catenin in BC tissue was determined by RT-PCR. Knockdown of GALNT14 and GDF-15 in the MCF-7 cell line was done through siRNA, gene expression and protein expression of ß-catenin by western blot were determined. RESULTS: A significant increase in the expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and ß-catenin was observed in BC tumour tissues compared to adjacent non-tumour tissues. The serum level of GALNT14 was significantly high in BC patients (80.7 ± 65.3 pg/ml) compared to healthy controls (12.2 ± 9.12 pg/ml) (p < 0.000). To further analyse the signalling pathway involved in BC stemness and drug resistance, GALNT14 and GDF-15 were knocked down in the MCF-7 cell line, and it was observed that after knockdown, the expression level of OCT4, SOX2, ABCC5, and ß-catenin was decreased, and co-knockdown with GALNT14 and GDF-15 further decreased the expression of genes. CONCLUSION: It can be concluded that GALNT14, in association with GDF-15, promotes stemness and intrinsic drug resistance in BC, possibly through the ß-catenin signalling pathway.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Growth Differentiation Factor 15 , N-Acetylgalactosaminyltransferases , Neoplastic Stem Cells , beta Catenin , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Drug Resistance, Neoplasm/genetics , beta Catenin/metabolism , beta Catenin/genetics , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , MCF-7 Cells , Middle Aged , Neoplastic Stem Cells/metabolism , Gene Expression Regulation, Neoplastic , Adult , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Signal Transduction , Wnt Signaling Pathway/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Cell Line, Tumor , Aged
19.
Biochem Pharmacol ; 225: 116253, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701869

ABSTRACT

Infection with Helicobacter pylori (H. pylori or Hp) is associated with an increased susceptibility to gastric diseases, notably gastric cancer (GC). This study investigates the impact of Hp infection on chemoresistance and immune activity in GC cells. Hp infection in AGS and MKN-74 cells promoted proliferation, migration and invasion, apoptosis resistance, and tumorigenic activity of cells under cisplatin (DDP) plus gemcitabine (GEM) treatment. Additionally, it dampened activity of the co-cultured CD8+ T cells. Hp infection increased POU class 5 homeobox 1 (POU5F1) level, which further activated secreted phosphoprotein 1 (SPP1) transcription to increase its expression. Silencing of either SPP1 or POU5F1 enhanced the GEM sensitivity in GC cells, and it increased the populations of CD8+ T cells and the secretion of immune-active cytokines both in vitro and in xenograft tumors in immunocompetent mice. However, the effects of POU5F1 silencing were counteracted by SPP1 overexpression. Furthermore, the POU5F1/SPP1 axis activated the PI3K/AKT signaling pathway. This study demonstrates that Hp infection induces POU5F1 upregulation and SPP1 activation, leading to increased DDP/GEM resistance and T cell inactivation in GC cells.


Subject(s)
Drug Resistance, Neoplasm , Helicobacter Infections , Helicobacter pylori , Octamer Transcription Factor-3 , Osteopontin , Stomach Neoplasms , Up-Regulation , Stomach Neoplasms/metabolism , Humans , Animals , Up-Regulation/drug effects , Mice , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/immunology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Helicobacter pylori/drug effects , Helicobacter pylori/physiology , Osteopontin/metabolism , Osteopontin/genetics , Cisplatin/pharmacology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Male , Mice, Nude
20.
Cell Transplant ; 33: 9636897241248942, 2024.
Article in English | MEDLINE | ID: mdl-38712762

ABSTRACT

Recently, we and others generated induced tissue-specific stem/progenitor (iTS/iTP) cells. The advantages of iTS/iTP cells compared with induced pluripotent stem (iPS) cells are (1) easier generation, (2) efficient differentiation, and (3) no teratomas formation. In this study, we generated mouse induced pancreatic stem cells (iTS-P cells) by the plasmid vector expressing Yes-associated protein 1 (YAP). The iTS-P YAP9 cells expressed Foxa2 (endoderm marker) and Pdx1 (pancreatic marker) while the expressions of Oct3/4 and Nanog (marker of embryonic stem [ES] cells) in iTS-P YAP9 cells was significantly lower compared with those in ES cells. The iTS-P YAP9 cells efficiently differentiated into insulin-expressing cells compared with ES cells. The ability to generate autologous iTS cells may be applied to diverse applications of regenerative medicine.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , YAP-Signaling Proteins , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Pancreas/cytology , Pancreas/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL