Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 930
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000307

ABSTRACT

Hydronephrosis, the dilation of kidneys due to abnormal urine retention, occurs spontaneously in certain inbred mouse strains. In humans, its occurrence is often attributed to acquired urinary tract obstructions in adults, whereas in children, it can be congenital. However, the genetic factors underlying hydronephrosis pathogenesis remain unclear. We investigated the cause of hydronephrosis by analyzing tetraspanin 7 (Tspan7) gene-modified mice, which had shown a high incidence of hydronephrosis-like symptoms. We found that these mice were characterized by low liver weights relative to kidney weights and elevated blood ammonia levels, suggesting liver involvement in hydronephrosis. Gene expression analysis of the liver suggested that dysfunction of ornithine transcarbamylase (OTC), encoded by the X chromosome gene Otc and involved in the urea cycle, may contribute as a congenital factor in hydronephrosis. This OTC dysfunction may be caused by genomic mutations in X chromosome genes contiguous to Otc, such as Tspan7, or via the genomic manipulations used to generate transgenic mice, including the introduction of Cre recombinase DNA cassettes and cleavage of loxP by Cre recombinase. Therefore, caution should be exercised in interpreting the hydronephrosis phenotype observed in transgenic mice as solely a physiological function of the target gene.


Subject(s)
Hydronephrosis , Mice, Transgenic , Phenotype , Animals , Hydronephrosis/genetics , Mice , Tetraspanins/genetics , Tetraspanins/metabolism , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Liver/metabolism , Liver/pathology , Disease Models, Animal , Kidney/pathology , Kidney/metabolism , Male
2.
J Mol Model ; 30(8): 265, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008190

ABSTRACT

CONTEXT: Geometrical knots are rare structural arrangements in proteins in which the polypeptide chain ties itself into a knot, which is very intriguing due to the uncertainty of their impact on the protein properties. Presently, classical molecular dynamics is the most employed technique in the few studies found on this topic, so any information on how the presence of knots affects the reactivity and electronic properties of proteins is even scarcer. Using the electronic structure methods and quantum chemical descriptors analysis, we found that the same amino-acid residues in the knot core have statistically larger values for the unknotted protein, for both hard-hard and soft-soft interaction descriptors. In addition, we present a computationally feasible protocol, where we show it is possible to separate the contribution of the geometrical knot to the reactivity and other electronic structure properties. METHODS: In order to investigate these systems, we used PRIMoRDiA, a new software developed by our research group, to explore the electronic structure of biological macromolecules. We evaluated several local quantum chemical descriptors to unveil relevant patterns potentially originating from the presence of the geometrical knot in two proteins, belonging to the ornithine transcarbamylase family. We compared several sampled structures from these two enzymes that are highly similar in both tertiary structure and function, but one of them has a knot whereas the other does not. The sampling was carried out through molecular dynamics simulations using ff14SB force field along 50 ns, and the semiempirical convergence was performed with PM7 Hamiltonian.


Subject(s)
Molecular Dynamics Simulation , Ornithine Carbamoyltransferase , Ornithine Carbamoyltransferase/chemistry , Ornithine Carbamoyltransferase/metabolism , Protein Conformation , Models, Molecular
3.
Biochemistry ; 63(14): 1858-1875, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38940639

ABSTRACT

Human ornithine transcarbamylase (hOTC) is a mitochondrial transferase protein involved in the urea cycle and is crucial for the conversion of toxic ammonia to urea. Structural analysis coupled with kinetic studies of Escherichia coli, rat, bovine, and other transferase proteins has identified residues that play key roles in substrate recognition and conformational changes but has not provided direct evidence for all of the active residues involved in OTC function. Here, computational methods were used to predict the likely active residues of hOTC; the function of these residues was then probed with site-directed mutagenesis and biochemical characterization. This process identified previously reported active residues, as well as distal residues that contribute to activity. Mutation of active site residue D263 resulted in a substantial loss of activity without a decrease in protein stability, suggesting a key catalytic role for this residue. Mutation of predicted second-layer residues H302, K307, and E310 resulted in significant decreases in enzymatic activity relative to that of wild-type (WT) hOTC with respect to l-ornithine. The mutation of fourth-layer residue H107 to produce the hOTC H107N variant resulted in a 66-fold decrease in catalytic efficiency relative to that of WT hOTC with respect to carbamoyl phosphate and a substantial loss of thermal stability. Further investigation identified H107 and to a lesser extent E98Q as key residues involved in maintaining the hOTC quaternary structure. This work biochemically demonstrates the importance of D263 in hOTC catalytic activity and shows that residues remote from the active site also play key roles in activity.


