Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.797
1.
World J Gastroenterol ; 30(19): 2505-2511, 2024 May 21.
Article En | MEDLINE | ID: mdl-38817656

Chronic enteropathy associated with the SLCO2A1 gene (CEAS) is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss. This review explores the potential mechanisms underlying the pathogenesis of CEAS, focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2 (PGE2) levels. Studies have suggested that elevated PGE2 levels contribute to mucosal damage, inflammation, and disruption of the intestinal barrier. The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality, as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS. Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel, targeted therapies.


Dinoprostone , Intestinal Mucosa , Organic Anion Transporters , Humans , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Chronic Disease , Dinoprostone/metabolism , Intestine, Small/pathology , Intestine, Small/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Intestinal Diseases/genetics , Intestinal Diseases/pathology , Animals , Gastrointestinal Hemorrhage/genetics , Gastrointestinal Hemorrhage/etiology , Ulcer/genetics , Ulcer/pathology
2.
Orphanet J Rare Dis ; 19(1): 201, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755710

BACKGROUND AND AIMS: Chronic enteropathy associated with SLCO2A1 gene is a rare intestinal disease caused by loss-of-function SLCO2A1 mutations, with clinical and genetic characteristics remaining largely unknown, especially in Chinese patients. This study aims to reveal clinical and genetic features of Chinese CEAS patients, highlighting the previously unreported or unemphasized characteristics. METHODS: We enrolled 12 Chinese patients with chronic enteropathy associated with SLCO2A1 gene admitted to Peking Union Medical College Hospital from January 2018 to December 2022. Clinical and genetic data of these patients were collected and analyzed. RESULTS: 58.3% of patients were male, who also had primary hypertrophic osteoarthropathy, whereas female patients did not have primary hypertrophic osteoarthropathy. Apart from common symptoms associated with anemia and hypoalbuminemia, abdominal pain, ileus, diarrhea, and hematochezia were present. 4 of the 5 female patients had early-onset amenorrhea, though the causal relationship remained to be clarified. Endoscopy and computed tomography enterography revealed that lesions can occur in any part of the digestive tract, most commonly in the ileum. Pathology showed multiple superficial ulcers with adjacent vascular dilatation, and loss of SLCO2A1 expression, particularly in gastrointestinal vascular endothelial cells. Genetic analysis confirmed SLCO2A1 mutations in all patients and identified 11 new SLCO2A1 variants for CEAS. CONCLUSIONS: This study reports new clinical, pathological, and genetic findings in 12 Chinese patients with chronic enteropathy associated with SLCO2A1 gene. This study provides insights into the pathogenesis of this disease. However, studies with larger sample sizes and more in-depth mechanism research are still required.


Intestinal Diseases , Organic Anion Transporters , Humans , Female , Male , Organic Anion Transporters/genetics , Adult , Intestinal Diseases/genetics , Intestinal Diseases/pathology , Mutation/genetics , Young Adult , Adolescent , Middle Aged , China , Asian People/genetics , Chronic Disease , East Asian People
3.
J Plant Physiol ; 297: 154262, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703548

Aluminum (Al) is the major limiting factor affecting plant productivity in acidic soils. Al3+ ions exhibit increased solubility at a pH below 5, leading to plant root tip toxicity. Alternatively, plants can perceive very low concentrations of Al3+, and Al triggers downstream signaling even at pH 5.7 without causing Al toxicity. The ALUMINUM-ACTIVATED-MALATE-TRANSPORTER (ALMT) family members act as anion channels, with some regulating the secretion of malate from root apices to chelate Al, which is a crucial mechanism for plant Al resistance. To date, the role of the ALMT gene family within the legume Medicago species has not been fully characterized. In this study, we investigated the ALMT gene family in M. sativa and M. truncatula and identified 68 MsALMTs and 18 MtALMTs, respectively. Phylogenetic analysis classified these genes into five clades, and synteny analysis uncovered genuine paralogs and orthologs. The real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that MtALMT8, MtALMT9, and MtALMT15 in clade 2-2b are expressed in both roots and root nodules, and MtALMT8 and MtALMT9 are significantly upregulated by Al in root tips. We also observed that MtALMT8 and MtALMT9 can partially restore the Al sensitivity of Atalmt1 in Arabidopsis. Moreover, transcriptome analysis examined the expression patterns of these genes in M. sativa in response to Al at both pH 5.7 and pH 4.6, as well as to protons, and found that Al and protons can independently induce some Al-resistance genes. Overall, our findings indicate that MtALMT8 and MtALMT9 may play a role in Al resistance, and highlight the resemblance between the ALMT genes in Medicago species and those in Arabidopsis.


