Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50.188
1.
ACS Nano ; 18(20): 12933-12944, 2024 May 21.
Article En | MEDLINE | ID: mdl-38712906

Efficient tumor-targeted drug delivery is still a challenging and currently unbreakable bottleneck in chemotherapy for tumors. Nanomedicines based on passive or active targeting strategy have not yet achieved convincing chemotherapeutic benefits in the clinic due to the tumor heterogeneity. Inspired by the efficient inflammatory-cell recruitment to acute clots, we constructed a two-component nanosystem, which is composed of an RGD-modified pyropheophorbide-a (Ppa) micelle (PPRM) that mediates the tumor vascular-targeted photodynamic reaction to activate local coagulation and subsequently transmits the coagulation signals to the circulating clot-targeted CREKA peptide-modified camptothecin (CPT)-loaded nanodiscs (CCNDs) for amplifying tumor targeting. PPRM could effectively bind with the tumor vasculature and induce sufficient local thrombus by a photodynamic reaction. Local photodynamic reaction-induced tumor target amplification greatly increased the tumor accumulation of CCND by 4.2 times, thus significantly enhancing the chemotherapeutic efficacy in the 4T1 breast tumor model. In other words, this study provides a powerful platform to amplify tumor-specific drug delivery by taking advantage of the efficient crosstalk between the PPRM-activated coagulation cascade and clot-targeted CCND.


Chlorophyll , Nanoparticles , Photochemotherapy , Animals , Nanoparticles/chemistry , Mice , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Chlorophyll/pharmacology , Drug Delivery Systems , Female , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Camptothecin/chemistry , Camptothecin/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/administration & dosage , Micelles , Mice, Inbred BALB C , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/pharmacology
2.
Nanoscale ; 16(20): 9836-9852, 2024 May 23.
Article En | MEDLINE | ID: mdl-38713132

Cancer is the second leading cause of death globally after heart diseases. Currently used highly cytotoxic anti-cancer drugs not only kill cancer cells but also often kill non-cancerous healthy body cells, causing adverse side effects. Efforts are now being directed towards developing tumor-selective chemotherapy. Tumor/tumor endothelial cell selective peptide ligands are being covalently grafted onto the exo-surfaces of drug carriers such as liposomes, polymers, etc. A number of prior studies used conjugation of tumor/tumor endothelial cell-selective RGDK- or CGKRK-peptide ligands on the outer surfaces of liposomes, metal-based nanoparticles, single walled carbon nanotubes (SWNTs), etc. However, studies aimed at examining the relative cell membrane fusogenicities and the relative degrees of cellular uptake for the RGDK- and CGKRK-ligand-grafted nanometric drug carriers have not yet been undertaken. Herein, using the widely used liposomes of DOPC, DOPE, DOPS and cholesterol (45 : 25 : 20 : 15, w/w ratio) as the model biomembranes and the fluorescence resonance energy transfer (FRET) assay for measuring membrane fusogenicities, we show that the liposomes of the RGDK-lipopeptide are more biomembrane fusogenic than the liposomes of the CGKRK-lipopeptide. Notably, such FRET assay-derived relative biomembrane fusogenicities of the liposomes of RGDK- and CGKRK-lipopeptides were found to be consistent with their relative degrees of cellular uptake in cultured cancer cells. The present findings open the door for undertaking in-depth in vivo studies aimed at evaluating the relative therapeutic potential of different nanocarriers of drugs/genes/siRNA having tumor-targeting RGDK- and CGKRK-peptides on their exo-surfaces.


Liposomes , Liposomes/chemistry , Humans , Lipopeptides/chemistry , Lipopeptides/pharmacology , Oligopeptides/chemistry , Cell Membrane/metabolism , Cell Membrane/chemistry , Fluorescence Resonance Energy Transfer , Drug Carriers/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Cholesterol/chemistry , Cholesterol/metabolism , Phosphatidylcholines/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
3.
J Phys Chem B ; 128(20): 4898-4910, 2024 May 23.
Article En | MEDLINE | ID: mdl-38733339

In-depth characterization of fundamental folding steps of small model peptides is crucial for a better understanding of the folding mechanisms of more complex biomacromolecules. We have previously reported on the folding/unfolding kinetics of a model α-helix. Here, we study folding transitions in chignolin (GYDPETGTWG), a short ß-hairpin peptide previously used as a model to study conformational changes in ß-sheet proteins. Although previously suggested, until now, the role of the Tyr2-Trp9 interaction in the folding mechanism of chignolin was not clear. In the present work, pH-dependent conformational changes of chignolin were characterized by circular dichroism (CD), nuclear magnetic resonance (NMR), ultrafast pH-jump coupled with time-resolved photoacoustic calorimetry (TR-PAC), and molecular dynamics (MD) simulations. Taken together, our results present a comprehensive view of chignolin's folding kinetics upon local pH changes and the role of the Tyr2-Trp9 interaction in the folding process. CD data show that chignolin's ß-hairpin formation displays a pH-dependent skew bell-shaped curve, with a maximum close to pH 6, and a large decrease in ß-sheet content at alkaline pH. The ß-hairpin structure is mainly stabilized by aromatic interactions between Tyr2 and Trp9 and CH-π interactions between Tyr2 and Pro4. Unfolding of chignolin at high pH demonstrates that protonation of Tyr2 is essential for the stability of the ß-hairpin. Refolding studies were triggered by laser-induced pH-jumps and detected by TR-PAC. The refolding of chignolin from high pH, mainly due to the protonation of Tyr2, is characterized by a volume expansion (10.4 mL mol-1), independent of peptide concentration, in the microsecond time range (lifetime of 1.15 µs). At high pH, the presence of the deprotonated hydroxyl (tyrosinate) hinders the formation of the aromatic interaction between Tyr2 and Trp9 resulting in a more disorganized and dynamic tridimensional structure of the peptide. This was also confirmed by comparing MD simulations of chignolin under conditions mimicking neutral and high pH.


Molecular Dynamics Simulation , Oligopeptides , Protein Folding , Hydrogen-Ion Concentration , Kinetics , Oligopeptides/chemistry , Protein Structure, Secondary
4.
J Cancer Res Clin Oncol ; 150(5): 266, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769166

PURPOSE: Carfilzomib, commonly used for relapsed/refractory multiple myeloma (RRMM), has been associated with various adverse events in randomized controlled trials (RCTs). However, real-world safety data for a more diverse population are needed, as carfilzomib received expedited approval. This study aimed to evaluate carfilzomib's safety in Korea by comparing new users of KRd (carfilzomib, lenalidomide, and dexamethasone) to Rd (lenalidomide and dexamethasone) using a nationwide administrative claims database. METHODS: The retrospective cohort study utilized target trial emulation, focusing on adverse events in various organ systems similar to the ASPIRE trial. RESULTS: This study included 4,580 RRMM patients between 2007 and 2020, and the KRd group showed significantly higher risks of hematologic adverse events (anemia, neutropenia, thrombocytopenia) and some non-hematologic adverse events (cough, hypokalemia, constipation, hypertension, heart failure) compared to the Rd group. Among non-hematologic adverse events, cardiovascular events (heart failure [HR 2.04; 95% CI 1.24-3.35], hypertension [HR 1.58; 95% CI 1.15-2.17]) had the highest risk in the KRd group. CONCLUSION: The safety profile of carfilzomib in Korean patients was similar to previous RCTs. Therefore, caution should be exercised when using carfilzomib in Asian individuals with RRMM due to the increased risk of cardiovascular adverse events.


Antineoplastic Combined Chemotherapy Protocols , Multiple Myeloma , Oligopeptides , Humans , Multiple Myeloma/drug therapy , Oligopeptides/adverse effects , Oligopeptides/therapeutic use , Oligopeptides/administration & dosage , Male , Female , Republic of Korea/epidemiology , Retrospective Studies , Middle Aged , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dexamethasone/adverse effects , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Lenalidomide/adverse effects , Lenalidomide/administration & dosage , Lenalidomide/therapeutic use
5.
Radiology ; 311(2): e231879, 2024 May.
Article En | MEDLINE | ID: mdl-38771185

Background Multiparametric MRI (mpMRI) is effective for detecting prostate cancer (PCa); however, there is a high rate of equivocal Prostate Imaging Reporting and Data System (PI-RADS) 3 lesions and false-positive findings. Purpose To investigate whether fluorine 18 (18F) prostate-specific membrane antigen (PSMA) 1007 PET/CT after mpMRI can help detect localized clinically significant PCa (csPCa), particularly for equivocal PI-RADS 3 lesions. Materials and Methods This prospective study included participants with elevated prostate-specific antigen (PSA) levels referred for prostate mpMRI between September 2020 and February 2022. 18F-PSMA-1007 PET/CT was performed within 30 days of mpMRI and before biopsy. PI-RADS category and level of suspicion (LOS) were assessed. PI-RADS 3 or higher lesions at mpMRI and/or LOS 3 or higher lesions at 18F-PSMA-1007 PET/CT underwent targeted biopsies. PI-RADS 2 or lower and LOS 2 or lower lesions were considered nonsuspicious and were monitored during a 1-year follow-up by means of PSA testing. Diagnostic accuracy was assessed, with histologic examination serving as the reference standard. International Society of Urological Pathology (ISUP) grade 2 or higher was considered csPCa. Results Seventy-five participants (median age, 67 years [range, 52-77 years]) were assessed, with PI-RADS 1 or 2, PI-RADS 3, and PI-RADS 4 or 5 groups each including 25 participants. A total of 102 lesions were identified, of which 80 were PI-RADS 3 or higher and/or LOS 3 or higher and therefore underwent targeted biopsy. The per-participant sensitivity for the detection of csPCa was 95% and 91% for mpMRI and 18F-PSMA-1007 PET/CT, respectively, with respective specificities of 45% and 62%. 18F-PSMA-1007 PET/CT was used to correctly differentiate 17 of 26 PI-RADS 3 lesions (65%), with a negative and positive predictive value of 93% and 27%, respectively, for ruling out or detecting csPCa. One additional significant and one insignificant PCa lesion (PI-RADS 1 or 2) were found at 18F-PSMA-1007 PET/CT that otherwise would have remained undetected. Two participants had ISUP 2 tumors without PSMA uptake that were missed at PET/CT. Conclusion 18F-PSMA-1007 PET/CT showed good sensitivity and moderate specificity for the detection of csPCa and ruled this out in 93% of participants with PI-RADS 3 lesions. Clinical trial registration no. NCT04487847 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Turkbey in this issue.


Fluorine Radioisotopes , Multiparametric Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Multiparametric Magnetic Resonance Imaging/methods , Prospective Studies , Aged , Middle Aged , Niacinamide/analogs & derivatives , Oligopeptides , Radiopharmaceuticals , Prostate/diagnostic imaging , Sensitivity and Specificity
6.
J Nanobiotechnology ; 22(1): 233, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725011

BACKGROUND: Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS: A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1ß, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION: In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.


Dry Eye Syndromes , Inflammation , Liposomes , Mitochondria , Oxidative Stress , Dry Eye Syndromes/drug therapy , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Oxidative Stress/drug effects , Liposomes/chemistry , Inflammation/drug therapy , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cornea/metabolism , Cornea/drug effects , Drug Delivery Systems , Oligopeptides
7.
Sci Rep ; 14(1): 10908, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740809

The European Association of Urology (EAU) has proposed a risk stratification for patients harboring biochemical recurrence (BCR) after radical prostatectomy: ISUP < 4 and PSA doubling time (PSAdt) > 12 months for low risk, and ISUP ≥ 4 or PSAdt ≤ 12 months for high risk. This dual-center retrospective study aims to investigate the correlation between the EAU risk stratification for BCR following radical prostatectomy and the detection rate of lesions using 18F-PSMA-1007 PET/CT. Among the 71 included patients (58 high-risk, 13 low-risk), with a median PSA level of 1.43 ng/ml, PET/CT demonstrated a significantly higher positivity in the high-risk group compared to the low-risk group (72.4% vs. 38.0%, p = 0.026). Analysis of recurrence sites revealed a similar proportion of pelvic-confined disease in both groups (24.1% vs. 23.1%, p = 0.935), but a significantly higher incidence of metastatic disease in the high-risk group (51.7% vs. 15.4%, p = 0.017), with detailed findings indicating an increased prevalence of bone metastases in the high-risk BCR group (37.8% vs. 7.7%, p = 0.048). Therefore, PSMA PET/CT offers valuable insights for treatment decisions, aligning with the evolving landscape of prostate cancer management.


Neoplasm Recurrence, Local , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Retrospective Studies , Aged , Middle Aged , Neoplasm Recurrence, Local/diagnostic imaging , Prostatectomy , Prostate-Specific Antigen/blood , Oligopeptides/chemistry , Niacinamide/analogs & derivatives
8.
Bull Exp Biol Med ; 176(5): 539-542, 2024 Mar.
Article En | MEDLINE | ID: mdl-38717565

Coronary occlusion (45 min) and reperfusion (120 min) in male Wistar rats in vivo, as well as total ischemia (45 min) of an isolated rat heart followed by reperfusion (30 min) were reproduced. The selective δ2-opioid receptor agonist deltorphin II (0.12 mg/kg and 152 nmol/liter) was administered intravenously 5 min before reperfusion in vivo or added to the perfusion solution at the beginning of reperfusion of the isolated heart. The peripheral opioid receptor antagonist naloxone methiodide and δ2-opioid receptor antagonist naltriben were used in doses of 5 and 0.3 mg/kg, respectively. It was found that the infarct-limiting effect of deltorphin II is associated with the activation of δ2-opioid receptors. We have demonstrated that deltorphin II can improve the recovery of the contractility of the isolated heart after total ischemia.


Myocardial Reperfusion Injury , Rats, Wistar , Receptors, Opioid, delta , Animals , Male , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/metabolism , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Oligopeptides/pharmacology , Myocardial Contraction/drug effects , Heart/drug effects , Narcotic Antagonists/pharmacology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Infarction/drug therapy , Myocardium/metabolism
9.
Int J Nanomedicine ; 19: 4163-4180, 2024.
Article En | MEDLINE | ID: mdl-38751660

Purpose: The study aimed to address the non-specific toxicity of cytotoxins (CTX) in liver cancer treatment and explore their combined application with the photosensitizer Ce6, co-loaded into carbonized Zn/Co bimetallic organic frameworks. The goal was to achieve controlled CTX release and synergistic photodynamic therapy, with a focus on evaluating anti-tumor activity against human liver cancer cell lines (Hep G2). Methods: Purified cobra cytotoxin (CTX) and photosensitizer Ce6 were co-loaded into carbonized Zn/Co bimetallic organic frameworks, resulting in RGD-PDA@C-ZIF@(CTX+Ce6). The formulation was designed with surface-functionalization using polydopamine and tumor-penetrating peptide RGD. This approach aimed to facilitate controlled CTX release and enhance the synergistic effect of photodynamic therapy. The accumulation of RGD-PDA@C-ZIF@(CTX+Ce6) at tumor sites was achieved through RGD's active targeting and the enhanced permeability and retention (EPR) effect. In the acidic tumor microenvironment, the porous structure of the metal-organic framework disintegrated, releasing CTX and Ce6 into tumor cells. Results: Experiments demonstrated that RGD-PDA@C-ZIF@(CTX+Ce6) nanoparticles, combined with near-infrared laser irradiation, exhibited optimal anti-tumor effects against human liver cancer cells. The formulation showcased heightened anti-tumor activity without discernible systemic toxicity. Conclusion: The study underscores the potential of utilizing metal-organic frameworks as an efficient nanoplatform for co-loading cytotoxins and photodynamic therapy in liver cancer treatment. The developed formulation, RGD-PDA@C-ZIF@(CTX+Ce6), offers a promising avenue for advancing the clinical application of cytotoxins in oncology, providing a solid theoretical foundation for future research and development.


Indoles , Liver Neoplasms , Metal-Organic Frameworks , Photochemotherapy , Photosensitizing Agents , Zinc , Humans , Photochemotherapy/methods , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Liver Neoplasms/drug therapy , Zinc/chemistry , Zinc/pharmacology , Indoles/chemistry , Indoles/pharmacology , Indoles/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage , Animals , Hep G2 Cells , Cobalt/chemistry , Cobalt/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/pharmacokinetics , Polymers/chemistry , Mice , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/pharmacokinetics , Mice, Nude , Mice, Inbred BALB C , Cell Survival/drug effects
10.
Mol Med ; 30(1): 57, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698308

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVß3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVß3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVß3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS: OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVß3. Integrin αVß3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVß3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS: The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVß3 and regulating the FAK/ERK pathway. CONCLUSIONS: Therefore, the integrin αVß3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.


Integrin alphaVbeta3 , Ossification of Posterior Longitudinal Ligament , Osteogenesis , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Humans , Osteogenesis/drug effects , Animals , Mice , Ossification of Posterior Longitudinal Ligament/metabolism , Ossification of Posterior Longitudinal Ligament/drug therapy , Male , Female , Middle Aged , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Disease Models, Animal , Oligopeptides/pharmacology , Oligopeptides/chemistry , Angiogenesis
11.
Cancer Med ; 13(9): e7170, 2024 May.
Article En | MEDLINE | ID: mdl-38693813

BACKGROUND: Anamorelin was approved in Japan in 2021 to treat cancer cachexia associated with non-small cell lung, gastric, pancreatic, or colorectal cancers. Post-marketing surveillance is being conducted to evaluate the real-world safety and effectiveness of anamorelin. METHODS: This prospective, observational surveillance registered all patients who started treatment with anamorelin after April 21, 2021. Hyperglycemia, hepatic impairment, conduction disorders, and their associated adverse events related to treatment were defined as main safety specifications. Body weight (BW) and appetite were assessed as effectiveness specifications. RESULTS: This analysis was based on data as of January 21, 2023. The safety and effectiveness analysis sets included 6016 and 4511 patients, respectively. Treatment-related adverse events in ≥1% of patients were hyperglycemia (3.9%) and nausea (2.6%). The incidences of hyperglycemia, hepatic impairment, conduction disorders, and their associated adverse events related to treatment were 4.8%, 1.2%, and 1.1%, respectively. The mean changes (standard error [SE]) in BW from baseline to weeks 3, 12, 24, and 52 were 0.64 (0.05) kg, 1.19 (0.12) kg, 1.40 (0.21) kg, and 1.42 (0.39) kg, respectively. The mean changes (SE) in Functional Assessment of Anorexia/Cachexia Treatment 5-item Anorexia Symptom Scale total scores from baseline to weeks 3, 12, 24, and 52 were 3.2 (0.09), 4.8 (0.18), 5.2 (0.30), and 5.3 (0.47), respectively, exceeding the clinically meaningful improvement score (2.0 points). CONCLUSION: The overall safety of anamorelin raised no new safety concerns, although continued caution may be required for hyperglycemia and nausea. Improvements in BW and appetite were also observed in real-world clinical settings.


Cachexia , Hydrazines , Neoplasms , Product Surveillance, Postmarketing , Humans , Cachexia/drug therapy , Cachexia/etiology , Male , Female , Aged , Prospective Studies , Neoplasms/complications , Neoplasms/drug therapy , Japan , Middle Aged , Hyperglycemia/drug therapy , Oligopeptides/therapeutic use , Oligopeptides/adverse effects , Treatment Outcome , Adult , Appetite/drug effects
12.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791363

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.


Computational Biology , Peptide Library , Humans , Computational Biology/methods , Substrate Specificity , Farnesyltranstransferase/metabolism , Farnesyltranstransferase/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Protein Binding
13.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Article En | MEDLINE | ID: mdl-38714013

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Insect Hormones , Ixodes , Neuropeptides , Oligopeptides , Pyrrolidonecarboxylic Acid , Receptors, G-Protein-Coupled , Animals , Neuropeptides/metabolism , Neuropeptides/genetics , Insect Hormones/metabolism , Insect Hormones/genetics , Ixodes/metabolism , Ixodes/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Oligopeptides/metabolism , Oligopeptides/genetics , Oligopeptides/chemistry , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Phylogeny , Amino Acid Sequence , Cricetulus , CHO Cells , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
15.
Viruses ; 16(5)2024 05 13.
Article En | MEDLINE | ID: mdl-38793651

Numerous human adenovirus (AdV) types are endowed with arginine-glycine-aspartic acid (RGD) sequences that enable them to recognize vitronectin-binding (αv) integrins. These RGD-binding cell receptors mediate AdV entry into host cells, a crucial early step in virus infection. Integrin interactions with adenoviruses not only initiate receptor-mediated endocytosis but also facilitate AdV capsid disassembly, a prerequisite for membrane penetration by AdV protein VI. This review discusses fundamental aspects of AdV-host interactions mediated by integrins. Recent efforts to re-engineer AdV vectors and non-viral nanoparticles to target αv integrins for bioimaging and the eradication of cancer cells will also be discussed.


Genetic Therapy , Integrins , Virus Internalization , Humans , Genetic Therapy/methods , Integrins/metabolism , Genetic Vectors/genetics , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , Adenoviridae/genetics , Adenoviridae/physiology , Animals , Receptors, Virus/metabolism , Neoplasms/therapy , Neoplasms/virology , Integrin alphaV/metabolism , Integrin alphaV/genetics , Oligopeptides
16.
Int J Pharm ; 657: 124183, 2024 May 25.
Article En | MEDLINE | ID: mdl-38692500

We developed cyclic RGD-tagged polymeric micellar nanoassemblies for sustained delivery of Doxorubicin (Dox) endowed with significant cytotoxic effect against MG63, SAOS-2, and U2-OS osteosarcoma cells without compromising the viability of healthy osteoblasts (hFOBs). Targeted polymeric micellar nanoassemblies (RGD-NanoStar@Dox) enabled Dox to reach the nucleus of MG63, SAOS-2, and U2-OS cells causing the same cytotoxic effect as free Dox, unlike untargeted micellar nanoassemblies (NanoStar@Dox) which failed to reach the nucleus and resulted ineffective, demonstrating the crucial role of cyclic RGD peptide in driving cellular uptake and accumulation mechanisms in osteosarcoma cells. Micellar nanoassemblies were obtained by nanoformulation of three-armed star PLA-PEG copolymers properly synthetized with and without decoration with the cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys). The optimal RGD-NanoStar@Dox nanoformulation obtained by nanoprecipitation method (8 % drug loading; 35 % encapsulation efficiency) provided a prolonged and sustained drug release with a rate significantly lower than the free drug under the same experimental conditions. Moreover, the nanosystem preserved Dox from the natural degradation occurring under physiological conditions (i.e., dimerization and consequent precipitation) serving as a slow-release "drug reservoir" ensuring an extended biological activity over the time.


Bone Neoplasms , Cell Survival , Doxorubicin , Micelles , Oligopeptides , Osteosarcoma , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/chemistry , Osteosarcoma/drug therapy , Humans , Polyethylene Glycols/chemistry , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/administration & dosage , Bone Neoplasms/drug therapy , Cell Survival/drug effects , Nanoparticles/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Drug Liberation , Drug Carriers/chemistry
17.
Clin Transl Sci ; 17(5): e13828, 2024 May.
Article En | MEDLINE | ID: mdl-38783568

As a treatment for relapsed or refractory multiple myeloma (MM), carfilzomib has been associated with a significant risk of cardiovascular adverse events (CVAE). The goals of our study were to evaluate the metabolomic profile of MM patients to identify those at high risk prior to carfilzomib treatment and to explore the mechanisms of carfilzomib-CVAE to inform potential strategies to protect patients from this cardiotoxicity. Global metabolomic profiling was performed on the baseline and post-baseline plasma samples of 60 MM patients treated with carfilzomib-based therapy, including 31 who experienced CVAE, in a prospective cohort study. Baseline metabolites and post-baseline/baseline metabolite ratios that differ between the CVAE and no-CVAE patients were identified using unadjusted and adjusted methods. A baseline metabolomic risk score was created to stratify patients. We observed a lower abundance of tauroursodeoxycholic acid (T-UDCA) in CVAE patients at baseline (odds ratio [OR] = 0.47, 95% confidence interval [CI] = 0.21-0.94, p = 0.044) compared with the no-CVAE patients. A metabolite risk score was able to stratify patients into three risk groups. The area under the receiver-operating curve of the model with clinical predictors and metabolite risk score was 0.93. Glycochenodeoxycholic acid (OR = 0.56, 95% CI = 0.31-0.87, p = 0.023) was significantly lower in post-baseline/baseline ratios of CVAE patients compared with no-CVAE patients. Following metabolomic analysis, we created a baseline metabolite risk score that can stratify MM patients into different risk groups. The result also provided intriguing clues about the mechanism of carfilzomib-CVAE and potential cardioprotective strategies.


Cardiotoxicity , Metabolomics , Multiple Myeloma , Oligopeptides , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/blood , Oligopeptides/adverse effects , Male , Female , Aged , Middle Aged , Cardiotoxicity/etiology , Cardiotoxicity/blood , Cardiotoxicity/diagnosis , Metabolomics/methods , Prospective Studies , Metabolome/drug effects , Aged, 80 and over , Risk Factors
18.
Cells ; 13(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38786051

The inhibition of endocannabinoid hydrolysis by enzymatic inhibitors may interfere with mechanisms underlying migraine-related pain. The dual FAAH/MAGL inhibitor AKU-005 shows potent inhibitory activity in vitro. Here, we assessed the effect of AKU-005 in a migraine animal model based on nitroglycerin (NTG) administration. Male rats were treated with AKU-005 (0.5 mg/kg, i.p.) or vehicle 3 h after receiving NTG (10 mg/kg, i.p.) or NTG vehicle. One hour later, rats were subjected to the open field test followed by the orofacial formalin test. At the end of the test, we collected serum samples for assessing calcitonin gene-related peptide (CGRP) levels as well as meninges, trigeminal ganglia, and brain areas to assess mRNA levels of CGRP and pro-inflammatory cytokines, and endocannabinoid and related lipid levels. AKU-005 reduced NTG-induced hyperalgesia during the orofacial formalin test but did not influence NTG-induced changes in the open field test. It significantly reduced serum levels of CGRP, CGRP, and pro-inflammatory cytokine mRNA levels in the meninges, trigeminal ganglia, and central areas. Surprisingly, AKU-005 caused no change in endocannabinoids and related lipids in the regions evaluated. The present findings suggest that AKU-005 may have anti-migraine effects by reducing CGRP synthesis and release and the associated inflammatory events. This effect, however, does not seem mediated via an interference with the endocannabinoid pathway.


Amidohydrolases , Calcitonin Gene-Related Peptide , Hyperalgesia , Trigeminal Ganglion , Animals , Male , Hyperalgesia/drug therapy , Rats , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/genetics , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/blood , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism , Rats, Sprague-Dawley , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Endocannabinoids/metabolism , Nitroglycerin/pharmacology , Disease Models, Animal , Cytokines/metabolism , Cytokines/blood , Migraine Disorders/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Oligopeptides , Salivary Proteins and Peptides
19.
Biomed Mater ; 19(4)2024 May 22.
Article En | MEDLINE | ID: mdl-38729192

In this study, we coated electrospun polycaprolactone (PCL) fibers with polydopamine (PDA) to modify their hydrophobicity and fabricated a matrix for culturing mesenchymal stem cells (MSCs). Additionally, we incorporated Arg-Gly-Asp (RGD) peptides into PDA to enhance MSCs culture performance on PCL fibers. PDA and RGD were successfully coated in one step by immersing the electrospun fibers in a coating solution, without requiring an additional surface activation process. The characteristics of functionalized PCL fibers were analyzed by scanning electron microscopy with energy-dispersive x-ray analysis, Fourier transform infrared spectroscopy, water contact angle measurement, and fluorescence measurements using a carboxylic-modified fluorescent microsphere. MSCs cultured on the modified PCL fibers demonstrated enhanced cell adhesion, proliferation, and osteogenic- and chondrogenic differentiation. This study provides insight into potential applications for scaffold fabrication in MSCs-based tissue engineering, wound dressing, implantation, and a deeper understanding of MSCs behaviorin vitro.


Cell Adhesion , Cell Differentiation , Cell Proliferation , Indoles , Mesenchymal Stem Cells , Osteogenesis , Polyesters , Polymers , Tissue Engineering , Tissue Scaffolds , Mesenchymal Stem Cells/cytology , Humans , Polymers/chemistry , Indoles/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Polyesters/chemistry , Osteogenesis/drug effects , Cells, Cultured , Oligopeptides/chemistry , Oligopeptides/pharmacology , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Chondrogenesis/drug effects , Cell Culture Techniques , Hydrophobic and Hydrophilic Interactions
20.
Antiviral Res ; 226: 105899, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705201

We recently developed compound FC-7269 for targeting the Molluscum contagiosum virus processivity factor (mD4) and demonstrated its ability to inhibit viral processive DNA synthesis in vitro and cellular infection of an mD4-dependent virus (Antiviral Res 211, 2023,105520). However, despite a thorough medicinal chemistry campaign we were unable to generate a potent second analog as a requisite for drug development. We overcame this impasse, by conjugating a short hydrophobic trivaline peptide to FC-7269 to produce FC-TriVal-7269 which significantly increased antiviral potency and reduced cellular toxicity.


Antiviral Agents , Molluscum contagiosum virus , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Molluscum contagiosum virus/drug effects , Humans , Virus Replication/drug effects , Molluscum Contagiosum/drug therapy , Oligopeptides/pharmacology , Oligopeptides/chemistry , Animals , Cell Line
...