Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioconjug Chem ; 34(3): 581-593, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36802542

ABSTRACT

Orlistat, an FDA-approved fatty acid inhibitor for obesity treatment, demonstrates certain low and greatly varied anticancer abilities. In a previous study, we revealed a synergistic effect between orlistat and dopamine in cancer treatment. Here, orlistat-dopamine conjugates (ODCs) with defined chemical structures were synthesized. The ODC by design underwent polymerization and self-assembly in the presence of oxygen to form nano-sized particles (Nano-ODCs) spontaneously. The resulted Nano-ODCs of partial crystalline structures demonstrated good water dispersion to form stable Nano-ODC suspensions. Because of the bioadhesive property of the catechol moieties, once administered, Nano-ODCs were quickly accumulated on cell surfaces and efficiently uptaken by cancer cells. In the cytoplasm, Nano-ODC experienced biphasic dissolution followed by spontaneous hydrolysis to release intact orlistat and dopamine. Besides elevated levels of intracellular reactive oxygen species (ROS), the co-localized dopamine also induced mitochondrial dysfunctions through monoamine oxidases (MAOs)-catalyzed dopamine oxidation. The strong synergistic effects between orlistat and dopamine determined a good cytotoxicity activity and a unique cell lysis mechanism, explaining the distinguished activity of Nano-ODC to drug-sensitive and -resistant cancer cells. This new technology-enabled orlistat repurposing will contribute to overcoming drug resistance and the improvement of cancer chemotherapy.


Subject(s)
Dopamine , Lactones , Orlistat/pharmacology , Orlistat/chemistry , Lactones/pharmacology , Fatty Acids , Hydrolysis
2.
Eur J Med Chem ; 216: 113358, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33725656

ABSTRACT

Pancreatic triglyceride lipase (PTL) and Niemann-Pick C1-like 1 (NPC1L1) have been identified as attractive therapeutic targets for obesity and hypercholesteremia, respectively. Obesity and hypercholesteremia usually co-exist, however no dual-inhibitors against PTL and NPC1L1 were reported for the treatment of obesity patients with hypercholesteremia so far. In this work, molecular hybridization-based one-step modification screening identified a potent dual-inhibitor against PTL and NPC1L1. Compound P1-11 has IC50 values of 2.1 µM against PTL through covalent binding, as well as significantly reduces cholesterol absorption in a non-competitive inhibitory manner. Molecule docking and molecular dynamics studies revealed the reason of its activity to both PTL and NPC1L1. Moreover, the gene and protein expression levels of PTL and NPC1L1 were also determined respectively after the treatment of P1-11. Development of dual-inhibitors against PTL and NPC1L1 could provide novel treatment options for obesity patients with hypercholesteremia. The results of current research would great support the development of dual-inhibitors against PTL and NPC1L1.


Subject(s)
Anticholesteremic Agents/chemistry , Lipase/antagonists & inhibitors , Membrane Transport Proteins/metabolism , Pancreas/enzymology , Anticholesteremic Agents/metabolism , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Binding Sites , Cell Line, Tumor , Drug Design , Ezetimibe/chemistry , Gene Expression Regulation/drug effects , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/pathology , Lipase/metabolism , Membrane Transport Proteins/blood , Molecular Docking Simulation , Molecular Dynamics Simulation , Orlistat/chemistry
3.
Molecules ; 25(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066044

ABSTRACT

Inhibition of human pancreatic lipase, a crucial enzyme in dietary fat digestion and absorption, is a potent therapeutic approach for obesity treatment. In this study, human pancreatic lipase inhibitory activity of aurone derivatives was explored by molecular modeling approaches. The target protein was human pancreatic lipase (PDB ID: 1LPB). The 3D structures of 82 published bioactive aurone derivatives were docked successfully into the protein catalytic active site, using AutoDock Vina 1.5.7.rc1. Of them, 62 compounds interacted with the key residues of catalytic trial Ser152-Asp176-His263. The top hit compound (A14), with a docking score of -10.6 kcal⋅mol-1, was subsequently submitted to molecular dynamics simulations, using GROMACS 2018.01. Molecular dynamics simulation results showed that A14 formed a stable complex with 1LPB protein via hydrogen bonds with important residues in regulating enzyme activity (Ser152 and Phe77). Compound A14 showed high potency for further studies, such as the synthesis, in vitro and in vivo tests for pancreatic lipase inhibitory activity.


Subject(s)
Benzofurans/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Lipase/chemistry , Benzofurans/pharmacology , Catalytic Domain , Humans , Hydrogen Bonding , Ligands , Lipase/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Orlistat/chemistry
4.
J Colloid Interface Sci ; 573: 176-192, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32278949

ABSTRACT

Lipid cubic phase formulations have gained recognition as potential controlled delivery systems for a range of active pharmaceutical and biological agents on account of their desirable physiochemical properties and ability to encapsulate both hydrophobic and hydrophilic molecules. The most widely studied lipid cubic systems are those of the monoacylglycerol lipid family. These formulations are susceptible to lipolysis by a variety of enzymes, including lipases and esterases, which attack the ester bond present on the lipid chain bridging the oleic acid component to the glycerol backbone. The release of poorly soluble molecules residing in the lipid membrane portions of the phase is limited by the breakdown of the matrix; thus, presenting a potential means for further controlling and sustaining the release of therapeutic agents by targeting the matrix stability and its rate of degradation. The aims of the present study were twofold: to evaluate an approach to regulate the rate of degradation of lipid cubic phase drug delivery systems by targeting the enzyme interactions responsible for their demise; and to study the subsequent drug release profiles from bulk lipid cubic gels using model drugs of contrasting hydrophobicity. Here, hybrid materials consisting of cubic phases with monoacylglycerol lipids of different chain lengths formulated with a potent lipase inhibitor tetrahydrolipstatin were designed. Modulation of the release of a hydrophobic model pharmaceutical, a clofazimine salt, was obtained by exploiting the matrices' enzyme-driven digestion. A stable cubic phase is described, displaying controlled degradation with at least a 4-fold improvement compared to the blank systems shown in inhibitor-containing cubic systems. Sustained release of the model hydrophobic pharmaceutical was studied over 30 days to highlight the advantage of incorporating an inhibitor into the cubic network to achieve tunable lipid release systems. This is done without negatively affecting the structure of the matrix itself, as shown by comprehensive small-angle x-ray scattering experiments.


Subject(s)
Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Lipids/chemistry , Orlistat/pharmacology , Animals , Drug Liberation , Enzyme Inhibitors/chemistry , Hydrophobic and Hydrophilic Interactions , Lipase/metabolism , Molecular Structure , Orlistat/chemistry , Pancreas/enzymology , Swine
5.
Sci Rep ; 10(1): 5469, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214208

ABSTRACT

Staphylococcus aureus lipase (SAL), a triacylglycerol esterase, is an important virulence factor and may be a therapeutic target for infectious diseases. Herein, we determined the 3D structure of native SAL, the mutated S116A inactive form, and the inhibitor complex using the anti-obesity drug orlistat to aid in drug development. The determined crystal structures showed a typical α/ß hydrolase motif with a dimeric form. Fatty acids bound near the active site in native SAL and inactive S116A mutant structures. We found that orlistat potently inhibits SAL activity, and it covalently bound to the catalytic Ser116 residue. This is the first report detailing orlistat-lipase binding. It provides structure-based information on the production of potent anti-SAL drugs and lipase inhibitors. These results also indicated that orlistat can be repositioned to treat bacterial diseases.


Subject(s)
Anti-Bacterial Agents , Anti-Obesity Agents , Drug Development , Drug Repositioning/methods , Enzyme Inhibitors , Esterases , Orlistat , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Virulence Factors , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/metabolism , Anti-Obesity Agents/pharmacology , Crystallization , Esterases/antagonists & inhibitors , Esterases/chemistry , Esterases/genetics , Esterases/metabolism , Molecular Conformation , Molecular Targeted Therapy , Mutation , Orlistat/chemistry , Orlistat/metabolism , Orlistat/pharmacology , Protein Binding , Virulence Factors/chemistry
6.
Cell Chem Biol ; 27(2): 143-157.e5, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31978322

ABSTRACT

Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/ß serine hydrolase domains and several are essential for parasite growth. One of the essential targets displays a high degree of homology to human monoacylglycerol lipase (MAGL) and is able to process lipid esters including a MAGL acylglyceride substrate. This Sal A target is inhibited by the anti-obesity drug Orlistat, which disrupts lipid metabolism. Resistance selections yielded parasites that showed only minor reductions in sensitivity and that acquired mutations in a PRELI domain-containing protein linked to drug resistance in Toxoplasma gondii. This inability to evolve efficient resistance mechanisms combined with the non-essentiality of human homologs makes the serine hydrolases identified here promising antimalarial targets.


Subject(s)
Antimalarials/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Hydrolases/metabolism , Lipid Metabolism/drug effects , Protozoan Proteins/metabolism , Antimalarials/chemistry , Antimalarials/metabolism , Antimalarials/therapeutic use , Biological Products/chemical synthesis , Biological Products/pharmacology , Biological Products/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Click Chemistry , Drug Resistance/drug effects , Humans , Hydrolases/antagonists & inhibitors , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Orlistat/chemistry , Orlistat/metabolism , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics
7.
PLoS One ; 15(1): e0227637, 2020.
Article in English | MEDLINE | ID: mdl-31929574

ABSTRACT

Leptin resistance and co-existing insulin resistance is considered as hallmark of diet-induced obesity. Here, we investigated therapeutic potential of hesperidin to improve leptin and insulin resistance using high fat diet (HFD)-induced obese experimental animal model. We also performed in silico studies to validate therapeutic effectiveness of hesperidin by performing protein-ligand docking and molecular dynamics simulation studies. Group 1 was identified as control group receiving vehicle only. Group 2 was marked as non-treated group receiving 60% HFD. While, other groups were treated daily with orlistat (120 mg/kg/d), hesperidin (55 mg/kg/d), combination of hesperidin (55 mg/kg/d) + orlistat (120 mg/kg/d). Hesperidin alone (P<0.001) and particularly in combination with orlistat (P<0.001), resulted in controlling the levels of HFD-altered biomarkers including random and fasting state of glycemia, leptin and insulin resistance. Similarly, hesperidin also improved the serum and tissue levels of leptin, interleukin-6 and tumor necrosis factor-alpha more significantly (P<0.05) when compared with that of orlistat. These results were found to be in accordance with the results of histopathological examination of pancreas, liver and adipose tissues. In-silico studies also proved that hesperidin binds to leptin receptor with higher affinity as compared to that of orlistat and induces the favorable variations in geometrical conformation of leptin receptor to promote its association with leptin which may lead to the cascades of reactions culminating the lipolysis of fats that may ultimately lead to cure obesity. The results of this study may be a significant expectation among the forthcoming treatment strategies for leptin and insulin resistance.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Obesity Agents/pharmacology , Hesperidin/pharmacology , Inflammation/drug therapy , Insulin Resistance , Obesity/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Obesity Agents/chemistry , Diet, High-Fat , Disease Models, Animal , Drug Therapy, Combination , Hesperidin/chemistry , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Inflammation/metabolism , Inflammation/pathology , Leptin/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Obesity/metabolism , Obesity/pathology , Orlistat/chemistry , Orlistat/pharmacology , Rats, Wistar
8.
Biomater Sci ; 7(10): 4273-4282, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31407729

ABSTRACT

Only a limited amount of orally administered lipid nanoparticles are absorbed as intact particles due to lipolysis by lipases in the gastrointestinal tract. It is hypothesized that by counteracting lipolysis, more particles will survive gastrointestinal digestion and be absorbed as intact particles. In this study, incorporation of a lipase inhibitor orlistat (OLST), as well as polyethylene glycol (PEG) coating, is employed to slow down the lipolysis using solid lipid nanoparticles (SLNs) as model particles. To explore the in vivo behaviors of the particles, near-infrared fluorescent probes with absolute aggregation-caused quenching (ACQ) properties are used to label and track the unmodified, PEG-coated and OLST-loaded SLNs. The in vitro lipolysis study indicates very fast first-order degradation of unmodified SLNs and significantly decreased degradation of OLST-SLNs. Live imaging reveals the same trend of slowed-down lipolysis in vivo which correlates well with the in vitro lipolysis. The scanning of ex vivo gastrointestinal segments confirms the considerably prolonged residence time of OLST-SLNs, mirroring the significantly decreased lipolysis rate. The observation of fluorescence in the blood, though very weak, and in the liver speaks of the oral absorption of intact SLNs. The substantially higher hepatic levels of OLST-SLNs than unmodified SLNs should be attributed to the significantly enhanced survival rate because both particles exhibit similar cellular recognition as well as similar physicochemical properties except for the survival rate. Similarly, slowing down lipolysis also contributes to the significantly enhanced cumulative lymphatic transport of OLST-SLNs (7.56% vs. 1.27% for the unmodified SLNs). The PEG coating slows down the lipolysis rate as well but not to the degree as done by OLST. As a result, the gastrointestinal residence time of PEG-SLNs has been moderately prolonged and the hepatic levels moderately increased. The weakened cellular recognition of PEG-SLNs implies that the enhanced oral absorption is solely ascribed to the slowed-down lipolysis and enhanced mucus penetration. In conclusion, the oral absorption of intact SLNs can be significantly enhanced by slowing down lipolysis, especially by OLST, showing potential as carriers for the oral delivery of labile biomacromolecules.


Subject(s)
Lipid Regulating Agents/administration & dosage , Lipids/administration & dosage , Nanoparticles/administration & dosage , Orlistat/administration & dosage , Administration, Oral , Animals , Biological Transport/drug effects , Cell Line , Drug Liberation , Humans , Intestinal Absorption/drug effects , Lipid Regulating Agents/chemistry , Lipid Regulating Agents/pharmacokinetics , Lipids/chemistry , Lipids/pharmacokinetics , Lipolysis/drug effects , Male , Mice, Inbred ICR , Nanoparticles/chemistry , Orlistat/chemistry , Orlistat/pharmacokinetics
9.
Molecules ; 24(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398944

ABSTRACT

The inhibition of recombinant CpLIP2 lipase/acyltransferase from Candida parapsiolosis was considered a key model for novel antifungal drug discovery and a potential therapeutic target for candidiasis. Lipases have identified recently as potent virulence factors in C. parapsilosis and some other yeasts. The inhibition effects of orlistat and four flavonols (galangin, kaempferol, quercetin and myricetin) characterized by an increasing degree of hydroxylation in B-ring, were investigated using ethyl oleate hydrolysis as the model reaction. Orlistat and kaempferol (14 µM) strongly inhibited CpLIP2 catalytic activity within 1 min of pre-incubation, by 90% and 80%, respectively. The relative potency of flavonols as inhibitors was: kaempferol > quercetin > myricetin > galangin. The results suggested that orlistat bound to the catalytic site while kaempferol interacted with W294 on the protein lid. A static mechanism of interactions between flavonols and CpLIP2 lipase was confirmed by fluorescence quenching analyses, indicating that the interactions were mainly driven by hydrophobic bonds and electrostatic forces. From the Lehrer equation, fractions of tryptophan accessibility to the quencher were evaluated, and a relationship with the calculated number of binding sites was suggested.


Subject(s)
Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Flavonols/chemistry , Flavonols/pharmacology , Algorithms , Flavonoids , Hydrolysis , Hydroxylation , Kaempferols , Models, Theoretical , Molecular Structure , Orlistat/chemistry , Orlistat/pharmacology , Protein Binding , Quercetin , Spectrometry, Fluorescence , Structure-Activity Relationship , Thermodynamics
10.
Eur J Pharm Sci ; 135: 1-11, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31067495

ABSTRACT

Obesity is a rapidly growing epidemic, with over one-third of the global population classified as overweight or obese. Consequently, an urgent need exists to develop innovative approaches and technologies that regulate energy uptake, to curb the rising trend in obesity statistics. In this study, nanostructured clay (NSC) particles, fabricated by spray drying delaminated dispersions technologies that regulate energy uptake, to curb the rising trend in obesity statistics. In this study, nanostructured clay (NSC) particles, fabricated by spray drying delaminated dispersions of commercial clay platelets (Veegum® HS and LAPONITE® XLG), were delivered as complimentary, bioactive excipients with the potent lipase inhibitor, orlistat, for the inhibition of fat (lipid) hydrolysis. Simulated intestinal lipolysis studies were performed by observing changes in free fatty acid concentration and revealed that a combinatorial effect existed when NSC particles were co-administered with orlistat, as evidenced by a 1.2- to 1.6-fold greater inhibitory response over 60 min, compared to dosing orlistat alone. Subsequently, it was determined that a multifaceted approach to lipolysis inhibition was presented, whereby NSC particles adsorbed high degrees of lipid (up to 80% of all lipid species present in lipolysis media) and thus physically shielded the lipid-in-water interface from lipase access, while orlistat covalently attached and blocked the lipase enzyme active site. Thus, the ability for NSC particles to enhance the biopharmaceutical performance and potency of orlistat is hypothesised to translate into promising in vivo pharmacodynamics, where this novel approach is predicted to lead to considerably greater weight reductions for obese patients, compared to dosing orlistat alone.


Subject(s)
Anti-Obesity Agents/chemistry , Clay/chemistry , Lipase/antagonists & inhibitors , Lipids/chemistry , Nanoparticles/chemistry , Obesity/drug therapy , Orlistat/chemistry , Aluminum Compounds/chemistry , Anti-Obesity Agents/administration & dosage , Dietary Supplements , Digestion , Fatty Acids/metabolism , Humans , Hydrolysis , Intestinal Absorption , Lipase/chemistry , Lipolysis , Magnesium Compounds/chemistry , Orlistat/administration & dosage , Particle Size , Silicates/chemistry , Surface Properties
11.
Mol Pharm ; 16(6): 2511-2521, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31013095

ABSTRACT

Orlistat, an FDA-approved antiobesity drug, has recently been shown to have anticancer effects. However, orlistat is extremely hydrophobic with low absorption. Therefore, new approaches are needed to effectively deliver orlistat for cancer therapy. Herein, we developed a fast and simple method to use polydopamine-coated hollow capsule (PHC) as a drug nanocarrier for enhancing the therapeutic effects of orlistat. Orlistat-loaded PHC had an average size of 200 nm, which was characterized by using dynamic light scattering and scanning electron microscope. Furthermore, the polydopamine layer provided an excellent control of orlistat release because it was extremely sensitive to pH values. The cellular uptake and cytotoxicity experiments were performed to show that orlistat packaged in PHC could be endocytosed into cells and then significantly improved the cytotoxic activity against cancer cell lines in a short time compared with free orlistat. Moreover, dynamic study of cell membrane lysis was performed by staining with the LIVE/DEAD kit to demonstrate the cancer-killing mechanism. The size of the cell surface area has also been proven to be a key parameter which affected drug efficacy. Taken all together, these results present that orlistat-loaded PHC is a very promising formula for cancer treatments.


Subject(s)
Antineoplastic Agents/chemistry , Capsules/chemistry , Indoles/chemistry , Orlistat/chemistry , Polymers/chemistry , A549 Cells , Cell Line, Tumor , Emulsions/chemistry , HeLa Cells , Humans , MCF-7 Cells , Microscopy, Electron, Scanning , Nanoparticles/chemistry
12.
Int J Nanomedicine ; 13: 7095-7106, 2018.
Article in English | MEDLINE | ID: mdl-30464461

ABSTRACT

BACKGROUND: The present study aimed to develop orlistat-loaded solid self-nanoemulsifying drug delivery system preconcentrate (SSP) with the minimum use of lipid excipients for the enhanced solubility, in vitro dissolution, lipase inhibition, and in vivo performance. MATERIALS AND METHODS: In the screening of solubilizing vehicles, Solutol HS15 and Lauroglycol 90 were selected as the surfactant and oil phase, respectively. A pseudo-ternary phase diagram composed of Solutol HS15, Lauroglycol 90, and orlistat as an anti-obesity agent and lipid component was constructed, and the SSP regions were confirmed in terms of the particle size distribution in water, melting point by differential scanning calorimetry, and crystallinity by X-ray diffraction. RESULTS: Physicochemical interaction between Solutol HS15 and orlistat resulted in SSP with various melting points in the range of 26°~33°C. The representative maximum orlistat-loaded SSP (orlistat/Solutol HS15/Lauroglycol 90=55/40/5, weight ratio) showed the melting point of 32.23°C and constructed uniform nanoemulsion with the particle size of 141.7±1.1 nm dispersed in water. In the dissolution test at pH 1.2 without any detergent, the SSP reached 98.12%±0.83% until 45 minutes, whereas raw orlistat showed no significant dissolution rate. The dissolution samples containing SSP showed a lipase inhibition of 90.42%±1.58% within 45 minutes. In terms of the reduction level of fat absorption in rats, the intake group of SSP gave a significantly higher fat excretion into stool than the one observed in the raw orlistat group (P<0.05). CONCLUSION: In conclusion, the suggested novel SSP formulation would be an effective and promising candidate for the treatment of obesity.


Subject(s)
Drug Delivery Systems , Emulsions/chemistry , Nanoparticles/chemistry , Orlistat/pharmacology , Administration, Oral , Animals , Biological Availability , Calorimetry, Differential Scanning , Excipients/chemistry , Feces/chemistry , Lipase/metabolism , Lipids/chemistry , Male , Oils/chemistry , Orlistat/administration & dosage , Orlistat/chemistry , Particle Size , Phase Transition , Rats, Sprague-Dawley , Solubility , Surface-Active Agents/chemistry , Sus scrofa , Transition Temperature , X-Ray Diffraction
13.
J Biol Chem ; 293(10): 3651-3662, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29352107

ABSTRACT

Mycobacterium tuberculosis antigen 85 (Ag85) enzymes catalyze the transfer of mycolic acid (MA) from trehalose monomycolate to produce the mycolyl arabinogalactan (mAG) or trehalose dimycolate (TDM). These lipids define the protective mycomembrane of mycobacteria. The current model of substrate binding within the active sites of Ag85s for the production of TDM is not sterically and geometrically feasible; additionally, this model does not account for the production of mAG. Furthermore, this model does not address how Ag85s limit the hydrolysis of the acyl-enzyme intermediate while catalyzing acyl transfer. To inform an updated model, we obtained an Ag85 acyl-enzyme intermediate structure that resembles the mycolated form. Here, we present a 1.45-Å X-ray crystal structure of M. tuberculosis Ag85C covalently modified by tetrahydrolipstatin (THL), an esterase inhibitor that suppresses M. tuberculosis growth and mimics structural attributes of MAs. The mode of covalent inhibition differs from that observed in the reversible inhibition of the human fatty-acid synthase by THL. Similarities between the Ag85-THL structure and previously determined Ag85C structures suggest that the enzyme undergoes structural changes upon acylation, and positioning of the peptidyl arm of THL limits hydrolysis of the acyl-enzyme adduct. Molecular dynamics simulations of the modeled mycolated-enzyme form corroborate the structural analysis. From these findings, we propose an alternative arrangement of substrates that rectifies issues with the previous model and suggest a direct role for the ß-hydroxy of MA in the second half-reaction of Ag85 catalysis. This information affords the visualization of a complete mycolyltransferase catalytic cycle.


Subject(s)
Acyltransferases/metabolism , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Models, Molecular , Mycobacterium tuberculosis/enzymology , Orlistat/metabolism , Protein Processing, Post-Translational , Acylation , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Acyltransferases/genetics , Amino Acid Substitution , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Biocatalysis , Carbohydrate Conformation , Crystallography, X-Ray , Molecular Dynamics Simulation , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Orlistat/chemistry , Protein Conformation , Proteolysis , Recombinant Proteins , Trehalose/chemistry , Trehalose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...