Subject(s)
Catalytic Domain , Mutagenesis, Site-Directed , Ornithine Carbamoyltransferase , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Ornithine Carbamoyltransferase/chemistry , Humans , Models, Molecular , Kinetics , Enzyme Stability , Catalysis
4.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G334-G346, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37489865

ABSTRACT

Carbamoyl phosphate synthetase 1 (CPS1) is the most abundant hepatocyte mitochondrial matrix protein. Hypoosmotic stress increases CPS1 release in isolated mouse hepatocytes without cell death. We hypothesized that increased CPS1 release during hypoosmosis is selective and associates with altered mitochondrial morphology. Both ex vivo and in vivo models were assessed. Mouse hepatocytes and livers were challenged with isotonic or hypoosmotic (35 mosM) buffer. Mice were injected intraperitoneally with water (10% body weight) with or without an antidiuretic. Mitochondrial and cytosolic fractions were isolated using differential centrifugation, then analyzed by immunoblotting to assess subcellular redistribution of four mitochondrial proteins: CPS1, ornithine transcarbamylase (OTC), pyrroline-5-carboxylate reductase 1 (PYCR1), and cytochrome c. Mitochondrial morphology alterations were examined using electron microscopy. Hypoosmotic treatment of whole livers or hepatocytes led to preferential or increased mitochondrial release, respectively, of CPS1 as compared with two mitochondrial matrix proteins (OTC/PYCR1) and with the intermembrane space protein, cytochrome c. Mitochondrial apoptosis-induced channel opening using staurosporine in hepatocytes led to preferential CPS1 and cytochrome c release. The CPS1-selective changes were accompanied by dramatic alterations in ultrastructural mitochondrial morphology. In mice, hypoosmosis/hyponatremia led to increased liver vascular congestion and increased CPS1 in bile but not blood, coupled with mitochondrial structural alterations. In contrast, isotonic increase of intravascular volume led to a decrease in mitochondrial size with limited change in bile CPS1 compared with hypoosmotic conditions and absence of the hypoosmosis-associated histological alterations. Taken together, hepatocyte CPS1 is selectively released in response to hypoosmosis/hyponatremia and provides a unique biomarker of mitochondrial injury.NEW & NOTEWORTHY Exposure of isolated mouse livers, primary cultured hepatocytes, or mice to hypoosmosis/hyponatremia conditions induces significant mitochondrial shape alterations accompanied by preferential release of the mitochondrial matrix protein CPS1, a urea cycle enzyme. In contrast, the intermembrane space protein, cytochrome c, and two other matrix proteins, including the urea cycle enzyme ornithine transcarbamylase, remain preferentially retained in mitochondria. Therefore, hepatocyte CPS1 manifests unique mitochondrial stress response compartmentalization and is a sensitive sensor of mitochondrial hypoosmotic/hyponatremic injury.


Subject(s)
Hyponatremia , Liver Diseases , Animals , Mice , Carbamyl Phosphate/metabolism , Ornithine Carbamoyltransferase/metabolism , Cytochromes c/metabolism , Hyponatremia/metabolism , Hyponatremia/pathology , Hepatocytes/metabolism , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Liver Diseases/metabolism , Mitochondria/metabolism , Urea/metabolism
5.
PLoS One ; 17(9): e0274019, 2022.
Article in English | MEDLINE | ID: mdl-36149917

ABSTRACT

Ornithine carbamoyltransferases (OTCs) are involved in the arginine deiminase (ADI) pathway and in arginine biosynthesis. Two OTCs in a pair are named catalytic OTC (cOTC) and anabolic OTC (aOTC). The cOTC is responsible for catalyzing the third step of the ADI pathway to catabolize citrulline into carbamoyl phosphate (CP), as well as ornithine, and displays CP cooperativity. In contrast, aOTC catalyzes the biosynthesis of citrulline from CP and ornithine in vivo and is thus involved in arginine biosynthesis. Structural and biochemical analyses were employed to investigate the CP cooperativity and unidirectional function of two sequentially similar OTCs (32.4% identity) named Ps_cOTC and Ps_aOTC from Psychrobacter sp. PAMC 21119. Comparison of the trimeric structure of these two OTCs indicated that the 80s loop of Ps_cOTC has a unique conformation that may influence cooperativity by connecting the CP binding site and the center of the trimer. The corresponding 80s loop region of in Ps_aOTC was neither close to the CP binding site nor connected to the trimer center. In addition, results from the thermal shift assay indicate that each OTC prefers the substrate for the unidirectional process. The active site exhibited a blocked binding site for CP in the Ps_cOTC structure, whereas residues at the active site in Ps_aOTC established a binding site to facilitate CP binding. Our data provide novel insights into the unidirectional catalysis of OTCs and cooperativity, which are distinguishable features of two metabolically specialized proteins.


Subject(s)
Carbamyl Phosphate , Psychrobacter , Amino Acid Sequence , Arginine , Binding Sites , Carbamyl Phosphate/chemistry , Catalysis , Citrulline , Cyclohexanones , Ornithine/chemistry , Ornithine Carbamoyltransferase/metabolism , Psychrobacter/metabolism
6.
mBio ; 13(3): e0039522, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35475645

ABSTRACT

Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1. Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or SNPs identified upstream of arcA1B1D1C1 increased the transcription of both arcB1 and argGH, encoding ornithine carbamoyltransferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthesis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth within CDM-R. Complementation with arcB1 or arcA1B1D1C1, but not argGH, rescued growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth, as did mutations in genes (proC and rocA) that presumably increased the pyrroline-5-carboxylate and ornithine pools. Collectively, these data suggest that the transcriptional regulation of ornithine carbamoyltransferase and, in addition, the availability of intracellular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glucose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These data suggest that S. aureus is selected to repress arginine biosynthesis in environments with or without glucose; however, mutants may be readily selected that facilitate arginine biosynthesis and growth in specific environments lacking arginine. IMPORTANCE Staphylococcus aureus can cause infection in virtually any niche of the human host, suggesting that it has significant metabolic versatility. Indeed, bioinformatic analysis suggests that it has the biosynthetic capability to synthesize all 20 amino acids. Paradoxically, however, it is conditionally auxotrophic for several amino acids, including arginine. Studies in our laboratory are designed to assess the biological function of amino acid auxotrophy in this significant pathogen. This study reveals that the metabolic block repressing arginine biosynthesis in media lacking glucose is the transcriptional repression of ornithine carbamoyltransferase encoded by arcB1 within the native arginine deiminase operon in addition to limited intracellular pools of ornithine. Surprisingly, approximately 50% of S. aureus clinical isolates can grow in media lacking arginine, suggesting that mutations are selected in S. aureus that allow growth in particular niches of the human host.


Subject(s)
Ornithine Carbamoyltransferase , Staphylococcus aureus , Amino Acids/metabolism , Arginine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glucose/metabolism , Ornithine/metabolism , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics
7.
Nat Commun ; 13(1): 894, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173176

ABSTRACT

Mitochondrial proteolysis is an evolutionarily conserved quality-control mechanism to maintain proper mitochondrial integrity and function. However, the physiological relevance of stress-induced impaired mitochondrial protein quality remains unclear. Here, we demonstrate that LONP1, a major mitochondrial protease resides in the matrix, plays a role in controlling mitochondrial function as well as skeletal muscle mass and strength in response to muscle disuse. In humans and mice, disuse-related muscle loss is associated with decreased mitochondrial LONP1 protein. Skeletal muscle-specific ablation of LONP1 in mice resulted in impaired mitochondrial protein turnover, leading to mitochondrial dysfunction. This caused reduced muscle fiber size and strength. Mechanistically, aberrant accumulation of mitochondrial-retained protein in muscle upon loss of LONP1 induces the activation of autophagy-lysosome degradation program of muscle loss. Overexpressing a mitochondrial-retained mutant ornithine transcarbamylase (ΔOTC), a known protein degraded by LONP1, in skeletal muscle induces mitochondrial dysfunction, autophagy activation, and cause muscle loss and weakness. Thus, these findings reveal a role of LONP1-dependent mitochondrial protein quality-control in safeguarding mitochondrial function and preserving skeletal muscle mass and strength, and unravel a link between mitochondrial protein quality and muscle mass maintenance during muscle disuse.


Subject(s)
ATP-Dependent Proteases/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , ATP-Dependent Proteases/genetics , Animals , Autophagy/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proteins/genetics , Muscle Strength/physiology , Ornithine Carbamoyltransferase/metabolism , Proteolysis , Proteostasis/physiology
8.
Biochem Biophys Res Commun ; 559: 217-221, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33957483

ABSTRACT

Ornithine transcarbamylases (OTC), a key enzyme in urea cycle, is an important marker for some liver injury or diseases. However, whether OTC could be a sensitive indicator for liver dysfunction under sleep disturbance condition remains unknown. The present study aimed to explore the circadian oscillation expression of OTC and its significance in disturbed sleep condition. Sleep disturbance was conducted by a sleep deprivation (SD) instrument. Our results found that SD for 72h induced abnormal increasing of OTC levels in serum and liver of rats. And, serum OTC concentration and liver OTC expression could return to normal levels after recovery sleep following SD. Moreover, hepatic OTC expression showed circadian oscillation in day and night, characterized with occurrence of a peak between ZT 22 and ZT 2, and a nadir between ZT 14 and ZT 18. Further analysis suggested the existence of ROR response element (RORE) for potential RORɑ binding sites in OTC promoter region, and elevated RORɑ expression in rat livers under sleep disturbance condition. Additionally, oscillation expression of OTC induced by serum shock in HepG2 cells was characterized with a peak occurred between ZT 12 and ZT 16, and RORɑ knockdown at ZT 16 significantly lowered OTC expression. The results together indicate that OTC is closely correlated with circadian clock, and could be a sensitive indicator for sleep disturbance stress.


Subject(s)
Circadian Rhythm , Ornithine Carbamoyltransferase/metabolism , Sleep Wake Disorders/enzymology , Sleep Wake Disorders/physiopathology , Animals , Base Sequence , Gene Expression Regulation, Enzymologic , Hep G2 Cells , Homeostasis , Humans , Liver/enzymology , Male , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Ornithine Carbamoyltransferase/genetics , Rats, Sprague-Dawley , Sleep/genetics , Sleep Wake Disorders/genetics
9.
FEBS J ; 288(1): 293-309, 2021 01.
Article in English | MEDLINE | ID: mdl-32306469

ABSTRACT

In cells, the breakdown of arginine to ornithine and ammonium ion plus carbon dioxide is coupled to the generation of metabolic energy in the form of ATP. The arginine breakdown pathway is minimally composed of arginine deiminase, ornithine transcarbamoylase, carbamate kinase, and an arginine/ornithine antiporter; ammonia and carbon dioxide most likely diffuse passively across the membrane. The genes for the enzymes and transporter have been cloned and expressed, and the proteins have been purified from Lactococcus lactis IL1403 and incorporated into lipid vesicles for sustained production of ATP. Here, we study the kinetic parameters and biochemical properties of the individual enzymes and the antiporter, and we determine how the physicochemical conditions, effector composition, and effector concentration affect the enzymes. We report the KM and VMAX values for catalysis and the native oligomeric state of all proteins, and we measured the effect of pathway intermediates, pH, temperature, freeze-thaw cycles, and salts on the activity of the cytosolic enzymes. We also present data on the protein-to-lipid ratio and lipid composition dependence of the antiporter.


Subject(s)
Adenosine Triphosphate/biosynthesis , Amino Acid Transport Systems/metabolism , Antiporters/metabolism , Arginine/metabolism , Bacterial Proteins/metabolism , Hydrolases/metabolism , Lactococcus lactis/enzymology , Ornithine Carbamoyltransferase/metabolism , Phosphotransferases (Carboxyl Group Acceptor)/metabolism , Amino Acid Transport Systems/genetics , Ammonia/metabolism , Antiporters/genetics , Bacterial Proteins/genetics , Carbon Dioxide/metabolism , Energy Metabolism/genetics , Gene Expression Regulation, Bacterial , Hydrolases/genetics , Kinetics , Lactococcus lactis/genetics , Liposomes/chemistry , Liposomes/metabolism , Ornithine/metabolism , Ornithine Carbamoyltransferase/genetics , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Phosphotransferases (Carboxyl Group Acceptor)/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Biochimie ; 183: 89-99, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33309754

ABSTRACT

Despite biochemical and genetic testing being the golden standards for identification of proximal urea cycle disorders (UCDs), genotype-phenotype correlations are often unclear. Co-occurring partial defects affecting more than one gene have not been demonstrated so far in proximal UCDs. Here, we analyzed the mutational spectrum of 557 suspected proximal UCD individuals. We probed oligomerizing forms of NAGS, CPS1 and OTC, and evaluated the surface exposure of residues mutated in heterozygously affected individuals. BN-PAGE and gel-filtration chromatography were employed to discover protein-protein interactions within recombinant enzymes. From a total of 281 confirmed patients, only 15 were identified as "heterozygous-only" candidates (i.e. single defective allele). Within these cases, the only missense variants to potentially qualify as dominant negative triggers were CPS1 p.Gly401Arg and NAGS p.Thr181Ala and p.Tyr512Cys, as assessed by residue oligomerization capacity and surface exposure. However, all three candidates seem to participate in critical intramolecular functions, thus, unlikely to facilitate protein-protein interactions. This interpretation is further supported by BN-PAGE and gel-filtration analyses revealing no multiprotein proximal urea cycle complex formation. Collectively, genetic analysis, structural considerations and in vitro experiments point against a prominent role of dominant negative effects in human proximal UCDs.


Subject(s)
Amino-Acid N-Acetyltransferase , Carbamoyl-Phosphate Synthase (Ammonia) , Genes, Dominant , Mutation, Missense , Ornithine Carbamoyltransferase , Urea Cycle Disorders, Inborn , Amino Acid Substitution , Amino-Acid N-Acetyltransferase/chemistry , Amino-Acid N-Acetyltransferase/genetics , Amino-Acid N-Acetyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Ammonia)/chemistry , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Female , Heterozygote , Homozygote , Humans , Male , Ornithine Carbamoyltransferase/chemistry , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Protein Domains , Urea Cycle Disorders, Inborn/enzymology , Urea Cycle Disorders, Inborn/genetics
11.
Endocrinology ; 162(1)2021 01 01.
Article in English | MEDLINE | ID: mdl-33206168

ABSTRACT

The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Hyperammonemia/therapy , Ornithine Carbamoyltransferase Deficiency Disease/therapy , Receptors, Glucagon/antagonists & inhibitors , Amino Acids/blood , Ammonia/blood , Animals , Body Weight , Gene Expression Regulation/drug effects , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutaminase/genetics , Glutaminase/metabolism , Male , Mice , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Ornithine Carbamoyltransferase Deficiency Disease/mortality
12.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228018

ABSTRACT

OTC splicing mutations are generally associated with the severest and early disease onset of ornithine transcarbamylase deficiency (OTCD), the most common urea cycle disorder. Noticeably, splicing defects can be rescued by spliceosomal U1snRNA variants, which showed their efficacy in cellular and animal models. Here, we challenged an U1snRNA variant in the OTCD mouse model (spf/ash) carrying the mutation c.386G > A (p.R129H), also reported in OTCD patients. It is known that the R129H change does not impair protein function but affects pre-mRNA splicing since it is located within the 5' splice site. Through in vitro studies, we identified an Exon Specific U1snRNA (ExSpeU1O3) that targets an intronic region downstream of the defective exon 4 and rescues exon inclusion. The adeno-associated virus (AAV8)-mediated delivery of the ExSpeU1O3 to mouse hepatocytes, although in the presence of a modest transduction efficiency, led to increased levels of correct OTC transcripts (from 6.1 ± 1.4% to 17.2 ± 4.5%, p = 0.0033). Consistently, this resulted in increased liver expression of OTC protein, as demonstrated by Western blotting (~3 fold increase) and immunostaining. Altogether data provide the early proof-of-principle of the efficacy of ExSpeU1 in the spf/ash mouse model and encourage further studies to assess the potential of RNA therapeutics for OTCD caused by aberrant splicing.


Subject(s)
Dependovirus/genetics , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/therapy , Ornithine Carbamoyltransferase/genetics , RNA Splicing , RNA, Small Nuclear/genetics , Animals , Base Sequence , Dependovirus/metabolism , Disease Models, Animal , Exons , Genetic Therapy/methods , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Introns , Liver/enzymology , Liver/pathology , Male , Mice , Mice, Transgenic , Mutation , Ornithine Carbamoyltransferase/metabolism , Ornithine Carbamoyltransferase Deficiency Disease/enzymology , Ornithine Carbamoyltransferase Deficiency Disease/pathology , RNA Splice Sites , RNA, Small Nuclear/metabolism
13.
Blood ; 136(10): 1155-1160, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32573723

ABSTRACT

Hematological and solid cancers catabolize the semiessential amino acid arginine to drive cell proliferation. However, the resulting low arginine microenvironment also impairs chimeric antigen receptor T cells (CAR-T) cell proliferation, limiting their efficacy in clinical trials against hematological and solid malignancies. T cells are susceptible to the low arginine microenvironment because of the low expression of the arginine resynthesis enzymes argininosuccinate synthase (ASS) and ornithine transcarbamylase (OTC). We demonstrate that T cells can be reengineered to express functional ASS or OTC enzymes, in concert with different chimeric antigen receptors. Enzyme modifications increase CAR-T cell proliferation, with no loss of CAR cytotoxicity or increased exhaustion. In vivo, enzyme-modified CAR-T cells lead to enhanced clearance of leukemia or solid tumor burden, providing the first metabolic modification to enhance CAR-T cell therapies.


Subject(s)
Arginine/metabolism , Argininosuccinate Synthase/metabolism , Immunotherapy, Adoptive/methods , Leukemia, Myeloid, Acute/therapy , Neuroblastoma/therapy , Ornithine Carbamoyltransferase/metabolism , T-Lymphocytes/transplantation , Animals , Apoptosis , Argininosuccinate Synthase/genetics , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Metabolic Engineering/methods , Mice , Mice, Nude , Neuroblastoma/immunology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Ornithine Carbamoyltransferase/genetics , Receptors, Chimeric Antigen/chemistry , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Mol Genet Metab ; 130(2): 110-117, 2020 06.
Article in English | MEDLINE | ID: mdl-32273051

ABSTRACT

PURPOSE: We aimed to identify prognostic factors for survival and long-term intellectual and developmental outcome in neonatal patients with early-onset urea cycle disorders (UCD) experiencing hyperammonaemic coma. METHODS: We retrospectively analysed ammonia (NH3) and glutamine levels, electroencephalogram and brain images obtained during neonatal coma of UCD patients born between 1995 and 2011 and managed at a single centre and correlated them to survival and intellectual and developmental outcome. RESULTS: We included 38 neonates suffering from deficiencies of argininosuccinate synthetase (ASSD, N = 12), ornithine transcarbamylase (OTCD, N = 10), carbamoylphosphate synthetase 1 (CPSD, N = 7), argininosuccinate lyase (ASLD, N = 7), N-acetylglutamate synthase (NAGS, N = 1) or arginase (ARGD, N = 1). Symptoms occurred earlier in mitochondrial than in cytosolic UCD. Sixty-eight percent of patients survived, with a mean (standard deviation-SD) follow-up of 10.4 (5.3) years. Mortality was mostly observed in OTCD (N = 7/10) and CPSD (N = 4/7) patients. Plasma NH3 level during the neonatal period, expressed as area under the curve, but not glutamine level was associated with mortality (p = .044 and p = .610). 62.1% of the patients had normal intellectual and developmental outcome. Intellectual and developmental outcome tended to correlate with UCD subtype (p = .052). No difference in plasma NH3 or glutamine level during the neonatal period among developmental outcomes was identified. EEG severity was linked to UCD subtypes (p = .004), ammonia levels (p = .037), duration of coma (p = .043), and mortality during the neonatal period (p = .020). Status epilepticus was recorded in 6 patients, 3 of whom died neonatally, 1 developed a severe intellectual disability while the 2 last patients had a normal development. CONCLUSION: UCD subtypes differed by survival rate, intellectual and developmental outcome and EEG features in the neonatal period. Hyperammonaemia expressed as area under the curve was associated with survival but not with intellectual and developmental outcome whereas glutamine was not associated with one of these outcomes. Prognostic value of video-EEG monitoring and the association between status epilepticus and mortality should be assessed in neonatal hyperammonaemic coma in further studies.


Subject(s)
Argininosuccinate Synthase/metabolism , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Developmental Disabilities/epidemiology , Infant Mortality/trends , Intellectual Disability/epidemiology , Ornithine Carbamoyltransferase/metabolism , Urea Cycle Disorders, Inborn/mortality , Age of Onset , Ammonia/blood , Developmental Disabilities/enzymology , Developmental Disabilities/pathology , Female , France/epidemiology , Humans , Infant , Infant, Newborn , Intellectual Disability/enzymology , Intellectual Disability/pathology , Male , Retrospective Studies , Urea Cycle Disorders, Inborn/enzymology , Urea Cycle Disorders, Inborn/pathology
15.
PLoS One ; 15(2): e0228487, 2020.
Article in English | MEDLINE | ID: mdl-32027716

ABSTRACT

Understanding how enzymes achieve their tremendous catalytic power is a major question in biochemistry. Greater understanding is also needed for enzyme engineering applications. In many cases, enzyme efficiency and specificity depend on residues not in direct contact with the substrate, termed remote residues. This work focuses on Escherichia coli ornithine transcarbamoylase (OTC), which plays a central role in amino acid metabolism. OTC has been reported to undergo an induced-fit conformational change upon binding its first substrate, carbamoyl phosphate (CP), and several residues important for activity have been identified. Using computational methods based on the computed chemical properties from theoretical titration curves, sequence-based scores derived from evolutionary history, and protein surface topology, residues important for catalytic activity were predicted. The roles of these residues in OTC activity were tested by constructing mutations at predicted positions, followed by steady-state kinetics assays and substrate binding studies with the variants. First-layer mutations R57A and D231A, second-layer mutation H272L, and third-layer mutation E299Q, result in 57- to 450-fold reductions in kcat/KM with respect to CP and 44- to 580-fold reductions with respect to ornithine. Second-layer mutations D140N and Y160S also reduce activity with respect to ornithine. Most variants had decreased stability relative to wild-type OTC, with variants H272L, H272N, and E299Q having the greatest decreases. Variants H272L, E299Q, and R57A also show compromised CP binding. In addition to direct effects on catalytic activity, effects on overall protein stability and substrate binding were observed that reveal the intricacies of how these residues contribute to catalysis.


Subject(s)
Escherichia coli/enzymology , Ornithine Carbamoyltransferase/chemistry , Ornithine Carbamoyltransferase/metabolism , Protein Interaction Domains and Motifs , Protein Interaction Mapping/methods , Amino Acid Sequence , Amino Acid Substitution/genetics , Base Sequence , Binding Sites , Carbamyl Phosphate/chemistry , Carbamyl Phosphate/metabolism , Catalysis , Escherichia coli/genetics , Escherichia coli/metabolism , Kinetics , Mutagenesis, Site-Directed , Ornithine/metabolism , Ornithine Carbamoyltransferase/genetics , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs/genetics , Substrate Specificity/genetics
16.
Sci Adv ; 6(7): eaax5701, 2020 02.
Article in English | MEDLINE | ID: mdl-32095520

ABSTRACT

Ornithine transcarbamylase (OTC) deficiency is an X-linked urea cycle disorder associated with high mortality. Although a promising treatment for late-onset OTC deficiency, adeno-associated virus (AAV) neonatal gene therapy would only provide short-term therapeutic effects as the non-integrated genome gets lost during hepatocyte proliferation. CRISPR-Cas9-mediated homology-directed repair can correct a G-to-A mutation in 10% of OTC alleles in the livers of newborn OTC spfash mice. However, an editing vector able to correct one mutation would not be applicable for patients carrying different OTC mutations, plus expression would not be fast enough to treat a hyperammonemia crisis. Here, we describe a dual-AAV vector system that accomplishes rapid short-term expression from a non-integrated minigene and long-term expression from the site-specific integration of this minigene without any selective growth advantage for OTC-positive cells in newborns. This CRISPR-Cas9 gene-targeting approach may be applicable to all patients with OTC deficiency, irrespective of mutation and/or clinical state.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Targeting , Genetic Therapy , Mutation/genetics , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/therapy , Animals , DNA Repair/genetics , Dependovirus/genetics , Dietary Proteins , Disease Models, Animal , Genetic Loci , Genetic Vectors/metabolism , INDEL Mutation/genetics , Liver/enzymology , Liver/pathology , Male , Mice , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Time Factors
17.
Genomics ; 112(3): 2247-2260, 2020 05.
Article in English | MEDLINE | ID: mdl-31884157

ABSTRACT

The air-breathing magur catfish (Clarias magur) is a potential ureogenic teleost because of its functional ornithine-urea cycle (OUC), unlike typical freshwater teleosts. The ability to convert ammonia waste to urea was a significant step towards land-based life forms from aquatic predecessors. Here we investigated the molecular characterization of some OUC genes and the molecular basis of stimulation of ureogenesis via the OUC in magur catfish. The deduced amino acid sequences from the complete cDNA coding sequences of ornithine transcarbamyolase, argininosuccinate synthase, and argininosuccinate lyase indicated that phylogenetically magur catfish is very close to other ureogenic catfishes. Ammonia exposure led to a significant induction of major OUC genes and the gene products in hepatic and in certain non-hepatic tissues of magur catfish. Hence, it is reasonable to assume that the induction of ureogenesis in magur catfish under hyper-ammonia stress is mediated through the activation of OUC genes as an adaptational strategy.


Subject(s)
Argininosuccinate Lyase/metabolism , Argininosuccinate Synthase/metabolism , Catfishes/metabolism , Fish Proteins/metabolism , Ornithine Carbamoyltransferase/metabolism , Ornithine/metabolism , Urea/metabolism , Ammonia/toxicity , Animals , Argininosuccinate Lyase/biosynthesis , Argininosuccinate Lyase/chemistry , Argininosuccinate Lyase/genetics , Argininosuccinate Synthase/biosynthesis , Argininosuccinate Synthase/chemistry , Argininosuccinate Synthase/genetics , Catfishes/genetics , Fish Proteins/biosynthesis , Fish Proteins/chemistry , Fish Proteins/genetics , Ornithine Carbamoyltransferase/biosynthesis , Ornithine Carbamoyltransferase/chemistry , Ornithine Carbamoyltransferase/genetics , Phylogeny , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, Protein , Tissue Distribution
18.
Int J Mol Sci ; 20(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817281

