Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.501
1.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Article En | MEDLINE | ID: mdl-38691504

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Benzene , Benzene/chemistry , Organic Chemicals/chemistry , Oxidation-Reduction , Aerosols , Volatilization , Air Pollutants , Models, Theoretical
2.
Food Res Int ; 187: 114430, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763679

Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the self-assembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels.


Lecithins , Organic Chemicals , Rheology , Sunflower Oil , Surface-Active Agents , Lecithins/chemistry , Organic Chemicals/chemistry , Sunflower Oil/chemistry , Surface-Active Agents/chemistry , Hexoses/chemistry , Fat Substitutes/chemistry , Glycerides/chemistry , Sucrose/chemistry
3.
Bioresour Technol ; 402: 130809, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723729

Phosphorus is enriched in waste activated sludge (WAS) during wastewater treatment, and organic phosphorus (OP) is a potential slow-release P fertilizer. The chemical coagulants used in sludge dewatering leave numerous residues in WAS that affect sludge composting. In this study, the effects of polyaluminum chloride (PAC) and polyferric sulfate (PFS) on the bioconversion of dissolved OP (DOP) during sludge composting were investigated. The results revealed that PFS conditioning promoted the transformation and bioavailability of DOP, whereas PAC conditioning inhibited. Results indicated that PFS conditioning enhanced the transformation of OP molecules in the thermophilic phase. Through oxidation and dehydrogenation reactions, 1-hydroxy-pentane-3,4-diol-5-phosphate and D-ribofuranose 5-phosphate with high bioactivity were generated in the PFS-conditioned compost. Enzymatic hydrolysis experiments further verified that PFS conditioning enhanced the DOP bioavailability in the compost, whereas PAC conditioning inhibited it. The study has provided molecular insights into the effects of chemical conditioning on DOP conversion during sludge composting.


Biological Availability , Composting , Phosphorus , Sewage , Composting/methods , Organic Chemicals/chemistry , Solubility , Hydrolysis , Aluminum Hydroxide
4.
Chemosphere ; 359: 142383, 2024 Jul.
Article En | MEDLINE | ID: mdl-38768785

Minerals and organic matter are essential components of soil, with minerals acting as the "bone" and organic matter as the "skin". The interfacial interactions between minerals and organic matter result in changes in their chemical composition, structure, functional groups, and physical properties, possessing a significant impact on soil properties, functions, and biogeochemical cycles. Understanding the interfacial interactions of minerals and organic matter is imperative to advance soil remediation technologies and carbon targets. Consequently, there is a growing interest in the physicochemical identification of the interfacial interactions between minerals and organic matter in the academic community. This review provides an overview of the mechanisms underlying these interactions, including adsorption, co-precipitation, occlusion, redox, catalysis and dissolution. Moreover, it surveys various methods and techniques employed to characterize the mineral-organic matter interactions. Specifically, the up-to-date spectroscopic techniques for chemical information and advanced microscopy techniques for physical information are highlighted. The advantages and limitations of each method are also discussed. Finally, we outline future research directions for interfacial interactions and suggests areas for improvement and development of characterization techniques to better understand the mechanisms of mineral-organic matter interactions.


Minerals , Soil , Minerals/chemistry , Soil/chemistry , Adsorption , Organic Chemicals/chemistry , Oxidation-Reduction , Environmental Restoration and Remediation/methods , Soil Pollutants/chemistry , Soil Pollutants/analysis
5.
Sci Adv ; 10(20): eadm8096, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758798

Organic matter (OM) transformations in marine sediments play a crucial role in the global carbon cycle. However, secondary production and priming have been ignored in marine biogeochemistry. By incubating shelf sediments with various 13C-labeled algal substrates for 400 days, we show that ~65% of the lipids and ~20% of the proteins were mineralized by numerically minor heterotrophic bacteria as revealed by RNA stable isotope probing. Up to 11% of carbon from the algal lipids was transformed into the biomass of secondary producers as indicated by 13C incorporation in amino acids. This biomass turned over throughout the experiment, corresponding to dynamic microbial shifts. Algal lipid addition accelerated indigenous OM degradation by 2.5 to 6 times. This priming was driven by diverse heterotrophic bacteria and sulfur- and iron-cycling bacteria and, in turn, resulted in extra secondary production, which exceeded that stimulated by added substrates. These interactions between degradation, secondary production, and priming govern the eventual fate of OM in marine sediments.


Geologic Sediments , Geologic Sediments/chemistry , Biomass , Bacteria/metabolism , Carbon Cycle , Carbon/metabolism , Carbon/chemistry , Carbon Isotopes , Lipids/chemistry , Organic Chemicals/chemistry
6.
J Environ Manage ; 359: 121045, 2024 May.
Article En | MEDLINE | ID: mdl-38703653

A multifunctional Ag/AlOOH nanowires (ANW) composite substrate was constructed, which not only accomplishes highly sensitive detection of organic dye molecules, but also has excellent performance in the degradation of pollutants. The ANW in the Ag/ANW substrate possesses a high aspect ratio, which extends the distribution area of Ag and enables a large number of hot spots on the active substrate. Additionally, due to the abundant OH groups on the ANW, there is an increased number of anchor sites for adsorbed metal ions in the Ag/ANW compound, thus contributing to the enhancement and degradation of molecules. Moreover, the constructed multifunctional Ag/ANW nanocomplexes also show great promise for practical applications, providing a reference for the detection and degradation of contaminants.


Nanowires , Spectrum Analysis, Raman , Nanowires/chemistry , Silver/chemistry , Organic Chemicals/chemistry , Organic Chemicals/analysis
7.
Chemosphere ; 358: 142208, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704042

Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.


Nanostructures , Nanostructures/toxicity , Nanostructures/chemistry , Metals/toxicity , Metals/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Organic Chemicals/toxicity , Organic Chemicals/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Environmental Pollutants/toxicity , Environmental Pollutants/chemistry , Humic Substances
8.
Environ Sci Technol ; 58(21): 9040-9050, 2024 May 28.
Article En | MEDLINE | ID: mdl-38743693

Despite the widespread use of photochemical and optical properties to characterize dissolved organic matter (DOM), a significant gap persists in our understanding of the relationship among these properties. This study infers the molecular basis for the optical and photochemical properties of DOM using a comprehensive framework and known structural moieties within DOM. Utilizing Suwannee River Fulvic Acid (SRFA) as a model DOM, carboxylated aromatics, phenols, and quinones were identified as dominant contributors to the absorbance spectra, and phenols, quinones, aldehydes, and ketones were identified as major contributors to radiative energy pathways. It was estimated that chromophores constitute ∼63% w/w of dissolved organic carbon in SRFA and ∼47% w/w of overall SRFA. Notably, estimations indicate the pool of fluorescent compounds and photosensitizing compounds in SRFA are likely distinct from each other at wavelengths below 400 nm. This perspective offers a practical tool to aid in the identification of probable chemical groups when interpreting optical and photochemical data and challenges the current "black box" thinking. Instead, DOM photochemical and optical properties can be closely estimated by assuming the DOM is composed of a mixture of individual compounds.


Benzopyrans , Benzopyrans/chemistry , Organic Chemicals/chemistry , Rivers/chemistry
9.
Food Chem ; 452: 139436, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38749144

The oil phase obtained by blending and oleogel methods has potential for the production of non­hydrogenated and low-saturated puff pastry margarine, thereby reducing intakes of both types of dietary fat. The crystal form, microstructure, rheology, and baking applications of puff pastry margarines prepared with anhydrous milk fat (AMF)/palm stearin (POs), POs/palm oil (PO), beef tallow (BT)/PO, or AMF/POs/diacetyl tartaric acid ester of mono(di)glycerides (DATEM) oleogels were investigated using X-ray scattering, polarized light microscope, and rheometer, respectively. All margarines exhibited ß'-form crystal and strongly viscoelastic at low strain. With the addition of DATEM oleogel, their crystal microstructure became more uniform and finer, and the croissants were less hard (1690) and chewiness (160). The chewiness of croissants produced using the margarines was significantly improved with POs content. The theoretical basis for preparation and application in non­hydrogenated and low-saturated puff pastry margarine was provided in the present study.


Margarine , Rheology , Margarine/analysis , Viscosity , Animals , Cooking , Elasticity , Milk/chemistry , Cattle , Fats/chemistry , Palm Oil/chemistry , Organic Chemicals/chemistry , Organic Chemicals/analysis
10.
Food Res Int ; 186: 114350, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729698

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Emulsions , Organic Chemicals , Sitosterols , Xanthophylls , Sitosterols/chemistry , Xanthophylls/chemistry , Organic Chemicals/chemistry , Biological Availability , Lipolysis , Lecithins/chemistry , Fatty Acids/chemistry , Phenylpropionates
11.
Int J Biol Macromol ; 269(Pt 2): 132129, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718994

This Review presents an overview of all-organic nanocomposites, a sustainable alternative to organic-inorganic hybrids. All-organic nanocomposites contain nanocellulose, nanochitin, and aramid nanofibers as highly rigid reinforcing fillers. They offer superior mechanical properties and lightweight characteristics suitable for diverse applications. The Review discusses various methods for preparing the organic nanofillers, including top-down and bottom-up approaches. It highlights in situ polymerization as the preferred method for incorporating these nanomaterials into polymer matrices to achieve homogeneous filler dispersion, a crucial factor for realizing desired performance. Furthermore, the Review explores several applications of all-organic nanocomposites in diverse fields including food packaging, performance-advantaged plastics, and electronic materials. Future research directions-developing sustainable production methods, expanding biomedical applications, and enhancing resistance against heat, chemicals, and radiation of all-organic nanocomposites to permit their use in extreme environments-are explored. This Review offers insights into the potential of all-organic nanocomposites to drive sustainable growth while meeting the demand for high-performance materials across various industries.


Nanocomposites , Nanocomposites/chemistry , Polymers/chemistry , Organic Chemicals/chemistry , Food Packaging/methods , Nanofibers/chemistry , Inorganic Chemicals/chemistry
12.
Toxicology ; 505: 153824, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705560

We have developed a quantitative safety prediction model for subchronic repeated doses of diverse organic chemicals on rats using the novel quantitative read-across structure-activity relationship (q-RASAR) approach, which uses similarity-based descriptors for predictive model generation. The experimental -Log (NOAEL) values have been used here as a potential indicator of oral subchronic safety on rats as it determines the maximum dose level for which no observed adverse effects of chemicals are found. A total of 186 data points of diverse organic chemicals have been used for the model generation using structural and physicochemical (0D-2D) descriptors. The read-across-derived similarity, error, and concordance measures (RASAR descriptors) have been extracted from the preliminary 0D-2D descriptors. Then, the combined pool of RASAR and the identified 0D-2D descriptors of the training set were employed to develop the final models by using the partial least squares (PLS) algorithm. The developed PLS model was rigorously validated by various internal and external validation metrics as suggested by the Organization for Economic Co-operation and Development (OECD). The final q-RASAR model is proven to be statistically sound, robust and externally predictive (R2 = 0.85, Q2LOO = 0.82 and Q2F1 = 0.94), superseding the internal as well as external predictivity of the corresponding quantitative structure-activity relationship (QSAR) model as well as previously reported subchronic repeated dose toxicity model found in the literature. In a nutshell, the q-RASAR is an effective approach that has the potential to be used as a good alternative way to improve external predictivity, interpretability, and transferability for subchronic oral safety prediction as well as ecotoxicity risk identification.


No-Observed-Adverse-Effect Level , Organic Chemicals , Quantitative Structure-Activity Relationship , Animals , Rats , Organic Chemicals/toxicity , Organic Chemicals/chemistry , Administration, Oral , Toxicity Tests, Subchronic/methods , Male , Dose-Response Relationship, Drug , Risk Assessment , Female
13.
Water Environ Res ; 96(5): e11041, 2024 May.
Article En | MEDLINE | ID: mdl-38797514

The aim of the study is to investigate the leaching of fluorescent dissolved organic matter (fDOM) from microplastics. In addition, this study identifies the connection between fDOM and microplastics in the aquatic environment. Three-dimensional excitation-emission matrix identified five fluorophores, that is, peak A, M, T, Tuv, and Wuv, and the parallel factor analysis modeling identified five components, that is, tryptophan-like, p-hydroxy acetophenone, humic acid (C-like), detergent-like, and fulvic acid (M-like) in the urban surface water. Mimic experiments using commonly used synthetic plastic (like microplastics) in Mili-Q water under solar radiation and dark environments demonstrate the release of fDOM from plastic. Two fluorophore peaks were observed at Ex/Em = 250/302 nm and Ex/Em = 260/333 nm for the expanded polystyrene plastic polymer and one fluorophore peak at Ex/Em = 260/333 nm for the low-density polyethylene. Fluorophore and component intensity exhibited notable associations with microplastics in the aquatic environment. These findings indicated that the characteristics and dynamics of fDOM in urban surface water are influenced by microplastics. PRACTITIONER POINTS: Fluorescent dissolved organic matters were identified in urban surface waters. Expanded polystyrene (EPS) had shown two fluorophores at Em/Ex = 250/302 and Em/Ex = 260/333. Low-density polyethylene (LDPE) had one fluorophore at Em/Ex = 260/333. Fluorophore and component intensity in the aquatic settings exhibited associations with microplastics.


Lakes , Microplastics , Rivers , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Lakes/chemistry , Rivers/chemistry , Factor Analysis, Statistical , Environmental Monitoring/methods , Organic Chemicals/analysis , Organic Chemicals/chemistry , Cities , Fluorescence
14.
J Chem Inf Model ; 64(8): 3021-3033, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38602390

Synthesis planning of new pharmaceutical compounds is a well-known bottleneck in modern drug design. Template-free methods, such as transformers, have recently been proposed as an alternative to template-based methods for single-step retrosynthetic predictions. Here, we trained and evaluated a transformer model, called the Chemformer, for retrosynthesis predictions within drug discovery. The proprietary data set used for training comprised ∼18 M reactions from literature, patents, and electronic lab notebooks. Chemformer was evaluated for the purpose of both single-step and multistep retrosynthesis. We found that the single-step performance of Chemformer was especially good on reaction classes common in drug discovery, with most reaction classes showing a top-10 round-trip accuracy above 0.97. Moreover, Chemformer reached a higher round-trip accuracy compared to that of a template-based model. By analyzing multistep retrosynthesis experiments, we observed that Chemformer found synthetic routes, leading to commercial starting materials for 95% of the target compounds, an increase of more than 20% compared to the template-based model on a proprietary compound data set. In addition to this, we discovered that Chemformer suggested novel disconnections corresponding to reaction templates, which are not included in the template-based model. These findings were further supported by a publicly available ChEMBL compound data set. The conclusions drawn from this work allow for the design of a synthesis planning tool where template-based and template-free models work in harmony to optimize retrosynthetic recommendations.


Drug Discovery , Drug Discovery/methods , Organic Chemicals/chemistry , Organic Chemicals/chemical synthesis , Models, Chemical
15.
Nanotoxicology ; 18(2): 214-228, 2024 Mar.
Article En | MEDLINE | ID: mdl-38557361

Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter. Among existing analytical methods, few have been fully and properly validated. To remedy this, we undertook an inter-laboratory comparison on samples of freeze-dried pig lung, ground and doped with CNTs. Eight laboratories were enrolled to analyze 3 types of CNTs at 2 concentration levels each in this organic matrix. Associated with the different analysis techniques used (specific to each laboratory), sample preparation may or may not have involved prior digestion of the matrix, depending on the analysis technique and the material being analyzed. Overall, even challenging, laboratories' ability to quantify CNT levels in organic matter is demonstrated. However, CNT quantification is often overestimated. Trueness analysis identified effective methods, but systematic errors persisted for some. Choosing the assigned value proved complex. Indirect analysis methods, despite added steps, outperform direct methods. The study emphasizes the need for reference materials, enhanced precision, and organized comparisons.


Lung , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Animals , Swine , Lung/chemistry , Lung/drug effects , Laboratories/standards , Organic Chemicals/analysis , Organic Chemicals/chemistry
16.
Chemosphere ; 357: 142046, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636913

Human and environmental ecosystem beings are exposed to multicomponent compound mixtures but the toxicity nature of compound mixtures is not alike to the individual chemicals. This work introduces four models for the prediction of the negative logarithm of median effective concentration (pEC50) of individual chemicals to marine bacteria Photobacterium Phosphoreum (P. Phosphoreum) and algal test species Selenastrum Capricornutum (S. Capricornutum) as well as their mixtures to P. Phosphoreum, and S. Capricornutum. These models provide the simplest approaches for the forecast of pEC50 of some classes of organic compounds from their interpretable structural parameters. Due to the lack of adequate toxicity data for chemical mixtures, the largest available experimental data of individual chemicals (55 data) and their mixtures (99 data) are used to derive the new correlations. The models of individual chemicals are based on two simple structural parameters but chemical mixture models require further interaction terms. The new model's results are compared with the outputs of the best accessible quantitative structure-activity relationships (QSARs) models. Various statistical parameters are done on the new and comparative complex QSAR models, which confirm the higher reliability and simplicity of the new correlations.


Organic Chemicals , Photobacterium , Quantitative Structure-Activity Relationship , Photobacterium/drug effects , Organic Chemicals/toxicity , Organic Chemicals/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Diatoms/drug effects , Toxicity Tests
17.
J Mol Graph Model ; 130: 108782, 2024 Jul.
Article En | MEDLINE | ID: mdl-38685182

The interactions of the micro-mechanism of hydroxymethanesulfonic acid (HMSA) with the typical small organic molecule in atmospheric (X = methanol, formaldehyde, formic acid, methyl formate, dimethyl ether, acetone) has been investigated by density functional theory (DFT), quantum theory of atoms in molecules (QTAIM), Generalized Kohn-Sham Enery Decomposition Analysis (GKS-EDA) and the atmospheric clusters dynamic code (ACDC). The results of DFT show that the stable six- to eight-membered ring structures are easily formed in HMSA-X clusters. According to the topological analysis results of the AIM theory and the IRI method, a strong hydrogen bonding interaction is present in the complex. GKS-EDA results show that electrostatic energy is the main contributor to the interaction energy as it accounts for 51 %-55 % of the total attraction energy. The evaporation rates of HMSA-HMSA and HMSA-HCOOH clusters were much lower than those of the other HMSA complexes. In addition, the Gibbs energy of formation (ΔG) of HMSA-X dimers is investigated under atmosphere temperature T = 217-298 K and p = 0.19-1.0 atm, the ΔG decreased with decreasing of the atmosphere temperature and increased with the decrease of atmospheric pressure, indicating that the low temperature and high pressure may significantly facilitate to the formation of dimers.


Atmosphere , Hydrogen Bonding , Atmosphere/chemistry , Thermodynamics , Organic Chemicals/chemistry , Models, Molecular , Quantum Theory , Mesylates/chemistry , Static Electricity , Temperature
18.
Environ Sci Technol ; 58(17): 7380-7392, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38640357

Optical surrogates, derived from absorbance and fluorescence spectra, are widely used to infer dissolved organic matter (DOM) composition (molecular weight, aromaticity) and genesis (autochthonous vs allochthonous). Despite the broad adoption of optical surrogates, several limitations exist, such as context- and sample-specific factors. These limitations create uncertainty about how compositional interpretations based on optical surrogates are generalized across contexts, specifically if there is duplicative or contradictory information in those interpretations. To explore these limitations, we performed a meta-analysis of optical surrogates for DOM from diverse sources, both from natural systems and after water treatment processes (n = 762). Prior to analysis, data were screened using a newly developed, standardized methodology that applies systematic quality control criteria before reporting surrogates. There was substantial overlap in surrogate values from natural and treated samples, suggesting that the gradients governing the surrogate variability can be generated in both contexts. This overlap provides justification for using optical surrogates originally developed in the context of natural systems to describe DOM changes in engineered systems, although the interpretations may change. Absorbance-based surrogates that describe the amount of spectral tailing (e.g., E2:E3 and S275-295) had a high frequency of strong correlations with one another but not to specific absorbance (SUVA254) or absorbance slope ratio (SR). The fluorescence index (FI) and biological index (ß/α) were strongly correlated with one another and to the peak emission wavelength but not to the humification index (HIX). Although SUVA254 and FI have both been correlated to DOM aromaticity in prior research, there was a lack of reciprocity between these optical surrogates across this data set. Additionally, there were patterns of deviations in the wastewater subset, suggesting that effluent organic matter may not follow conventional interpretations, urging caution in the use of optical surrogates to track DOM in water reuse applications. Finally, the meta-analysis highlights that three aspects should be captured when optical spectra are used for DOM interpretation: specific absorbance, absorbance tailing, and the extent of red-shifted fluorescence. We recommend that SUVA254, E2:E3, and FI or ß/α be prioritized in future DOM studies to capture these aspects, respectively.


Organic Chemicals , Organic Chemicals/chemistry , Water Purification
19.
Water Res ; 256: 121604, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38640562

Notable differences in photo-physical and chemical properties were found between bulk water and solid phase extraction (SPE) isolates for dissolved organic matter (DOM). The moieties extracted using modified styrene divinylbenzene cartridges, which predominantly consist of conjugated aromatic molecules like humic acids, contribute mainly to light absorption but exhibit lower quantum yields of fluorescence and photo-produced reactive intermediates (PPRIs). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed lignin as the moieties displaying most significant variance in abundance. In Van Krevelen-Spearman plot, we observed molecules positively or negatively correlated with DOM's optical and photochemical properties (including SUVA254, steady-state concentrations of ·OH, 1O2 quantum yield, etc.) were confined to specific regions, which can be delineated using a threshold modified aromaticity index (AImod) of 0.3. Based on the relationships between optical properties and PPRI production, it is suggested that the energy gap between ground state and excited singlet state (△ES1→S0), governing the inner conversion rate, serves as a determinant for apparent quantum yield of PPRIs in DOM, with intra-molecular charge transfer (CT) interactions potentially playing a pivotal role. Regarding DOM's photoreactivity with pollutants, this study has revealed, for the first time, that protein/amino sugars/amino acids could act as antioxidant groups in addition to phenols on the photolysis of sulfadiazine. These findings provide valuable insights into DOM photochemistry and are expected to stimulate further research in this area.


Solid Phase Extraction , Humic Substances , Organic Chemicals/chemistry
20.
Int J Biol Macromol ; 269(Pt 1): 131759, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679272

Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.


Wastewater , Water Pollutants, Chemical , Water Purification , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Adsorption , Biopolymers/chemistry , Water Purification/methods , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification , Microspheres
...