Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Sci Rep ; 14(1): 12118, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802492

ABSTRACT

Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.


Subject(s)
Amyotrophic Lateral Sclerosis , Azoles , Isoindoles , Organoselenium Compounds , Superoxide Dismutase-1 , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Animals , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Isoindoles/pharmacology , Mice , Azoles/pharmacology , Humans , Mice, Transgenic , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
2.
Redox Biol ; 73: 103206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796864

ABSTRACT

Fungal keratitis is a severely vision-threatening corneal infection, where the prognosis depends on both fungal virulence and host immune defense. Inappropriate host responses can induce substantial inflammatory damage to the cornea. Therefore, in the treatment of fungal keratitis, it is important to concurrently regulate the immune response while efforts are made to eliminate the pathogen. Ebselen is a widely studied organo-selenium compound and has been demonstrated to have antifungal, antibacterial, anti-inflammatory, and oxidative stress-regulatory properties. The effectiveness of ebselen for the treatment of fungal keratitis remains unknown. In this study, ebselen was demonstrated to produce a marked inhibitory effect on Aspergillus fumigatus (A. fumigatus), including spore germination inhibition, mycelial growth reduction, and fungal biofilm disruption. The antifungal activity of ebselen was related to the cell membrane damage caused by thioredoxin (Trx) system inhibition-mediated oxidative stress. On the contrary, ebselen enhanced the antioxidation of Trx system in mammalian cells. Further, ebselen was proven to suppress the expressions of inflammatory mediators (IL-1ß, IL-6, TNF-α, COX-2, iNOS, and CCL2) and reduce the production of oxidative stress-associated indicators (ROS, NO, and MDA) in fungi-stimulated RAW264.7 cells. In addition, ebselen regulated PI3K/Akt/Nrf2 and p38 MAPK signaling pathways, which contributed to the improvement of inflammation and oxidative stress. Finally, we verified the therapeutic effect of ebselen on mouse fungal keratitis. Ebselen improved the prognosis and reduced the fungal burden in mouse corneas. Expressions of inflammatory mediators, as well as the infiltration of macrophages and neutrophils in the cornea were also obviously decreased by ebselen. In summary, ebselen exerted therapeutic effects by reducing fungal load and protecting host tissues in fungal keratitis, making it a promising treatment for fungal infections.


Subject(s)
Anti-Inflammatory Agents , Antifungal Agents , Azoles , Isoindoles , Keratitis , Organoselenium Compounds , Oxidative Stress , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Animals , Keratitis/drug therapy , Keratitis/microbiology , Mice , Oxidative Stress/drug effects , Azoles/pharmacology , Azoles/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , RAW 264.7 Cells , Antioxidants/pharmacology , Aspergillus fumigatus/drug effects , Aspergillosis/drug therapy , Aspergillosis/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/metabolism , Disease Models, Animal
3.
Free Radic Res ; 58(4): 229-248, 2024.
Article in English | MEDLINE | ID: mdl-38588405

ABSTRACT

Selenium-containing compounds have emerged as promising treatment for redox-based and inflammatory diseases. This study aimed to investigate the in vitro and in vivo anti-inflammatory activity of a novel diselenide named as dibenzyl[diselanediyIbis(propane-3-1diyl)] dicarbamate (DD). DD reacted with HOCl (k = 9.2 x 107 M-1s-1), like glutathione (k = 1.2 x 108 M-1s-1), yielding seleninic and selenonic acid derivatives, and it also decreased HOCl formation by activated human neutrophils (IC50=4.6 µM) and purified myeloperoxidase (MPO) (IC50=3.8 µM). However, tyrosine, MPO-I and MPO-II substrates, did not restore HOCl formation in presence of DD. DD inhibited the oxidative burst in dHL-60 cells with no toxicity up to 25 µM for 48h. Next, an intraperitoneal administration of 25, 50, and 75 mg/kg DD decreased total leukocyte, neutrophil chemotaxis, and inflammation markers (MPO activity, lipid peroxidation, albumin exudation, nitrite, TNF-α, IL-1ß, CXCL1/KC, and CXCL2/MIP-2) on a murine model of carrageenan-induced peritonitis. Likewise, 50 mg/kg DD (i.p.) decreased carrageenan-induced paw edema over 5h. Histological and immunohistochemistry analyses of the paw tissue showed decreased neutrophil count, edema area, and MPO, carbonylated, and nitrated protein staining. Furthermore, DD treatment decreased the fMLP-induced chemotaxis of human neutrophils (IC50=3.7 µM) in vitro with no toxicity. Lastly, DD presented no toxicity in a single-dose model using mice (50 mg/kg, i.p.) over 15 days and in Artemia salina bioassay (50 to 2000 µM), corroborating findings from in silico toxicological study. Altogether, these results demonstrate that DD attenuates carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting damage from MPO-mediated oxidative burst.


Subject(s)
Carrageenan , Inflammation , Neutrophil Infiltration , Animals , Mice , Humans , Inflammation/drug therapy , Inflammation/chemically induced , Neutrophil Infiltration/drug effects , Male , Neutrophils/drug effects , Neutrophils/metabolism , Edema/drug therapy , Edema/chemically induced , Peroxidase/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Hypochlorous Acid
4.
Biochem Biophys Res Commun ; 710: 149885, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38588612

ABSTRACT

Oxidative stress is a key factor in the disruption of cartilage homeostasis during the development of osteoarthritis (OA). Organic selenium (Se)-containing compounds such as diselenides have excellent antioxidant activity and may prevent related diseases. We aimed to examine the benefits of the synthetic small molecule diphenyl diselenide (DPDSe) in OA models in vitro and in vivo. Our findings showed that DPDSe could maintain extracellular matrix (ECM) homeostasis and inhibit reactive oxygen species (ROS) production in IL-1ß-treated chondrocytes. In a destabilization of the medial meniscus (DMM)-induced OA mouse model, intra-articular administration of DPDSe alleviated joint degeneration, as evidenced by a decrease in the OARSI score and the restoration of collagen II (COL2) and MMP-13 expression in cartilage tissues. We confirmed that DDS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in IL-1ß-treated chondrocytes, and its chondroprotective effects were significantly counteracted when Nrf2 signaling was blocked by the inhibitor ML385 or by siRNA-mediated Nrf2 knockdown. The relatively strong performance of DPDSe makes it an ideal candidate for further trials as a disease-modifying OA drug (DMOAD).


Subject(s)
Benzene Derivatives , Organoselenium Compounds , Osteoarthritis , Mice , Animals , NF-E2-Related Factor 2/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Signal Transduction , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Chondrocytes/metabolism , Interleukin-1beta/metabolism
5.
Neurotox Res ; 42(1): 13, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38332435

ABSTRACT

Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.


Subject(s)
Brain Diseases , Organoselenium Compounds , Animals , Zebrafish , Mitochondria , Benzene Derivatives/pharmacology , Benzene Derivatives/therapeutic use , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Hypoxia/drug therapy
6.
Metab Brain Dis ; 39(4): 625-633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38416338

ABSTRACT

Selenium-containing agents showed novel anticancer activity by triggering pro-oxidative mechanism. Studies confirmed that methylseleninic acid (MeSe) displayed broad-spectrum anti-tumor activity against kinds of human cancers. However, the anticancer effects and mechanism of MeSe against human glioma growth have not been explored yet. Herein, the present study showed that MeSeA dose-dependently inhibited U251 and U87 human glioma cells growth in vitro. Flow cytometry analysis indicated that MeSe induced significant U251 cells apoptosis with a dose-dependent manner, followed by the activation of caspase-7, caspase-9 and caspase-3. Immunofluorescence staining revealed that MeSe time-dependently caused reactive oxide species (ROS) accumulation and subsequently resulted in oxidative damage, as convinced by the increased phosphorylation level of Ser428-ATR, Ser1981-ATM, Ser15-p53 and Ser139-histone. ROS inhibition by glutathione (GSH) effectively attenuated MeSe-induced ROS generation, oxidative damage, caspase-3 activation and cytotoxicity, indicating that ROS was an upstream factor involved in MeSe-mediated anticancer mechanism in glioma. Importantly, MeSe administration in nude mice significantly inhibited glioma growth in vivo by inducing apoptosis through triggering oxidative damage. Taken together, our findings validated the possibility that MeSe as a selenium-containing can act as potential tumor chemotherapy agent for therapy of human glioma.


Subject(s)
Apoptosis , Glioma , Mice, Nude , Organoselenium Compounds , Oxidative Stress , Reactive Oxygen Species , Humans , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Apoptosis/drug effects , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Animals , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Oxidative Stress/drug effects , Mice , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Mice, Inbred BALB C
7.
Neurochem Res ; 49(4): 1076-1092, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38267690

ABSTRACT

Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.


Subject(s)
Organoselenium Compounds , Temefos , Humans , Rats , Animals , Caspase 3 , Temefos/pharmacology , Acetylcholinesterase , Oxidative Stress , Antioxidants/pharmacology , Benzene Derivatives/pharmacology , Benzene Derivatives/therapeutic use , Benzene Derivatives/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Glutathione/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Doxorubicin/toxicity
8.
Curr Opin Chem Biol ; 75: 102337, 2023 08.
Article in English | MEDLINE | ID: mdl-37276751

ABSTRACT

Cellular redox homeostasis is very important for the overall cellular development, function, and oxidative stress often disrupts the process. Small-molecule organoselenium compounds exert key roles in maintaining the redox homeostasis during oxidative stress and cancer owing to their notable antioxidant activities. Among different organoselenium compounds, small-molecule organoselenocyanates have attracted much research attention due to their synthetic utilities and therapeutic potentials. Therefore, the development of convenient synthetic methodologies to different classes of organoselenocyanates from various precursors was explored over the years as useful synthetic building blocks. Additionally, considering their inherent redox and antioxidant properties, the development of biologically relevant organoselenocyanates upon their conjugation with the existing drugs and natural products has been chosen for enhancing the drug potencies and in ameliorating the drug-induced side-effects. In the present report, we have discussed some of the very recent and relevant developments on these aspects in a very concise manner.


Subject(s)
Neoplasms , Organoselenium Compounds , Humans , Antioxidants/pharmacology , Oxidation-Reduction , Neoplasms/drug therapy , Oxidative Stress , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use
9.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902109

ABSTRACT

κ-Selenocarrageenan (KSC) is an organic selenium (Se) polysaccharide. There has been no report of an enzyme that can degrade κ-selenocarrageenan to κ-selenocarrageenan oligosaccharides (KSCOs). This study explored an enzyme, κ-selenocarrageenase (SeCar), from deep-sea bacteria and produced heterologously in Escherichia coli, which degraded KSC to KSCOs. Chemical and spectroscopic analyses demonstrated that purified KSCOs in hydrolysates were composed mainly of selenium-galactobiose. Organic selenium foods through dietary supplementation could help regulate inflammatory bowel diseases (IBD). This study discussed the effects of KSCOs on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in C57BL/6 mice. The results showed that KSCOs alleviated the symptoms of UC and suppressed colonic inflammation by reducing the activity of myeloperoxidase (MPO) and regulating the unbalanced secretion of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10). Furthermore, KSCOs treatment regulated the composition of gut microbiota, enriched the genera Bifidobacterium, Lachnospiraceae_NK4A136_group and Ruminococcus and inhibited Dubosiella, Turicibacter and Romboutsia. These findings proved that KSCOs obtained by enzymatic degradation could be utilized to prevent or treat UC.


Subject(s)
Carrageenan , Colitis, Ulcerative , Gastrointestinal Microbiome , Organoselenium Compounds , Animals , Mice , Colitis, Ulcerative/prevention & control , Colitis, Ulcerative/therapy , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Interleukin-6/metabolism , Mice, Inbred C57BL , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Carrageenan/pharmacology , Carrageenan/therapeutic use , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use
10.
Curr Med Chem ; 30(21): 2357-2395, 2023.
Article in English | MEDLINE | ID: mdl-35708081

ABSTRACT

Neurodegenerative and mental disorders are a public health burden with pharmacological treatments of limited efficacy. Organoselenium compounds are receiving great attention in medicinal chemistry mainly because of their antioxidant and immunomodulatory activities, with a multi-target profile that can favor the treatment of multifactorial diseases. Therefore, the purpose of this review is to discuss recent preclinical studies about organoselenium compounds as therapeutic agents for the management of mental (e.g., depression, anxiety, bipolar disorder, and schizophrenia) and neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis). We have summarized around 70 peer-reviewed articles from 2016 to the present that used in silico, in vitro, and/or in vivo approaches to assess the neuropharmacology of selenium- containing compounds. Among the diversity of organoselenium molecules investigated in the last five years, diaryl diselenides, Ebselen-derivatives, and Se-containing heterocycles are the most representative. Ultimately, this review is expected to provide disease-oriented information regarding the neuropharmacology of organoselenium compounds that can be useful for the design, synthesis, and pharmacological characterization of novel bioactive molecules that can potentially be clinically viable candidates.


Subject(s)
Mental Disorders , Organoselenium Compounds , Humans , Neuropharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Mental Disorders/drug therapy , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Organoselenium Compounds/chemistry
11.
Drug Discov Today ; 27(8): 2268-2277, 2022 08.
Article in English | MEDLINE | ID: mdl-35390546

ABSTRACT

The diverse pharmacological activities of organoselenium compounds are closely correlated to their ability to scavenge and induce reactive oxygen species (ROS), their intrinsic oxidative properties, and their Se(0) release property. The incorporation of selenium into small molecules, and particularly into heterocycles and natural products, has shown great potential in altering the potency and selectivity of these molecules. Therefore, selenium will play an important role in drug discovery in the near future. We summarize how different organoselenium species affect cellular oxidative stress levels, and try to correlate the structural properties of selenium-containing heterocycles and natural product derivatives to their biological activities and therapeutic applications. We also provide some information to guide the rational design of selenium-containing drugs.


Subject(s)
Biological Products , Organoselenium Compounds , Selenium , Antioxidants , Biological Products/pharmacology , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Selenium/chemistry
12.
Molecules ; 26(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946583

ABSTRACT

sp2-Iminosugar glycolipids (sp2-IGLs) represent a consolidated family of glycoconjugate mimetics encompassing a monosaccharide-like glycone moiety with a pseudoamide-type nitrogen replacing the endocyclic oxygen atom of carbohydrates and an axially-oriented lipid chain anchored at the pseudoanomeric position. The combination of these structural features makes them promising candidates for the treatment of a variety of conditions, spanning from cancer and inflammatory disorders to parasite infections. The exacerbated anomeric effect associated to the putative sp2-hybridized N-atom imparts chemical and enzymatic stability to sp2-IGLs and warrants total α-anomeric stereoselectivity in the key glycoconjugation step. A variety of O-, N-, C- and S-pseudoglycosides, differing in glycone configurational patterns and lipid nature, have been previously prepared and evaluated. Here we expand the chemical space of sp2-IGLs by reporting the synthesis of α-d-gluco-configured analogs with a bicyclic (5N,6O-oxomethylidene)nojirimycin (ONJ) core incorporating selenium at the glycosidic position. Structure-activity relationship studies in three different scenarios, namely cancer, Leishmaniasis and inflammation, convey that the therapeutic potential of the sp2-IGLs is highly dependent, not only on the length of the lipid chain (linear aliphatic C12 vs. C8), but also on the nature of the glycosidic atom (nitrogen vs. sulfur vs. selenium). The ensemble of results highlights the α-dodecylseleno-ONJ-glycoside as a promising multitarget drug candidate.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Antiprotozoal Agents/therapeutic use , Glycolipids/therapeutic use , Neoplasms/drug therapy , Organoselenium Compounds/therapeutic use , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Glycolipids/chemical synthesis , Glycolipids/chemistry , Humans , Inflammation/drug therapy , Leishmaniasis/drug therapy , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry
13.
Bioorg Chem ; 117: 105455, 2021 12.
Article in English | MEDLINE | ID: mdl-34740055

ABSTRACT

The main protease (Mpro or 3CLpro) of SARS-CoV-2 virus is a cysteine enzyme critical for viral replication and transcription, thus indicating a potential target for antiviral therapy. A recent repurposing effort has identified ebselen, a multifunctional drug candidate as an inhibitor of Mpro. Our docking of ebselen to the binding pocket of Mpro crystal structure suggests a noncovalent interaction for improvement of potency, antiviral activity and selectivity. To test this hypothesis, we designed and synthesized ebselen derivatives aimed at enhancing their non-covalent bonds within Mpro. The inhibition of Mpro by ebselen derivatives (0.3 µM) was screened in both HPLC and FRET assays. Nine ebselen derivatives (EBs) exhibited stronger inhibitory effect on Mpro with IC50 of 0.07-0.38 µM. Further evaluation of three derivatives showed that EB2-7 exhibited the most potent inhibition of SARS-CoV-2 viral replication with an IC50 value of 4.08 µM in HPAepiC cells, as compared to the prototype ebselen at 24.61 µM. Mechanistically, EB2-7 functions as a noncovalent Mpro inhibitor in LC-MS/MS assay. Taken together, our identification of ebselen derivatives with improved antiviral activity may lead to developmental potential for treatment of COVID-19 and SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Isoindoles/chemistry , Organoselenium Compounds/chemistry , SARS-CoV-2/enzymology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Catalytic Domain , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Coronavirus 3C Proteases/metabolism , Drug Design , Fluorescence Resonance Energy Transfer , Humans , Isoindoles/metabolism , Isoindoles/pharmacology , Isoindoles/therapeutic use , Molecular Docking Simulation , Organoselenium Compounds/metabolism , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Tandem Mass Spectrometry , COVID-19 Drug Treatment
14.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575955

ABSTRACT

The inhibition mechanism of the main protease (Mpro) of SARS-CoV-2 by ebselen (EBS) and its analog with a hydroxyl group at position 2 of the benzisoselenazol-3(2H)-one ring (EBS-OH) was studied by using a density functional level of theory. Preliminary molecular dynamics simulations on the apo form of Mpro were performed taking into account both the hydrogen donor and acceptor natures of the Nδ and Nε of His41, a member of the catalytic dyad. The potential energy surfaces for the formation of the Se-S covalent bond mediated by EBS and EBS-OH on Mpro are discussed in detail. The EBS-OH shows a distinctive behavior with respect to EBS in the formation of the noncovalent complex. Due to the presence of canonical H-bonds and noncanonical ones involving less electronegative atoms, such as sulfur and selenium, the influence on the energy barriers and reaction energy of the Minnesota hybrid meta-GGA functionals M06, M06-2X and M08HX, and the more recent range-separated hybrid functional wB97X were also considered. The knowledge of the inhibition mechanism of Mpro by the small protease inhibitors EBS or EBS-OH can enlarge the possibilities for designing more potent and selective inhibitor-based drugs to be used in combination with other antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , Antiviral Agents/therapeutic use , Binding Sites/drug effects , COVID-19/virology , Catalytic Domain/drug effects , Coronavirus 3C Proteases/metabolism , Drug Design , Humans , Isoindoles/chemistry , Isoindoles/therapeutic use , Molecular Docking Simulation , Molecular Dynamics Simulation , Organoselenium Compounds/chemistry , Organoselenium Compounds/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
15.
Eur J Pharmacol ; 910: 174499, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34508753

ABSTRACT

Octylseleno-xylofuranoside (OSX) is an organic selenium compound which has previously shown antioxidant and antidepressant-like activities, trough the modulation of monoaminergic system and synaptic plasticity pathways. Since recent studies have suggested Major Depressive Disorder (MDD) as a potential risk factor or condition that precedes and correlates with Alzheimer's Disease (AD), this study aimed to evaluate the protective effects of OSX in an AD mouse model induced by intracerebroventricular injection of streptozotocin (STZ). To address this protective effect, mice were pre-treated with intragastrical OSX (0.1 mg/kg) or vehicle for 20 days. After the pre-treatment, mice were submitted to two alternated intracerebroventricular infusions of STZ (days 21 and 23) or saline. 15 days after the last STZ injection, cognitive and memory skills of the treated mice were evaluated on object recognition test, Y-maze, stepdown passive avoidance and social recognition paradigms. Added to that, measurements of oxidative stress markers and gene expression were evaluated in brain samples of the same mice groups. Mice pre-treatment with OSX protected mice from cognitive and memory decline elicited by STZ. This effect was attributed to the prevention of lipid peroxidation and modulation of acetylcholinesterase and monoamine oxidase activities in cerebral cortices and hippocampi by OSX treatment. Furthermore, OSX treatment demonstrated reduction of amyloidogenic pathway genes expression when compared to the control groups. Besides that, OSX treatment showed no hepatic and renal toxicity in the protocol used for treatment. Considering the antidepressant-like effect of OSX, together with the ability to prevent memory and cognitive impairment, this new compound may be an interesting strategy for targeting the comorbidity between MDD and AD, in a multitarget drug paradigm.


Subject(s)
Alzheimer Disease/prevention & control , Glycosides/pharmacology , Organoselenium Compounds/pharmacology , Alzheimer Disease/chemically induced , Alzheimer Disease/pathology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Disease Models, Animal , Glycosides/therapeutic use , Hippocampus/drug effects , Hippocampus/pathology , Humans , Infusions, Intraventricular , Lipid Peroxidation/drug effects , Male , Mice , Organoselenium Compounds/therapeutic use , Oxidative Stress/drug effects , Streptozocin/administration & dosage , Streptozocin/toxicity
16.
Neurochem Int ; 149: 105116, 2021 10.
Article in English | MEDLINE | ID: mdl-34229025

ABSTRACT

Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.


Subject(s)
Disease Models, Animal , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Inflammation Mediators/antagonists & inhibitors , White Matter/drug effects , White Matter/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Edaravone/pharmacology , Edaravone/therapeutic use , Humans , Hypoxia-Ischemia, Brain/metabolism , Inflammation Mediators/metabolism , Isoindoles/pharmacology , Isoindoles/therapeutic use , Melatonin/pharmacology , Melatonin/therapeutic use , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Myelin Sheath/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Oligodendroglia/pathology , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , White Matter/metabolism
17.
Eur J Med Chem ; 223: 113621, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34217061

ABSTRACT

Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.


Subject(s)
Anti-Infective Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Communicable Diseases/drug therapy , Neoplasms/drug therapy , Organoselenium Compounds/therapeutic use , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Line, Tumor , Humans , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology
18.
Neural Plast ; 2021: 4784385, 2021.
Article in English | MEDLINE | ID: mdl-34306060

ABSTRACT

Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.


Subject(s)
Hearing Loss, Noise-Induced/etiology , Animals , Autophagy , Calcium/metabolism , Clinical Trials, Phase II as Topic , DNA Repair/genetics , Drugs, Investigational/therapeutic use , Energy Metabolism , Gap Junctions , Glutamic Acid/physiology , Hair Cells, Auditory/pathology , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/genetics , Humans , Inflammation , Isoindoles/therapeutic use , Nanoparticles , Organoselenium Compounds/therapeutic use , Oxidative Stress , Potassium Channels/genetics , Stereocilia/ultrastructure
19.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205571

ABSTRACT

Studies of recent decades have repeatedly demonstrated the cytotoxic effect of selenium-containing compounds on cancer cells of various origins. Particular attention in these studies is paid to methylseleninic acid, a widespread selenium-containing compound of organic nature, for several reasons: it has a selective cytotoxic effect on cancer cells, it is cytotoxic in small doses, it is able to generate methylselenol, excluding the action of the enzyme ß-lyase. All these qualities make methylseleninic acid an attractive substrate for the production of anticancer drugs on its basis with a well-pronounced selective effect. However, the studies available to date indicate that there is no strictly specific molecular mechanism of its cytotoxic effect in relation to different cancer cell lines and cancer models. This review contains generalized information on the dose- and time-dependent regulation of the toxic effect of methylseleninic acid on the proliferative properties of a number of cancer cell lines. In addition, special attention in this review is paid to the influence of this selenium-containing compound on the regulation of endoplasmic reticulum stress and on the expression of seven selenoproteins, which are localized in the endoplasmic reticulum.


Subject(s)
Carcinogenesis/drug effects , Cytotoxins/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Neoplasms/drug therapy , Organoselenium Compounds/toxicity , Animals , Humans , Organoselenium Compounds/therapeutic use , Selenoproteins/metabolism
20.
Life Sci ; 280: 119751, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34174321

ABSTRACT

AIMS: Obesity is associated with a spectrum of hepatic abnormalities that can be experimentally induced by injections of monosodium glutamate (MSG) in neonatal rodents. We investigated the protective actions of the repeated therapy with 4-phenylselenyl-7-chloroquinoline (4-PSQ), a quinoline derivative containing selenium, on damage to the liver triggered by early postnatal administration of MSG in male Wistar rats. MAIN METHODS: Neonatal rats received MSG (4 g/kg, subcutaneous route) or saline (1 ml/kg) from 5 to 14 postnatal day (PND) to induce obesity with consequent damages in the liver. 4-PSQ treatment (5 mg/kg) or canola oil (1 ml/kg) was administered from 60 to 76 PND by the intragastric route. On 76 PND, animals were anesthetized for blood and liver collection. Plasma markers of hepatic function, hepatic lipoperoxidation levels and histology analysis of liver tissue were assessed. KEY FINDINGS: Our data revealed that treatment with 4-PSQ reverted the increase in plasma transaminases activities observed in MSG rats. Treatment with 4-PSQ reduced plasma lactate levels in obese rats. In the liver, MSG elevated the content of lipoperoxidation which was reverted by 4-PSQ administrations. Lastly, 4-PSQ therapy attenuated the histological alterations induced by MSG. SIGNIFICANCE: Together, the results indicate a hepatoprotective action of repeated treatment with 4-PSQ in obese rats.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Flavoring Agents/adverse effects , Liver/drug effects , Organoselenium Compounds/therapeutic use , Protective Agents/therapeutic use , Quinolines/therapeutic use , Sodium Glutamate/adverse effects , Animals , Animals, Newborn , Chemical and Drug Induced Liver Injury/pathology , Liver/pathology , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...