Aluminum , Gene Expression Profiling , Phylogeny , Plant Proteins , Aluminum/toxicity , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Multigene Family , Medicago truncatula/genetics , Medicago truncatula/drug effects , Medicago truncatula/metabolism , Medicago sativa/genetics , Medicago sativa/drug effects , Medicago sativa/physiology , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Genome, Plant , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Medicago/genetics , Medicago/physiology
4.
Biomed Pharmacother ; 175: 116644, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692057

Transmembrane drug transporters can be important determinants of the pharmacokinetics, efficacy, and safety profiles of drugs. To investigate the potential cooperative and/or counteracting interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in physiology and pharmacology, we generated a new mouse model (Bab12), deficient for Slco1a/1b, Slco2b1, Abcb1a/1b and Abcg2. Bab12 mice were viable and fertile. We compared wild-type, Slco1a/1b/2b1-/-, Abcb1a/1b;Abcg2-/- and Bab12 strains. Endogenous plasma conjugated bilirubin levels ranked as follows: wild-type = Abcb1a/1b;Abcg2-/- << Slco1a/1b/2b1-/- < Bab12 mice. Plasma levels of rosuvastatin and fexofenadine were elevated in Slco1a/1b/2b1-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type, and dramatically increased in Bab12 mice. Although systemic exposure of larotrectinib and repotrectinib was substantially increased in the separate multidrug transporter knockout strains, no additive effects were observed in the combination Bab12 mice. Significantly higher plasma exposure of fluvastatin and pravastatin was only found in Slco1a/1b/2b1-deficient mice. However, noticeable transport by Slco1a/1b/2b1 and Abcb1a/1b and Abcg2 across the BBB was observed for fluvastatin and pravastatin, respectively, by comparing Bab12 mice with Abcb1a/1b;Abcg2-/- or Slco1a/1b/2b1-/- mice. Quite varying behavior in plasma exposure of erlotinib and its metabolites was observed among these strains. Bab12 mice revealed that Abcb1a/1b and/or Abcg2 can contribute to conjugated bilirubin elimination when Slco1a/1b/2b1 are absent. Our results suggest that the interplay of Slco1a/1b/2b1, Abcb1a/1b, and Abcg2 could markedly affect the pharmacokinetics of some, but not all drugs and metabolites. The Bab12 mouse model will represent a useful tool for optimizing drug development and clinical application, including efficacy and safety.


ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Bilirubin , Mice, Knockout , Organic Anion Transporters , Animals , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Bilirubin/blood , Bilirubin/metabolism , Mice , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Liver-Specific Organic Anion Transporter 1/genetics , Terfenadine/pharmacokinetics , Terfenadine/analogs & derivatives , Male , Biological Transport , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/pharmacology , Mice, Inbred C57BL
5.
J Agric Food Chem ; 72(21): 12083-12099, 2024 May 29.
Article En | MEDLINE | ID: mdl-38757561

The development of food-derived antihyperuricemic substances is important for alleviating hyperuricemia (HUA) and associated inflammation. Here, novel peptides fromThunnus albacares (TAP) with strong antihyperuricemic activity were prepared. TAP was prepared by alkaline protease (molecular weight <1000 Da), with an IC50 value of xanthine oxidase inhibitory activity of 2.498 mg/mL, and 5 mg/mL TAP could reduce uric acid (UA) by 33.62% in human kidney-2 (HK-2) cells (P < 0.01). Mice were fed a high-purine diet and injected with potassium oxonate to induce HUA. Oral administration of TAP (600 mg/kg/d) reduced serum UA significantly by 42.22% and increased urine UA by 79.02% (P < 0.01) via regulating urate transporters GLUT9, organic anion transporter 1, and ATP-binding cassette subfamily G2. Meantime, TAP exhibited hepatoprotective and nephroprotective effects, according to histological analysis. Besides, HUA mice treated with TAP showed anti-inflammatory activity by decreasing the levels of toll-like receptor 4, nuclear factors-κB p65, NLRP3, ASC, and Caspase-1 in the kidneys (P < 0.01). According to serum non-targeted metabolomics, 91 differential metabolites between the MC and TAP groups were identified, and purine metabolism was considered to be the main pathway for TAP alleviating HUA. In a word, TAP exhibited strong antihyperuricemic activity both in vitro and in vivo.


Hyperuricemia , Peptides , Tuna , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Mice , Humans , Uric Acid/metabolism , Uric Acid/blood , Peptides/administration & dosage , Peptides/chemistry , Peptides/pharmacology , Male , Fish Proteins/chemistry , Xanthine Oxidase/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Cell Line , Kidney/drug effects , Kidney/metabolism
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731886

The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood-brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 (Slco1a4) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26LSL-EYFP Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells.


Brain , Endothelial Cells , Integrases , Animals , Mice , Endothelial Cells/metabolism , Integrases/metabolism , Integrases/genetics , Brain/metabolism , Gene Knock-In Techniques , Mice, Transgenic , Blood-Brain Barrier/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Tamoxifen/pharmacology , Red Fluorescent Protein
7.
Sci Rep ; 14(1): 9003, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637614

The invasive Asian longhorned tick Haemaphysalis longicornis that vectors and transmits several animal pathogens is significantly expanding in the United States. Recent studies report that these ticks also harbor human pathogens including Borrelia burgdorferi sensu lato, Babesia microti, and Anaplasma phagocytophilum. Therefore, studies that address the interactions of these ticks with human pathogens are important. In this study, we report the characterization of H. longicornis organic anion-transporting polypeptides (OATPs) in interactions of these ticks with A. phagocytophilum. Using OATP-signature sequence, we identified six OATPs in the H. longicornis genome. Bioinformatic analysis revealed that H. longicornis OATPs are closer to other tick orthologs rather than to mammalian counterparts. Quantitative real-time PCR analysis revealed that OATPs are highly expressed in immature stages when compared to mature stages of these ticks. In addition, we noted that the presence of A. phagocytophilum upregulates a specific OATP in these ticks. We also noted that exogenous treatment of H. longicornis with xanthurenic acid, a tryptophan metabolite, influenced OATP expression in these ticks. Immunoblotting analysis revealed that antibody generated against Ixodes scapularis OATP cross-reacted with H. longicornis OATP. Furthermore, treatment of H. longicornis with OATP antibody impaired colonization of A. phagocytophilum in these ticks. These results not only provide evidence that the OATP-tryptophan pathway is important for A. phagocytophilum survival in H. longicornis ticks but also indicate OATP as a promising candidate for the development of a universal anti-tick vaccine to target this bacterium and perhaps other rickettsial pathogens of medical importance.


Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia , Ixodes , Organic Anion Transporters , Animals , Humans , Haemaphysalis longicornis , Anaplasma phagocytophilum/genetics , Tryptophan , Ixodes/microbiology , Antibodies/metabolism , Organic Anion Transporters/genetics , Borrelia burgdorferi/metabolism , Mammals/metabolism
9.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 Jun.
Article En | MEDLINE | ID: mdl-38577966

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


2,4-Dinitrophenol , Fatty Acids , Animals , 2,4-Dinitrophenol/pharmacology , Mice , Fatty Acids/metabolism , Humans , Malates/metabolism , Mitochondria/metabolism , Ion Transport/drug effects , Membrane Potential, Mitochondrial/drug effects , Protons , Ketoglutaric Acids/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Membrane Transport Proteins
10.
J Pharmacol Exp Ther ; 389(1): 87-95, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38448247

The organic anion transporting polypeptide (OATP)2B1 [(gene: solute carrier organic anion transporter family member 2B1 (SLCO2B1)] is an uptake transporter that facilitates cellular accumulation of its substrates. Comparison of SLCO2B1+/+ knockin and rSlco2b1-/- knockout rats showed a higher expression of rCYP3A1 in the humanized animals. We hypothesize that humanization of OATP2B1 not only affects cellular uptake but also metabolic activity. To further investigate this hypothesis, we used SLCO2B1+/+ and rSlco2b1-/ - rats and the OATP2B1 and rCYP3A1 substrate erlotinib, which is metabolized to OSI-420, for in vivo and ex vivo experiments. One hour after administration of a single dose of erlotinib, the knockin rats exhibited significantly lower erlotinib serum levels, but no change was observed in metabolite concentration or the OSI-420/erlotinib ratio. Similar results were obtained for liver tissue levels comparing SLCO2B1+/+ and rSlco2b1-/- rats. Liver microsomes isolated from the erlotinib-treated animals were characterized ex vivo for rCYP3A activity using testosterone, showing higher activity in the knockin rats. The contrary was observed when microsomes isolated from treatment-naïve animals were assessed for the metabolism of erlotinib to OSI-420. The latter is in contrast to the higher rCYP3A1 protein amount observed by western blot analysis in rat liver lysates and liver microsomes isolated from untreated rats. In summary, rats humanized for OATP2B1 showed higher expression of rCYP3A1 in liver and reduced serum levels of erlotinib but no change in the OSI-420/erlotinib ratio despite a lower OSI-420 formation in isolated liver microsomes. Studies with CYP3A-specific substrates are warranted to evaluate whether humanization affects not only rCYP3A1 expression but also metabolic activity in vivo. SIGNIFICANCE STATEMENT: Humanization of rats for the organic anion transporting polypeptide (OATP)2B1 increases rCYP3A1 expression and activity in liver. Using the OATP2B1/CYP3A-substrate erlotinib to assess the resulting phenotype, we observed lower erlotinib serum and liver concentrations but no impact on the liver/serum ratio. Moreover, there was no difference in the OSI-420/erlotinib ratio comparing humanized and knockout rats, suggesting that OSI-420 is not applicable to monitor differences in rCYP3A1 expression as supported by data from ex vivo experiments with rat liver microsomes.


Cytochrome P-450 CYP3A , Organic Anion Transporters , Rats , Animals , Erlotinib Hydrochloride/pharmacology , Cytochrome P-450 CYP3A/metabolism , Quinazolines/pharmacology , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism
11.
Clin Transl Sci ; 17(3): e13773, 2024 03.
Article En | MEDLINE | ID: mdl-38515340

Our aim was to evaluate biomarkers for organic anion transporting polypeptide 1B1 (OATP1B1) function using a hypothesis-free metabolomics approach. We analyzed fasting plasma samples from 356 healthy volunteers using non-targeted metabolite profiling by liquid chromatography high-resolution mass spectrometry. Based on SLCO1B1 genotypes, we stratified the volunteers to poor, decreased, normal, increased, and highly increased OATP1B1 function groups. Linear regression analysis, and random forest (RF) and gradient boosted decision tree (GBDT) regressors were used to investigate associations of plasma metabolite features with OATP1B1 function. Of the 9152 molecular features found, 39 associated with OATP1B1 function either in the linear regression analysis (p < 10-5) or the RF or GBDT regressors (Gini impurity decrease > 0.01). Linear regression analysis showed the strongest associations with two features identified as glycodeoxycholate 3-O-glucuronide (GDCA-3G; p = 1.2 × 10-20 for negative and p = 1.7 × 10-19 for positive electrospray ionization) and one identified as glycochenodeoxycholate 3-O-glucuronide (GCDCA-3G; p = 2.7 × 10-16). In both the RF and GBDT models, the GCDCA-3G feature showed the strongest association with OATP1B1 function, with Gini impurity decreases of 0.40 and 0.17. In RF, this was followed by one GDCA-3G feature, an unidentified feature with a molecular weight of 809.3521, and the second GDCA-3G feature. In GBDT, the second and third strongest associations were observed with the GDCA-3G features. Of the other associated features, we identified with confidence two representing lysophosphatidylethanolamine 22:5. In addition, one feature was putatively identified as pregnanolone sulfate and one as pregnenolone sulfate. These results confirm GCDCA-3G and GDCA-3G as robust OATP1B1 biomarkers in human plasma.


Glucuronides , Organic Anion Transporters , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Genotype , Biomarkers
12.
Pharmacol Rep ; 76(2): 400-415, 2024 Apr.
Article En | MEDLINE | ID: mdl-38530582

BACKGROUND: In predictions about hepatic clearance (CLH), a number of studies explored the role of albumin and transporters in drug uptake by liver cells, challenging the traditional free-drug theory. It was proposed that liver uptake can occur for transporter substrate compounds not only from the drug's unbound form but also directly from the drug-albumin complex, a phenomenon known as uptake facilitated by albumin. In contrast to albumin, dextran does not exhibit binding properties for compounds. However, as a result of its inherent capacity for stabilization, it is widely used to mimic conditions within cells. METHODS: The uptake of eight known substrates of the organic anion-transporting polypeptide 1B3 (OATP1B3) was assessed using a human embryonic kidney cell line (HEK293), which stably overexpresses this transporter. An inert polymer, dextran, was used to simulate cellular conditions, and the results were compared with experiments involving human plasma and human serum albumin (HSA). RESULTS: This study is the first to demonstrate that dextran increases compound uptake in cells with overexpression of the OATP1B3 transporter. Contrary to the common theory that highly protein-bound ligands interact with hepatocytes to increase drug uptake, the results indicate that dextran's interaction with test compounds does not significantly increase concentrations near the cell membrane surface. CONCLUSIONS: We evaluated the effect of dextran on the uptake of known substrates using OATP1B3 overexpressed in the HEK293 cell line, and we suggest that its impact on drug concentrations in liver cells may differ from the traditional role of plasma proteins and albumin.


Dextrans , Organic Anion Transporters , Humans , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/pharmacology , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Liver-Specific Organic Anion Transporter 1/pharmacology , HEK293 Cells , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Hepatocytes/metabolism , Liver , Membrane Transport Proteins/metabolism , Albumins , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism
13.
Mol Pharm ; 21(5): 2284-2297, 2024 May 06.
Article En | MEDLINE | ID: mdl-38529622

Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3, encoded by the SLCO gene family of the solute carrier superfamily, are involved in the disposition of many exogenous and endogenous compounds. Preclinical rodent models help assess risks of pharmacokinetic interactions, but interspecies differences in transporter orthologs and expression limit direct clinical translation. An OATP1B transgenic mouse model comprising a rodent Slco1a/1b gene cluster knockout and human SLCO1B1 and SLCO1B3 gene insertions provides a potential physiologically relevant preclinical tool to predict pharmacokinetic interactions. Pharmacokinetics of exogenous probe substrates, pitavastatin and pravastatin, and endogenous OATP1B biomarkers, coproporphyrin-I and coproporphyrin-III, were determined in the presence and absence of known OATP/Oatp inhibitors, rifampin or silymarin (an extract of milk thistle [Silybum marianum]), in wild-type FVB mice and humanized OATP1B mice. Rifampin increased exposure of pitavastatin (4.6- and 2.8-fold), pravastatin (3.6- and 2.2-fold), and coproporphyrin-III (1.6- and 2.1-fold) in FVB and OATP1B mice, respectively, but increased coproporphyrin-I AUC0-24h only (1.8-fold) in the OATP1B mice. Silymarin did not significantly affect substrate AUC, likely because the silymarin flavonolignan concentrations were at or below their reported IC50 values for the relevant OATPs/Oatps. Silymarin increased the Cmax of pitavastatin 2.7-fold and pravastatin 1.9-fold in the OATP1B mice. The data of the OATP1B mice were similar to those of the pitavastatin and pravastatin clinical data; however, the FVB mice data more closely recapitulated pitavastatin clinical data than the data of the OATP1B mice, suggesting that the OATP1B mice are a reasonable, though costly, preclinical strain for predicting pharmacokinetic interactions when doses are optimized to achieve clinically relevant plasma concentrations.


Drug Interactions , Liver-Specific Organic Anion Transporter 1 , Mice, Transgenic , Pravastatin , Rifampin , Silymarin , Solute Carrier Organic Anion Transporter Family Member 1B3 , Animals , Rifampin/pharmacokinetics , Mice , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Humans , Silymarin/pharmacokinetics , Pravastatin/pharmacokinetics , Pravastatin/administration & dosage , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Quinolines/pharmacokinetics , Coproporphyrins/metabolism , Male , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism
14.
J Pharm Sci ; 113(5): 1376-1384, 2024 May.
Article En | MEDLINE | ID: mdl-38432624

Organic anion transporting polypeptide (OATP)1A2 and OATP2B1 have potential N-glycosylation sites, but their influence remains unclear. This study aimed to identify the N-glycosylation sites of OATP1A2/2B1 and investigate their impact on the expression and function of OATP1A2/2B1. Human embryonic kidney cells expressing OATP1A2 or OATP2B1 (HEK293-OATP1A2/2B1) were exposed to tunicamycin, an N-glycosylation inhibitor, and a plasma membrane fraction (PMF) Western blot assay and an estrone 3-sulfate (E3S) uptake study were conducted. HEK293-OATP1A2/OATP2B1 cell lines with mutation(s) at potential N-glycosylation sites were established, and the Western blotting and uptake study were repeated. Tunicamycin reduced the PMF levels and E3S uptake of OATP1A2/OATP2B1. The Asn124Gln, Asn135Gln, and Asn492Gln mutations in OATP1A2 and Asn176Gln and Asn538Gln mutations in OATP2B1 reduced the molecular weights of the OATP molecules and their PMF levels. The PMF levels of OATP1A2 Asn124/135Gln, OATP1A2 Asn124/135/492Gln, and OATP2B1 Asn176/538Gln were further reduced. The maximum transport velocities of OATP1A2 Asn124Gln, OATP1A2 Asn135Gln, and OATP2B1 Asn176/538Gln were markedly reduced to 10 %, 4 %, and 10 % of the wild-type level, respectively. In conclusion, the N-glycans at Asn124 and Asn135 of OATP1A2 and those at Asn176 and Asn538 of OATP2B1 are essential for the plasma membrane expression of these molecules and also affect their transport function.


Organic Anion Transporters , Humans , Biological Transport , Estrone/metabolism , Glycosylation , HEK293 Cells , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Tunicamycin/metabolism
15.
J Pediatr Gastroenterol Nutr ; 78(2): 178-187, 2024 Feb.
Article En | MEDLINE | ID: mdl-38374571

Citrin deficiency is an autosomal recessive metabolic liver disease caused by mutations in the SLC25A13 gene. The disease typically presents with cholestasis, elevated liver enzymes, hyperammonemia, hypercitrullinemia, and fatty liver in young infants, resulting in a phenotype known as "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD). The diagnosis relies on clinical manifestation, biochemical evidence of hypercitrullinemia, and identifying mutations in the SLC25A13 gene. Several common mutations have been found in patients of East Asian background. The mainstay treatment is nutritional therapy in early infancy utilizing a lactose-free and medium-chain triglyceride formula. This approach leads to the majority of patients recovering liver function by 1 year of age. Some patients may remain asymptomatic or undiagnosed, but a small proportion of cases can progress to cirrhosis and liver failure, necessitating liver transplantation. Recently, advancements in newborn screening methods have improved the age of diagnosis. Early diagnosis and timely management improve patient outcomes. Further studies are needed to elucidate the long-term follow-up of NICCD patients into adolescence and adulthood.


Cholestasis, Intrahepatic , Cholestasis , Citrullinemia , Gastroenterology , Infant, Newborn, Diseases , Organic Anion Transporters , Adolescent , Child , Humans , Infant , Infant, Newborn , Cholestasis/diagnosis , Cholestasis/etiology , Cholestasis/therapy , Cholestasis, Intrahepatic/diagnosis , Cholestasis, Intrahepatic/etiology , Cholestasis, Intrahepatic/therapy , Citrullinemia/complications , Citrullinemia/diagnosis , Citrullinemia/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mutation , Organic Anion Transporters/genetics
16.
Dig Dis Sci ; 69(4): 1200-1213, 2024 Apr.
Article En | MEDLINE | ID: mdl-38400886

BACKGROUND: Circular RNAs (CircRNAs) play essential roles in cancer occurrence as regulatory RNAs. However, circRNA-mediated regulation of gastric cancer (GC) remains poorly understood. AIM: The purpose of this study was to investigate the molecular mechanism of circSLC22A23 (hsa_circ_0075504) underlying GC occurrence. METHODS: CircSLC22A23 levels were first quantified by quantitative real-time reverse transcription-polymerase chain reaction in GC cell lines, 80 paired GC tissues and adjacent normal tissues, and 27 pairs of plasma samples from preoperative and postoperative patients with GC. Then circSLC22A23 was knocked-down with short hairpin RNA to analyze its oncogenic effects on the proliferation, migration, and invasion of GC cells. Finally, circRNA-binding proteins and their downstream target genes were identified by RNA pulldown, mass spectrometry, RNA immunoprecipitation, quantitative real-time reverse transcription-polymerase chain reaction, and Western blot assays. RESULTS: CircSLC22A23 was found to be highly expressed in GC cells, GC tissues, and plasma from GC patients. Knockdown of circSLC22A23 inhibited GC cell proliferation, migration and invasion. RNA pulldown and RNA immunoprecipitation assays verified the interaction between circSLC22A23 and heterogeneous nuclear ribonucleoprotein U (HNRNPU). Knockdown of circSLC22A23 decreased HNRNPU protein levels. Moreover, rescue assays showed that the tumor suppressive effect of circSLC22A23 knockdown was reversed by HNRNPU overexpression. Finally, epidermal growth factor receptor (EGFR) was found to be one of the downstream target genes of HNRNPU that was up regulated by circSLC22A23. CONCLUSION: CircSLC22A23 regulated the transcription of EGFR through activation of HNRNPU in GC cells, suggesting that circSLC22A23 may serve as a potential therapeutic target for the treatment of GC.


MicroRNAs , RNA, Circular , Stomach Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Small Interfering , Stomach Neoplasms/pathology , Organic Anion Transporters/genetics
17.
Toxicol Lett ; 394: 57-65, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423481

Drug transporters are among the factors that determine the pharmacokinetic profiles after drug administration. In this study, we investigated the roles of drug transporters involved in transport of SN-38, which is an active metabolite of irinotecan, in the intestine under inflammatory conditions in vitro and determined their functional consequences. The expression alterations of breast cancer resistance protein (BCRP) and organic anion transporting polypeptide (OATP) 2B1 were determined at the mRNA and protein levels, and the subsequent functional alterations were evaluated via an accumulation study with the representative transporter substrates [prazosin and dibromofluorescein (DBF)] and SN-38. We also determined the cytotoxicity of SN-38 under inflammatory conditions. Decreased BCRP expression and increased OATP2B1 expression were observed under inflammatory conditions in vitro, which led to altered accumulation profiles of prazosin, DBF, and SN-38, and the subsequent cytotoxic profiles of SN-38. Treatment with rifampin or novobiocin supported the significant roles of BCRP and OATP2B1 in the transport and cytotoxic profile of SN-38. Collectively, these results suggest that BCRP and OATP2B1 are involved in the increased cytotoxicity of SN-38 under inflammatory conditions in vitro. Further comprehensive research is warranted to completely understand SN-38-induced gastrointestinal cytotoxicity and aid in the successful treatment of cancer with irinotecan.


Antineoplastic Agents , Breast Neoplasms , Organic Anion Transporters , Humans , Female , Irinotecan , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Membrane Transport Proteins , Prazosin , Breast Neoplasms/drug therapy
18.
AAPS J ; 26(1): 13, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38182946

To select a drug candidate for clinical development, accurately and promptly predicting human pharmacokinetic (PK) profiles, assessing drug-drug interactions (DDIs), and anticipating potential PK variations in disease populations are crucial steps in drug discovery. The complexity of predicting human PK significantly increases when hepatic transporters are involved in drug clearance (CL) and volume of distribution (Vss). A strategic framework is developed here, utilizing pitavastatin as an example. The framework includes the construction of a monkey physiologically-based PK (PBPK) model, model calibration to obtain scaling factors (SF) of in vitro-in vivo extrapolation (IVIVE) for various clearance parameters, human model development and validation, and assessment of DDIs and PK variations in disease populations. Through incorporating in vitro human parameters and calibrated SFs from the monkey model of 3.45, 0.14, and 1.17 for CLint,active, CLint,passive, and CLint,bile, respectively, and together with the relative fraction transported by individual transporters obtained from in vitro studies and the optimized Ki values for OATP inhibition, the model reasonably captured observed pitavastatin PK profiles, DDIs and PK variations in human subjects carrying genetic polymorphisms, i.e., AUC within 20%. Lastly, when applying the functional reduction based on measured OATP1B biomarkers, the model adequately predicted PK changes in the hepatic impairment population. The present study presents a strategic framework for early-stage drug development, enabling the prediction of PK profiles and assessment of PK variations in scenarios like DDIs, genetic polymorphism, and hepatic impairment-related disease states, specifically focusing on OATP substrates.


Membrane Transport Proteins , Organic Anion Transporters , Humans , Animals , Biological Transport , Calibration , Haplorhini , Organic Anion Transporters/genetics
19.
Clin J Gastroenterol ; 17(2): 240-243, 2024 Apr.
Article En | MEDLINE | ID: mdl-38289459

We report the case of twins diagnosed with chronic enteropathy associated with the SLCO2A1 gene (CEAS) based on characteristic ulcer findings, which required 8 years to diagnose. Both twins had similar symptoms, including anemia and growth failure but the gastrointestinal tract was not evaluated initially because of mild symptoms that were considered consistent with psychological etiology. The endoscopic findings of the firstborn child showed spiral ulcer scars and pseudodiverticulum formation without Helicobacter pylori infection or eosinophilic infiltration in the duodenum. Since the twins presented with ulcers of an unknown cause simultaneously and the first-born child had a spiral ulcer, CEAS was suspected. Genetic analysis and high levels of prostaglandin E major urinary metabolites in the urine led to a definitive diagnosis of CEAS.


Helicobacter Infections , Helicobacter pylori , Inflammatory Bowel Diseases , Organic Anion Transporters , Child , Humans , Ulcer , Helicobacter pylori/metabolism , Duodenum , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism
20.
Dis Markers ; 2024: 5930566, 2024.
Article En | MEDLINE | ID: mdl-38222853

Genetic variations in urate transporters play a significant role in determining human urate levels and have been implicated in developing hyperuricemia or gout. Polymorphism in the key urate transporters, such as ABCG2, URAT1, or GLUT9 was well-documented in the literature. Therefore in this study, our objective was to determine the frequency and effect of rare nonsynonymous allelic variants of SLC22A11, SLC22A13, and SLC17A1 on urate transport. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined all coding regions and exon-intron boundaries of SLC22A11, SLC22A13, and SLC17A1 using PCR amplification and Sanger sequencing. For comparison, we used a control group consisting of 115 normouricemic subjects. To examine the effects of the rare allelic nonsynonymous variants on the expression, intracellular processing, and urate transporter protein function, we performed a functional characterization using the HEK293A cell line, immunoblotting, fluorescent microscopy, and site directed mutagenesis for preparing variants in vitro. Variants p.V202M (rs201209258), p.R343L (rs75933978), and p.P519L (rs144573306) were identified in the SLC22A11 gene (OAT4 transporter); variants p.R16H (rs72542450), and p.R102H (rs113229654) in the SLC22A13 gene (OAT10 transporter); and the p.W75C variant in the SLC17A1 gene (NPT1 transporter). All variants minimally affected protein levels and cytoplasmic/plasma membrane localization. The functional in vitro assay revealed that contrary to the native proteins, variants p.P519L in OAT4 (p ≤ 0.05), p.R16H in OAT10 (p ≤ 0.05), and p.W75C in the NPT1 transporter (p ≤ 0.01) significantly limited urate transport activity. Our findings contribute to a better understanding of (1) the risk of urate transporter-related hyperuricemia/gout and (2) uric acid handling in the kidneys.


Gout , Hyperuricemia , Organic Anion Transporters, Sodium-Independent , Organic Anion Transporters , Sodium-Phosphate Cotransporter Proteins, Type I , Humans , Gout/genetics , Hyperuricemia/genetics , Organic Anion Transporters/genetics , Organic Anion Transporters, Sodium-Independent/genetics , Uric Acid/metabolism , Sodium-Phosphate Cotransporter Proteins, Type I/genetics
...