ABSTRACT

To improve the therapeutic potential of hepatocyte transplantation, the effects of the mitogen-activated protein kinase kinase 4 (MKK4) inhibitor, myricetin (3,3',4',5,5',7-hexahydroxylflavone) were examined using porcine and human hepatocytes in vitro and in vivo. Hepatocytes were cultured, showing the typical morphology of hepatic parenchymal cell under 1-10 µmol/L of myricetin, keeping hepatocyte specific gene expression, and ammonia removal activity. After injecting the hepatocytes into neonatal Severe combined immunodeficiency (SCID) mouse livers, cell colony formation was found at 10-15 weeks after transplantation. The human albumin levels in the sera of engrafted mice were significantly higher in the recipients of myricetin-treated cells than non-treated cells, corresponding to the size of the colonies. In terms of therapeutic efficacy, the injection of myricetin-treated hepatocytes significantly prolonged the survival of ornithine transcarbamylase-deficient SCID mice from 32 days (non-transplant control) to 54 days. Biochemically, the phosphorylation of MKK4 was inhibited in the myricetin-treated hepatocytes. These findings suggest that myricetin has a potentially therapeutic benefit that regulates hepatocyte function and survival, thereby treating liver failure.


Subject(s)
Flavonoids/pharmacology , Graft Survival/drug effects , Hepatocytes/drug effects , Liver/metabolism , Ammonia/metabolism , Animals , Cryopreservation , Hepatocytes/cytology , Hepatocytes/transplantation , MAP Kinase Kinase 4/metabolism , Mice , Mice, SCID , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Phosphorylation/drug effects , Serum Albumin/metabolism , Swine , Transplantation, Heterologous
19.
Nat Commun ; 10(1): 4239, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31534136

ABSTRACT

One of the grand challenges in chemistry is the construction of functional out-of-equilibrium networks, which are typical of living cells. Building such a system from molecular components requires control over the formation and degradation of the interacting chemicals and homeostasis of the internal physical-chemical conditions. The provision and consumption of ATP lies at the heart of this challenge. Here we report the in vitro construction of a pathway in vesicles for sustained ATP production that is maintained away from equilibrium by control of energy dissipation. We maintain a constant level of ATP with varying load on the system. The pathway enables us to control the transmembrane fluxes of osmolytes and to demonstrate basic physicochemical homeostasis. Our work demonstrates metabolic energy conservation and cell volume regulatory mechanisms in a cell-like system at a level of complexity minimally needed for life.


Subject(s)
Adenosine Triphosphate/metabolism , Artificial Cells/metabolism , Energy Metabolism/physiology , Metabolic Networks and Pathways/physiology , Adenosine Triphosphate/biosynthesis , Arginine/metabolism , Carrier Proteins/metabolism , Citrulline/metabolism , Hydrolases/metabolism , Lactococcus lactis/genetics , Ornithine/metabolism , Ornithine Carbamoyltransferase/metabolism , Phosphotransferases (Carboxyl Group Acceptor)/metabolism
20.
ACS Synth Biol ; 8(9): 1983-1990, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31429546

ABSTRACT

Removing transcriptional feedback regulation of metabolic pathways is a classical approach to enhance overproduction of chemicals in microbes. However, disrupting transcriptional regulation can have broad physiological consequences that decrease cellular growth and productivity. Here, we compared downregulation and deletion of the transcriptional repressor ArgR in arginine overproducing Escherichia coli. Different levels of ArgR downregulation were achieved with CRISPR interference (CRISPRi) and resulted in 2-times higher growth rates compared to deletion of ArgR, while specific arginine production was similar (∼2 mmol gDW-1 h-1). Metabolomics and proteomics data revealed that poor growth of the ArgR deletion strain was caused by a limitation of pyrimidine nucleotide biosynthesis, because a 17-fold overexpression of ornithine carbamoyltransferase (ArgI) perturbed the arginine-pyrimidine branch point. These results demonstrate that overexpression of enzymes in an engineered pathway can impair metabolism of the host, especially in the case of branch-point enzymes. Thus, balancing enzyme levels is important to optimize industrial microbes, and CRISPRi of a transcription factor is a versatile tool for this purpose.


Subject(s)
Arginine/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Escherichia coli/metabolism , Allosteric Regulation , Arginine/analysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Down-Regulation , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Metabolic Engineering , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Proteomics , Repressor Proteins/deficiency , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL