Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.289
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063006

ABSTRACT

Breast cancer is a major malignancy among women, characterized by a high mortality rate. The available literature evidence indicates that selenium, as a trace element, has chemopreventive properties against many types of cancer; as such, compounds containing it in their structure may potentially exhibit anticancer activity. Accordingly, we have undertaken a study to evaluate the effects of novel selenoesters (EDAG-1, -7, -8, -10) on MCF-7 and MDA-MB-231 breast cancer cells. Our analysis included investigations of cell proliferation and viability as well as cytometric determinations of apoptosis/autophagy induction, changes in mitochondrial membrane polarity (ΔΨm), caspase 3/7, 8, and 9 activities, and Bax, Bcl-2, p53, Akt, AMPK, and LC3A/B proteins. The obtained data revealed that the tested derivatives are highly cytotoxic and inhibit cell proliferation even at nanomolar doses (0.41-0.79 µM). Importantly, their strong proapoptotic properties (↑ caspase 3/7) are attributable to the effects on both the extrinsic (↑ caspase 8) and intrinsic (↓ ΔΨm and Bcl-2, ↑ Bax, p53, and caspase 9) pathways of apoptosis. Moreover, the tested compounds are autophagy activators (↓ Akt, ↑ autophagosomes and autolysosomes, AMPK, LC3A/B). In summary, the potent anticancer activity suggests that the tested compounds may be promising drug candidates for future breast cancer therapy.


Subject(s)
Antineoplastic Agents , Apoptosis , Autophagy , Cell Proliferation , Triple Negative Breast Neoplasms , Humans , Apoptosis/drug effects , Female , Cell Proliferation/drug effects , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Membrane Potential, Mitochondrial/drug effects , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Organoselenium Compounds/chemistry , Cell Survival/drug effects , Esters/chemistry , Esters/pharmacology , MCF-7 Cells
2.
Chem Rec ; 24(7): e202400044, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976862

ABSTRACT

Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.


Subject(s)
Organoselenium Compounds , Organoselenium Compounds/chemistry , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Biological Products/chemistry , Biological Products/chemical synthesis , Biological Products/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology
3.
Org Biomol Chem ; 22(30): 6108-6114, 2024 07 31.
Article in English | MEDLINE | ID: mdl-39028035

ABSTRACT

Substitution of disulfide bonds with a diselenide bonds in peptides and proteins is an often-used strategy to increase the stability of naturally occurring peptides and proteins. In this paper, diselenide metathesis between model diselenide dimer peptides, as well as that in diselenide(s)-substituted biologically active peptides, were analyzed. Surprisingly, depending on the tertiary structure of the peptides, we observed that the metathesis reaction occurs under physiological conditions even in the absence of reducing agents, light and heating.


Subject(s)
Peptides , Selenocysteine , Selenocysteine/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/chemical synthesis
4.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891954

ABSTRACT

While research has identified several inhibitors of the main protease (Mpro) of SARS-CoV-2, a significant portion of these compounds exhibit reduced activity in the presence of reducing agents, raising concerns about their effectiveness in vivo. Furthermore, the conventional biosafety level 3 (BSL-3) for cellular assays using viral particles poses a limitation for the widespread evaluation of Mpro inhibitor efficacy in a cell-based assay. Here, we established a BSL-1 compatible cellular assay to evaluate the in vivo potential of Mpro inhibitors. This assay utilizes mammalian cells expressing a tagged Mpro construct containing N-terminal glutathione S-transferase (GST) and C-terminal hemagglutinin (HA) tags and monitors Mpro autodigestion. Using this method, GC376 and boceprevir effectively inhibited Mpro autodigestion, suggesting their potential in vivo activity. Conversely, carmofur and ebselen did not exhibit significant inhibitory effects in this assay. We further investigated the inhibitory potential of selenoneine on Mpro using this approach. Computational analyses of binding energies suggest that noncovalent interactions play a critical role in facilitating the covalent modification of the C145 residue, leading to Mpro inhibition. Our method is straightforward, cost-effective, and readily applicable in standard laboratories, making it accessible to researchers with varying levels of expertise in infectious diseases.


Subject(s)
Antiviral Agents , Azoles , Coronavirus 3C Proteases , Isoindoles , Organoselenium Compounds , Proline , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Isoindoles/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Azoles/pharmacology , Azoles/chemistry , Proline/analogs & derivatives , Proline/pharmacology , Proline/chemistry , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , COVID-19 Drug Treatment , COVID-19/virology , HEK293 Cells , Lactams , Leucine/analogs & derivatives , Sulfonic Acids
5.
Molecules ; 29(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930931

ABSTRACT

A series of phenyl ß-carbonyl selenides with o-ester functionality substituted on the oxygen atom with chiral and achiral alkyl groups was synthesized. All compounds are the first examples of this type of organoselenium derivatives with an ester substituent in the ortho position. The obtained derivatives were tested as antioxidants and anticancer agents to see the influence of an ester functionality on the bioactivity of ß-carbonyl selenides by replacing the o-amide group with an o-ester group. The best results as an antioxidant agent were observed for O-((1R,2S,5R)-(-)-2-isopropyl-5-methylcyclohexyl)-2-((2-oxopropyl)selanyl)benzoate. The most cytotoxic derivative against breast cancer MCF-7 cell lines was O-(methyl)-2-((2-oxopropyl)selanyl)benzoate and against human promyelocytic leukemia HL-60 was O-(2-pentyl)-2-((2-oxopropyl)selanyl)benzoate.


Subject(s)
Antineoplastic Agents , Antioxidants , Esters , Organoselenium Compounds , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , MCF-7 Cells , HL-60 Cells , Structure-Activity Relationship , Molecular Structure
6.
Biochem Pharmacol ; 226: 116339, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848781

ABSTRACT

Sleep is a fundamental state for maintaining the organism homeostasis. Disruptions in sleep patterns predispose to the appearance of memory impairments and mental disorders, including depression. Recent pre-clinical studies have highlighted the antidepressant-like properties of the synthetic compound 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1). To further investigate the neuromodulatory effects of SeBZF1, this study aimed to assess its therapeutic efficacy in ameliorating neurobehavioral impairments induced by sleep deprivation (SD) in mice. For this purpose, a method known as multiple platforms over water was used to induce rapid eye movement (REM) SD. Two hours after acute SD (24 h), male Swiss mice received a single treatment of SeBZF1 (5 mg/kg, intragastric route) or fluoxetine (a positive control, 20 mg/kg, intraperitoneal route). Subsequently, behavioral tests were conducted to assess spontaneous motor function (open-field test), depressive-like behavior (tail suspension test), and memory deficits (Y-maze test). Brain structures were utilized to evaluate oxidative stress markers, monoamine oxidase (MAO) and acetylcholinesterase (AChE) activities. Our findings revealed that SD animals displayed depressive-like behavior and memory impairments, which were reverted by SeBZF1 and fluoxetine treatments. SeBZF1 also reverted the increase in lipoperoxidation levels and glutathione peroxidase activity in the pre-frontal cortex in mice exposed to SD. Besides, the increase in hippocampal AChE activity induced by SD was overturned by SeBZF1. Lastly, cortical MAO-B activity was reestablished by SeBZF1 in mice that underwent SD. Based on the main findings of this study, it can be inferred that the compound SeBZF1 reverses the neurobehavioral alterations induced by sleep deprivation in male Swiss mice.


Subject(s)
Benzofurans , Sleep Deprivation , Animals , Male , Mice , Sleep Deprivation/drug therapy , Benzofurans/pharmacology , Benzofurans/therapeutic use , Behavior, Animal/drug effects , Depression/drug therapy , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Memory Disorders/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Maze Learning/drug effects , Oxidative Stress/drug effects
7.
Bioorg Chem ; 150: 107568, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905887

ABSTRACT

Phenylselenide based BODIPY probe was successfully synthesized and characterized by NMR spectroscopic techniques (1H, 13C and 77Se NMR), mass spectrometry and single crystal XRD. Surprisingly, crystal packing diagram of the probe showed formation of 1-D strip through intermolecular F---H interaction. The probe was screened with various Reactive Oxygen Species (ROS) and found to be selective for superoxide ion over other ROS via "turn-on" fluorescence response. The probe selectively and sensitively detects superoxide with a lower detection limit (43.34 nM) without interfering with other ROS. The quantum yield of the probe was found to increase from 0.091 % to 30.4 % (334-fold) after oxidation. Theoretical calculations (DFT and TD-DFT) were also performed to understand the sensing mechanism of the probe. The probe was able to effectively detect superoxide inside living cells without any toxic effect.


Subject(s)
Boron Compounds , Fluorescent Dyes , Organoselenium Compounds , Boron Compounds/chemistry , Boron Compounds/chemical synthesis , Humans , Organoselenium Compounds/chemistry , Organoselenium Compounds/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure , Density Functional Theory , Superoxides/analysis , HeLa Cells , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis
8.
Dalton Trans ; 53(26): 10805-10813, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38836698

ABSTRACT

Polyoxometalates (POMs) have drawn significant attention on account of their structural designability, compositional diversity and great potential applications. As an indispensable branch of POMs, selenotungstates (SeTs) have been synthesized extensively. Some SeTs have been applied as sensing materials for detecting biomarkers (e.g., metabolites, hormones, cancer markers). To gain a comprehensive understanding of advancements in SeT-based sensing materials, we present an overview that encapsulates the sensing performances and mechanisms of SeT-based biosensors. SeT-based biosensors are categorized into electrochemical catalytic biosensors, electrochemical affinity biosensors, "turn-off" fluorescence biosensors and "turn-on" fluorescence biosensors. We anticipate the expansive potential of SeT-based biosensors in wearable and implantable sensing technologies, which promises to catalyze significant breakthroughs in SeT-based biosensors.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Tungsten Compounds , Biosensing Techniques/methods , Tungsten Compounds/chemistry , Humans , Catalysis , Selenium Compounds/chemistry , Organoselenium Compounds/chemistry
9.
Bioorg Med Chem Lett ; 110: 129852, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38925524

ABSTRACT

The global outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 virus had led to profound respiratory health implications. This study focused on designing organoselenium-based inhibitors targeting the SARS-CoV-2 main protease (Mpro). The ligand-binding pathway sampling method based on parallel cascade selection molecular dynamics (LB-PaCS-MD) simulations was employed to elucidate plausible paths and conformations of ebselen, a synthetic organoselenium drug, within the Mpro catalytic site. Ebselen effectively engaged the active site, adopting proximity to H41 and interacting through the benzoisoselenazole ring in a π-π T-shaped arrangement, with an additional π-sulfur interaction with C145. In addition, the ligand-based drug design using the QSAR with GFA-MLR, RF, and ANN models were employed for biological activity prediction. The QSAR-ANN model showed robust statistical performance, with an r2training exceeding 0.98 and an RMSEtest of 0.21, indicating its suitability for predicting biological activities. Integration the ANN model with the LB-PaCS-MD insights enabled the rational design of novel compounds anchored in the ebselen core structure, identifying promising candidates with favorable predicted IC50 values. The designed compounds exhibited suitable drug-like characteristics and adopted an active conformation similar to ebselen, inhibiting Mpro function. These findings represent a synergistic approach merging ligand and structure-based drug design; with the potential to guide experimental synthesis and enzyme assay testing.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Drug Design , Isoindoles , Machine Learning , Molecular Dynamics Simulation , Organoselenium Compounds , Protease Inhibitors , Quantitative Structure-Activity Relationship , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Isoindoles/chemistry , Isoindoles/pharmacology , Isoindoles/chemical synthesis , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Humans , Azoles/chemistry , Azoles/pharmacology , Azoles/chemical synthesis , COVID-19/virology , Catalytic Domain
10.
Bioorg Med Chem Lett ; 110: 129860, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38942128

ABSTRACT

A series of seleno-containing polyfunctionalized compounds was synthesized exploring cyanohydrin chemistry, including α-hydroxy esters, α-hydroxy acids, 1,2-diols, and 1,2-diacetates, with yields ranging from 26 up to 99 %. The cytotoxicity of all synthesized compounds was then evaluated using a non-tumor cell line (BALB/3T3 murine fibroblasts), and those deemed non-cytotoxic had their anti-melanoma activity evaluated using B16-F10 murine melanoma cells. These assays identified two compounds with selective cytotoxic activity against the tested melanoma cell line, showing a potential anti-melanoma application.


Subject(s)
Antineoplastic Agents , Nitriles , Organoselenium Compounds , Animals , Mice , Anhydrides/chemistry , Anhydrides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , BALB 3T3 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Melanoma/drug therapy , Melanoma/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Molecular Structure , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Selenium/chemistry , Selenium/pharmacology , Structure-Activity Relationship , Acetates/chemical synthesis , Acetates/chemistry , Acetates/pharmacology
11.
Drug Discov Today ; 29(8): 104062, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871111

ABSTRACT

Neurodegenerative diseases are challenging to cure. To date, no cure has been found for Alzheimer's disease or Parkinson's disease, and current treatments are able only to slow the progression of the diseases and manage their symptoms. After an introduction to the complex biology of these diseases, we discuss the beneficial effect of selenium-containing agents, which show neuroprotective effects in vitro or in vivo. Indeed, selenium is an essential trace element that is being incorporated into innovative organoselenium compounds, which can improve outcomes in rodent or even primate models with neurological deficits. Herein, we critically discuss recent findings in the field of selenium-based applications in neurological disorders.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Parkinson Disease , Humans , Animals , Alzheimer Disease/drug therapy , Parkinson Disease/drug therapy , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Selenium/therapeutic use , Selenium/pharmacology , Selenium Compounds/pharmacology , Selenium Compounds/therapeutic use
12.
Cytokine ; 181: 156671, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943739

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), a metabolic disease associated with obesity and type 2 diabetes. Due to its complex pathogenesis, there are still limitations in the knowledge of the disease. To date, no drug has been approved to treat NAFLD. This study aims to explore the role and mechanism of Ebselen (EbSe) in NAFLD. A high-fat diet-induced mouse model of NAFLD was employed to investigate EbSe function in NAFLD mice by EbSe gavage and to regularly monitor the mouse body weight. HE and oil red O staining were performed, respectively, to detect the pathological damage and lipid accumulation in mouse liver tissues. The biochemical and ELISA kits were employed to measure the levels of ALT, AST, TG, TC, LDL-C, HDL-C and pro-inflammatory cytokines within mouse serum or liver tissue. The expression of key proteins of PPARα, fatty acid ß oxidation-related protein, PI3K/Akt and TLR4/JNK signaling pathway was detected by western blot. EbSe significantly downregulated body weight, liver weight and liver lipid accumulation in NAFLD mice and downregulated ALT, AST, TG, TC, LDL-C and increased HDL-C serum levels. EbSe upregulated the expression levels of PPARα and fatty acid ß oxidation-associated proteins CPT1α, ACOX1, UCP2 and PGC1α. EbSe promoted Akt and PI3K phosphorylation, and inhibited TLR4 expression and JNK phosphorylation. EbSe can upregulate PPARα to promote fatty acid ß-oxidation and improve hepatic lipid metabolism. Meanwhile, EbSe also activated PI3K/Akt and inhibited TLR4/JNK signaling pathway. EbSe is predicted to be an effective therapeutic drug for treating NAFLD.


Subject(s)
Isoindoles , Lipid Metabolism , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Organoselenium Compounds , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Toll-Like Receptor 4 , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 4/metabolism , Lipid Metabolism/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Male , Mice , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Isoindoles/pharmacology , Liver/metabolism , Liver/drug effects , Azoles/pharmacology , Azoles/therapeutic use , MAP Kinase Signaling System/drug effects , Diet, High-Fat , Signal Transduction/drug effects , Disease Models, Animal
13.
Redox Biol ; 73: 103206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796864

ABSTRACT

Fungal keratitis is a severely vision-threatening corneal infection, where the prognosis depends on both fungal virulence and host immune defense. Inappropriate host responses can induce substantial inflammatory damage to the cornea. Therefore, in the treatment of fungal keratitis, it is important to concurrently regulate the immune response while efforts are made to eliminate the pathogen. Ebselen is a widely studied organo-selenium compound and has been demonstrated to have antifungal, antibacterial, anti-inflammatory, and oxidative stress-regulatory properties. The effectiveness of ebselen for the treatment of fungal keratitis remains unknown. In this study, ebselen was demonstrated to produce a marked inhibitory effect on Aspergillus fumigatus (A. fumigatus), including spore germination inhibition, mycelial growth reduction, and fungal biofilm disruption. The antifungal activity of ebselen was related to the cell membrane damage caused by thioredoxin (Trx) system inhibition-mediated oxidative stress. On the contrary, ebselen enhanced the antioxidation of Trx system in mammalian cells. Further, ebselen was proven to suppress the expressions of inflammatory mediators (IL-1ß, IL-6, TNF-α, COX-2, iNOS, and CCL2) and reduce the production of oxidative stress-associated indicators (ROS, NO, and MDA) in fungi-stimulated RAW264.7 cells. In addition, ebselen regulated PI3K/Akt/Nrf2 and p38 MAPK signaling pathways, which contributed to the improvement of inflammation and oxidative stress. Finally, we verified the therapeutic effect of ebselen on mouse fungal keratitis. Ebselen improved the prognosis and reduced the fungal burden in mouse corneas. Expressions of inflammatory mediators, as well as the infiltration of macrophages and neutrophils in the cornea were also obviously decreased by ebselen. In summary, ebselen exerted therapeutic effects by reducing fungal load and protecting host tissues in fungal keratitis, making it a promising treatment for fungal infections.


Subject(s)
Anti-Inflammatory Agents , Antifungal Agents , Azoles , Isoindoles , Keratitis , Organoselenium Compounds , Oxidative Stress , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Animals , Keratitis/drug therapy , Keratitis/microbiology , Mice , Oxidative Stress/drug effects , Azoles/pharmacology , Azoles/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , RAW 264.7 Cells , Antioxidants/pharmacology , Aspergillus fumigatus/drug effects , Aspergillosis/drug therapy , Aspergillosis/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/metabolism , Disease Models, Animal
14.
Sci Rep ; 14(1): 12118, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802492

ABSTRACT

Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.


Subject(s)
Amyotrophic Lateral Sclerosis , Azoles , Isoindoles , Organoselenium Compounds , Superoxide Dismutase-1 , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Animals , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Isoindoles/pharmacology , Mice , Azoles/pharmacology , Humans , Mice, Transgenic , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732115

ABSTRACT

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Subject(s)
Antiviral Agents , Machine Learning , Molecular Dynamics Simulation , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Density Functional Theory , Thermodynamics , Isoindoles/chemistry , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Azoles/chemistry , Azoles/pharmacology
16.
Transl Psychiatry ; 14(1): 200, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714646

ABSTRACT

Lithium is an effective augmenting agent for depressed patients with inadequate response to standard antidepressant therapy, but numerous adverse effects limit its use. We previously reported that a lithium-mimetic agent, ebselen, promoted a positive emotional bias-an indicator of potential antidepressant activity in healthy participants. We therefore aimed to investigate the effects of short-term ebselen treatment on emotional processing and brain neurochemistry in depressed patients with inadequate response to standard antidepressants. We conducted a double-blind, placebo-controlled 7-day experimental medicine study in 51 patients with major depressive disorder who were currently taking antidepressants but had an inadequate response to treatment. Participants received either ebselen 600 mg twice daily for seven days or identical matching placebo. An emotional testing battery, magnetic resonance spectroscopy and depression and anxiety rating scales were conducted at baseline and after seven days of treatment. Ebselen did not increase the recognition of positive facial expressions in the depressed patient group. However, ebselen increased the response bias towards fear emotion in the signal detection measurement. In the anterior cingulate cortex, ebselen significantly reduced the concentrations of inositol and Glx (glutamate+glutamine). We found no significant differences in depression and anxiety rating scales between visits. Our study did not find any positive shift in emotional bias in depressed patients with an inadequate response to antidepressant medication. We confirmed the ability of ebselen to lower inositol and Glx in the anterior cingulate cortex. These latter effects are probably mediated through inhibition of inositol monophosphatase and glutaminase respectively.


Subject(s)
Antidepressive Agents , Azoles , Depressive Disorder, Major , Emotions , Isoindoles , Organoselenium Compounds , Humans , Female , Male , Organoselenium Compounds/pharmacology , Double-Blind Method , Adult , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Middle Aged , Emotions/drug effects , Azoles/pharmacology , Magnetic Resonance Spectroscopy , Depressive Disorder, Treatment-Resistant/drug therapy , Depressive Disorder, Treatment-Resistant/metabolism , Gyrus Cinguli/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/diagnostic imaging
17.
Exp Cell Res ; 440(1): 114101, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38815788

ABSTRACT

Se-methylselenocysteine (MSC) is recognized for its potential in cancer prevention, yet the specific effects and underlying processes it initiates within non-small cell lung cancer (NSCLC) remain to be fully delineated. Employing a comprehensive array of assays, including CCK-8, colony formation, flow cytometry, MitoSOX Red staining, wound healing, transwell, and TUNEL staining, we evaluated MSC's effects on A549 and 95D cell lines. Our investigation extended to the ROS-mediated NF-κB signaling pathway, utilizing Western blot analysis, P65 overexpression, and the application of IκB-α inhibitor (BAY11-7082) or N-acetyl-cysteine (NAC) to elucidate MSC's mechanism of action. In vivo studies involving subcutaneous xenografts in mice further confirmed MSC's inhibitory effect on tumor growth. Our findings indicated that MSC inhibited the proliferation of A549 and 95D cells, arresting cell cycle G0/G1 phase and reducing migration and invasion, while also inducing apoptosis and increasing intracellular ROS levels. This was accompanied by modulation of key proteins, including the upregulation of p21, p53, E-cadherin, Bax, cleaved caspase-3, cleaved-PARP, and downregulation of CDK4, SOD2, GPX-1. MSC was found to inhibit the NF-κB pathway, as evidenced by decreased levels of P-P65 and P-IκBα. Notably, overexpression of P65 and modulation of ROS levels with NAC could attenuate MSC's effects on cellular proliferation and metastasis. Moreover, MSC significantly curtailed tumor growth in vivo and disrupted the NF-κB signaling pathway. In conclusion, our research demonstrates that MSC exhibits anticancer effects against NSCLC by modulating the ROS/NF-κB signaling pathway, suggesting its potential as a therapeutic agent in NSCLC treatment.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , NF-kappa B , Reactive Oxygen Species , Selenocysteine , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , NF-kappa B/metabolism , Selenocysteine/analogs & derivatives , Selenocysteine/pharmacology , Cell Proliferation/drug effects , Mice , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Nude , Xenograft Model Antitumor Assays , Cell Line, Tumor , A549 Cells , Organoselenium Compounds/pharmacology , Mice, Inbred BALB C
18.
J Med Chem ; 67(10): 7759-7787, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38716896

ABSTRACT

There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.


Subject(s)
Selenium , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Selenium/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
19.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675530

ABSTRACT

The diselenide bond has attracted intense interest in redox-responsive drug delivery systems (DDSs) in tumor chemotherapy, due to its higher sensitivity than the most investigated bond, namely the disulfide bond. Here, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was designed by coupling two doxorubicin molecules with a diselenodiacetic acid (DSeDAA) molecule via α-amidation, as a redox-triggered drug self-delivery system (DSDS) for tumor-specific chemotherapy. The drug release profiles indicated that the D-DOXSeSe could be cleaved to release the derivatives selenol (DOX-SeH) and seleninic acid (DOX-SeOOH) with the triggering of high GSH and H2O2, respectively, indicating the double-edged sword effect of the lower electronegativity of the selenide atom. The resultant solubility-controlled slow drug release performance makes it a promising candidate as a long-acting DSDS in future tumor chemotherapy. Moreover, the interaction between the conjugations in the design of self-immolation traceless linkers was also proposed for the first time as another key factor for a desired precise tumor-specific chemotherapy, besides the conjugations themselves.


Subject(s)
Carboxylic Acids , Doxorubicin , Drug Liberation , Oxidation-Reduction , Prodrugs , Prodrugs/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Drug Delivery Systems , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Selenium Compounds/chemistry , Selenium Compounds/chemical synthesis , Hydrogen Peroxide/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis
20.
Brain Res ; 1834: 148904, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38561086

ABSTRACT

1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective ß receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and ß1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.


Subject(s)
Antidepressive Agents , Dopamine , Monoamine Oxidase , Organoselenium Compounds , Animals , Male , Mice , Antidepressive Agents/pharmacology , Organoselenium Compounds/pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/drug effects , Dopamine/metabolism , Dopamine Antagonists/pharmacology , Swimming , Norepinephrine/metabolism , Receptors, Dopamine/metabolism , Receptors, Dopamine/drug effects , Depression/drug therapy , Depression/metabolism , Motor Activity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL