Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Article in English | MEDLINE | ID: mdl-39004301

ABSTRACT

Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the ß-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-ß interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.


Subject(s)
Amino Acid Sequence , Decapoda , Osmoregulation , Phylogeny , Sodium-Potassium-Exchanging ATPase , Animals , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/chemistry , Osmoregulation/genetics , Decapoda/genetics , Decapoda/enzymology , Decapoda/physiology , Evolution, Molecular , Gills/metabolism , Gills/enzymology
2.
Am J Physiol Cell Physiol ; 327(3): C545-C556, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38946247

ABSTRACT

Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia (Oreochromis mossambicus) possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species, the myo-inositol biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the high importance of this pathway for hyperosmotic (HO) stress tolerance. These abundance changes must be precluded by HO perception and signaling mechanism activation to regulate the expression of MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches the core binding sequence of the predominant mammalian HO response transcription factor, nuclear factor of activated T-cells (NFAT5). HO-challenged OmB cells showed an increase in NFAT5 mRNA suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (P < 0.01). Moreover, expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter signal (P < 0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance were observed in HO-challenged NFAT5 knockout cells relative to control cells. Collectively, these multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to HO-induced activation of the MIB pathway.NEW & NOTEWORTHY In our study, we use a multi-pronged synthetic biology approach to demonstrate that the fish homolog of the predominant mammalian osmotic stress transcription factor nuclear factor of activated T-cells (NFAT5) also contributes to the activation of hyperosmolality inducible genes in cells of extremely euryhaline fish. However, in addition to NFAT5 the presence of other strong osmotically inducible signaling mechanisms is required for full activation of osmoregulated tilapia genes.


Subject(s)
Inositol , Myo-Inositol-1-Phosphate Synthase , Osmotic Pressure , Tilapia , Up-Regulation , Animals , Tilapia/genetics , Tilapia/metabolism , Inositol/metabolism , Myo-Inositol-1-Phosphate Synthase/genetics , Myo-Inositol-1-Phosphate Synthase/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Cell Line , Signal Transduction , Transcription, Genetic , Osmoregulation/genetics , Transcriptional Activation
3.
Sci Total Environ ; 930: 172695, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38663613

ABSTRACT

General control non-derepressible-2 (GCN2) is widely expressed in eukaryotes and responds to biotic and abiotic stressors. However, the precise function and mechanism of action of GCN2 in response to cadmium (Cd) stress in Nicotiana tabacum L. (tobacco) remains unclear. We investigated the role of NtGCN2 in Cd tolerance and explored the mechanism by which NtGCN2 responds to Cd stress in tobacco by exposing NtGCN2 transgenic tobacco lines to different concentrations of CdCl2. NtGCN2 was activated under 50 µmol·L-1 CdCl2 stress and enhanced the Cd tolerance and photosynthetic capacities of tobacco by increasing chlorophyll content and antioxidant capacity by upregulating NtSOD, NtPOD, and NtCAT expression and corresponding enzyme activities and decreasing malondialdehyde and O2·- contents. NtGCN2 enhanced the osmoregulatory capacity of tobacco by elevating proline (Pro) and soluble sugar contents and maintaining low levels of relative conductivity. Finally, NtGCN2 enhanced Cd tolerance in tobacco by reducing Cd uptake and translocation, promoting Cd efflux, and regulating Cd subcellular distribution. In conclusion, NtGCN2 improves the tolerance of tobacco to Cd through a series of mechanisms, namely, increasing antioxidant, photosynthetic, and osmoregulation capacities and regulating Cd uptake, translocation, efflux, and subcellular distribution. This study provides a scientific basis for further exploration of the role of NtGCN2 in plant responses to Cd stress and enhancement of the Cd stress signaling network in tobacco.


Subject(s)
Cadmium , Drug Resistance , Nicotiana , Plant Proteins , Cadmium/toxicity , Cadmium/metabolism , Nicotiana/physiology , Nicotiana/metabolism , Photosynthesis/drug effects , Photosynthesis/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Stress, Physiological/drug effects , Stress, Physiological/genetics , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Drug Resistance/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Enzyme Activation/genetics , Osmoregulation/genetics , Intracellular Space/metabolism
4.
PLoS One ; 19(3): e0298213, 2024.
Article in English | MEDLINE | ID: mdl-38478568

ABSTRACT

Freshwater salinization poses global challenges for aquatic organisms inhabiting urban streams, impacting their physiology and ecology. However, current salinization research predominantly focuses on mortality endpoints in limited model species, overlooking the sublethal effects on a broader spectrum of organisms and the exploration of adaptive mechanisms and pathways under natural field conditions. To address these gaps, we conducted high-throughput sequencing transcriptomic analysis on the gill tissue of the euryhaline fish Gasterosteus aculeatus, investigating its molecular response to salinity stress in the highly urbanized river Boye, Germany. We found that in stream sections with sublethal concentrations of chloride costly osmoregulatory systems were activated, evidenced by the differential expression of genes related to osmoregulation. Our enrichment analysis revealed differentially expressed genes (DEGs) related to transmembrane transport and regulation of transport and other osmoregulation pathways, which aligns with the crucial role of these pathways in maintaining biological homeostasis. Notably, we identified candidate genes involved in increased osmoregulatory activity under salinity stress, including those responsible for moving ions across membranes: ion channels, ion pumps, and ion transporters. Particularly, genes from the solute carrier family SLC, aquaporin AQP1, chloride channel CLC7, ATP-binding cassette transporter ABCE1, and ATPases member ATAD2 exhibited prominent differential expression. These findings provide insights into the potential molecular mechanisms underlying the adaptive response of euryhaline fish to salinity stress and have implications for their conservation and management in the face of freshwater salinization.


Subject(s)
Rivers , Smegmamorpha , Animals , Salinity , Gene Expression Profiling , Osmoregulation/genetics , Fresh Water , Fishes/genetics , Smegmamorpha/genetics , Gills/metabolism
5.
Trends Genet ; 40(6): 540-554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38395683

ABSTRACT

Genetic adaptations of organisms living in extreme environments are fundamental to our understanding of where life can evolve. Water is the single limiting parameter in this regard, yet when released in the oceans, the single-celled eggs of marine bony fishes (teleosts) have no means of acquiring it. They are strongly hyposmotic to seawater and lack osmoregulatory systems. Paradoxically, modern teleosts successfully release vast quantities of eggs in the extreme saline environment and recorded the most explosive radiation in vertebrate history. Here, we highlight key genetic adaptations that evolved to solve this paradox by filling the pre-ovulated eggs with water. The degree of water acquisition is uniquely prevalent to marine teleosts, permitting the survival and oceanic dispersal of their eggs.


Subject(s)
Adaptation, Physiological , Fishes , Animals , Fishes/genetics , Adaptation, Physiological/genetics , Ovum , Oceans and Seas , Seawater , Biological Evolution , Osmoregulation/genetics
6.
Appl Environ Microbiol ; 90(2): e0215823, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38289134

ABSTRACT

Drought and salinity are ubiquitous environmental factors that pose hyperosmotic threats to microorganisms and impair their efficiency in performing environmental functions. However, bacteria have developed various responses and regulatory systems to cope with these abiotic challenges. Posttranscriptional regulation plays vital roles in regulating gene expression and cellular homeostasis, as hyperosmotic stress conditions can lead to the induction of specific small RNA molecules (sRNAs) that participate in stress response regulation. Here, we report a candidate functional sRNA landscape of Sphingomonas melonis TY under hyperosmotic stress, and 18 sRNAs were found with a clear response to hyperosmotic stress. These findings will help in the comprehensive analysis of sRNA regulation in Sphingomonas species. Weighted correlation network analysis revealed a 263 nucleotide sRNA, SNC251, which was transcribed from its own promoter and showed the most significant correlation with hyperosmotic response factors. Deletion of snc251 affected biofilm formation and multiple cellular processes, including ribosome-related pathways, aromatic compound degradation, and the nicotine degradation capacity of S. melonis TY, while overexpression of SNC251 facilitated biofilm formation by TY under hyperosmotic stress. Two genes involved in the TonB system were further verified to be activated by SNC251, which also indicated that SNC251 is a trans-acting sRNA. Briefly, this research reports a landscape of sRNAs participating in the hyperosmotic stress response in S. melonis and reveals a novel sRNA, SNC251, which contributes to the S. melonis TY biofilm formation and thus enhances its hyperosmotic stress response ability.IMPORTANCESphingomonas species play a vital role in plant defense and pollutant degradation and survive extensively under drought or salinity. Previous studies have focused on the transcriptional and translational responses of Sphingomonas under hyperosmotic stress, but the posttranscriptional regulation of small RNA molecules (sRNAs) is also crucial for quickly modulating cellular processes to adapt dynamically to osmotic environments. In addition, the current knowledge of sRNAs in Sphingomonas is extremely scarce. This research revealed a novel sRNA landscape of Sphingomonas melonis and will greatly enhance our understanding of sRNAs' acting mechanisms in the hyperosmotic stress response.


Subject(s)
RNA, Small Untranslated , Sphingomonas , Sphingomonas/genetics , RNA, Bacterial/genetics , Bacteria/genetics , Osmoregulation/genetics , Gene Expression Regulation, Bacterial
7.
Am J Physiol Regul Integr Comp Physiol ; 327(2): R208-R233, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38105762

ABSTRACT

Hagfishes are characterized by omo- and iono-conforming nature similar to marine invertebrates. Conventionally, hagfishes had been recognized as the most primitive living vertebrate that retains plesiomorphic features. However, some of the "ancestral" features of hagfishes, such as rudimentary eyes and the lack of vertebrae, have been proven to be deceptive. Similarly, by the principle of maximum parsimony, the unique body fluid regulatory strategy of hagfishes seems to be apomorphic, since the lamprey, another cyclostome, adopts osmo- and iono-regulatory mechanisms as in jawed vertebrates. Although hagfishes are unequivocally important in discussing the origin and evolution of the vertebrate osmoregulatory system, the molecular basis for the body fluid homeostasis in hagfishes has been poorly understood. In the present study, we explored this matter in the inshore hagfish, Eptatretus burgeri, by analyzing the transcriptomes obtained from the gill, kidney, and muscle of the animals acclimated to distinct environmental salinities. Together with the measurement of parameters in the muscular fluid compartment, our data indicate that the hagfish possesses an ability to conduct free amino acid (FAA)-based osmoregulation at a cellular level, which is in coordination with the renal and branchial FAA absorption. We also revealed that the hagfish does possess the orthologs of the known osmoregulatory genes and that the transepithelial movement of inorganic ions in the hagfish gill and kidney is more complex than previously thought. These observations pose a challenge to the conventional view that the physiological features of hagfishes have been inherited from the last common ancestor of the extant vertebrates.


Subject(s)
Gills , Hagfishes , Osmoregulation , Animals , Hagfishes/genetics , Hagfishes/physiology , Osmoregulation/genetics , Gills/metabolism , Kidney/metabolism , Salinity , Transcriptome , Fish Proteins/genetics , Fish Proteins/metabolism , Water-Electrolyte Balance , Amino Acids/metabolism , Acclimatization/genetics
8.
J Mol Evol ; 91(6): 865-881, 2023 12.
Article in English | MEDLINE | ID: mdl-38010516

ABSTRACT

The genetic basis underlying adaptive physiological mechanisms has been extensively explored in mammals after colonizing the seas. However, independent lineages of aquatic mammals exhibit complex patterns of secondary colonization in freshwater environments. This change in habitat represents new osmotic challenges, and additional changes in key systems, such as the osmoregulatory system, are expected. Here, we studied the selective regime on coding and regulatory regions of 20 genes related to the osmoregulation system in strict aquatic mammals from independent evolutionary lineages, cetaceans, and sirenians, with representatives in marine and freshwater aquatic environments. We identified positive selection signals in genes encoding the protein vasopressin (AVP) in mammalian lineages with secondary colonization in the fluvial environment and in aquaporins for lineages inhabiting the marine and fluvial environments. A greater number of sites with positive selection signals were found for the dolphin species compared to the Amazonian manatee. Only the AQP5 and AVP genes showed selection signals in more than one independent lineage of these mammals. Furthermore, the vasopressin gene tree indicates greater similarity in river dolphin sequences despite the independence of their lineages based on the species tree. Patterns of distribution and enrichment of Transcription Factors in the promoter regions of target genes were analyzed and appear to be phylogenetically conserved among sister species. We found accelerated evolution signs in genes ACE, AQP1, AQP5, AQP7, AVP, NPP4, and NPR1 for the fluvial mammals. Together, these results allow a greater understanding of the molecular bases of the evolution of genes responsible for osmotic control in aquatic mammals.


Subject(s)
Dolphins , Osmoregulation , Animals , Osmoregulation/genetics , Cetacea/genetics , Mammals/genetics , Fresh Water , Vasopressins/genetics , Evolution, Molecular , Phylogeny
9.
Mar Environ Res ; 192: 106240, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37944349

ABSTRACT

Marine bivalves inhabiting intertidal and estuarine areas are frequently exposed to salinity stress due to persistent rainfall and drought. Through prolonged adaptive evolution, numerous bivalves have developed eurysalinity, which are capable of tolerating a wide range of salinity fluctuations through the sophisticated regulation of physiological metabolism. Current research has predominantly focused on investigating the physiological responses of bivalves to salinity stress, leaving a significant gap in our understanding of the adaptive evolutionary characteristics in euryhaline bivalves. Here, comparative genomics analyses were performed in two groups of bivalve species, including 7 euryhaline species and 5 stenohaline species. We identified 24 significantly expanded gene families and 659 positively selected genes in euryhaline bivalves. A significant co-expansion of solute carrier family 23 (SLC23) facilitates the transmembrane transport of ascorbic acids in euryhaline bivalves. Positive selection of antioxidant genes, such as GST and TXNRD, augments the capacity of active oxygen species (ROS) scavenging under salinity stress. Additionally, we found that the positively selected genes were significantly enriched in KEGG pathways associated with carbohydrates, lipids and amino acids metabolism (ALDH, ADH, and GLS), as well as GO terms related to transmembrane transport and inorganic anion transport (SLC22, CLCND, and VDCC). Positive selection of MCT might contribute to prevent excessive accumulation of intracellular lactic acids during anaerobic metabolism. Positive selection of PLA2 potentially promote the removal of damaged membranes lipids under salinity stress. Our findings suggest that adaptive evolution has occurred in osmoregulation, ROS scavenging, energy metabolism, and membrane lipids adjustments in euryhaline bivalves. This study enhances our understanding of the molecular mechanisms underlying the remarkable salinity adaption of euryhaline bivalves.


Subject(s)
Adaptation, Physiological , Osmoregulation , Reactive Oxygen Species , Osmoregulation/genetics , Salt Stress , Lipids , Salinity
10.
Mol Biol Rep ; 50(11): 9295-9306, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37812353

ABSTRACT

BACKGROUND: The Indian white shrimp, Penaeus indicus a native species of India, is important brackishwater aquaculture species. Shrimps are euryhaline in nature and they regulate osmotic and ionic concentrations by osmoregulatory process. However, variations in abiotic factors such as salinity result in stress to the shrimps during culture period affecting their growth and immunity. METHODS AND RESULTS: To understand the adaptive mechanism to stress in low salinity conditions, RNA-seq was used to compare the transcriptomic response of P. indicus upto 3 weeks. De novo assembly using Trinity assembler generated a total of 173,582 transcripts. The assembly had a mean length of 854 bp, N50 value of 1243 bp and GC content of 42.33%. Differential gene expression analysis, resulted in identification of 2130, 3090, and 5351 DEGs in 7 days, 14 days and 21 days respectively of salinity stress period. The pathway prediction of the assembled trinity transcripts using KEGG database showed total number of 329 pathways linking 12,430 transcripts. KEGG pathway enrichment analyses led to the identification of several enriched pathways related to lipid metabolism, amino acid metabolism, glycolysis, signalling pathways etc. Selected genes involved in osmoregulatory process and immune response in shrimps were validated and analysed for the gene expression levels by quantitative real-time PCR (qPCR). CONCLUSION: This study on the adaptive transcriptomic response of P. indicus to low salinity, will further help in our understanding of the molecular mechanisms underlying osmoregulation mechanism in shrimps.


Subject(s)
Penaeidae , Transcriptome , Animals , Transcriptome/genetics , Penaeidae/genetics , Gene Expression Profiling , Salt Stress/genetics , Osmoregulation/genetics , Salinity
11.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982391

ABSTRACT

In euryhaline teleost black porgy, Acanthopagrus schlegelii, the glucocorticoid receptor (gr), growth hormone receptor (ghr), prolactin (prl)-receptor (prlr), and sodium-potassium ATPase alpha subunit (α-nka) play essential physiological roles in the osmoregulatory organs, including the gill, kidney, and intestine, during osmotic stress. The present study aimed to investigate the impact of pituitary hormones and hormone receptors in the osmoregulatory organs during the transfer from freshwater (FW) to 4 ppt and seawater (SW) and vice versa in black porgy. Quantitative real-time PCR (Q-PCR) was carried out to analyze the transcript levels during salinity and osmoregulatory stress. Increased salinity resulted in decreased transcripts of prl in the pituitary, α-nka and prlr in the gill, and α-nka and prlr in the kidney. Increased salinity caused the increased transcripts of gr in the gill and α-nka in the intestine. Decreased salinity resulted in increased pituitary prl, and increases in α-nka and prlr in the gill, and α-nka, prlr, and ghr in the kidney. Taken together, the present results highlight the involvement of prl, prlr, gh, and ghr in the osmoregulation and osmotic stress in the osmoregulatory organs (gill, intestine, and kidney). Pituitary prl, and gill and intestine prlr are consistently downregulated during the increased salinity stress and vice versa. It is suggested that prl plays a more significant role in osmoregulation than gh in the euryhaline black porgy. Furthermore, the present results highlighted that the gill gr transcript's role was solely to balance the homeostasis in the black porgy during salinity stress.


Subject(s)
Receptors, Glucocorticoid , Receptors, Somatotropin , Animals , Receptors, Somatotropin/metabolism , Osmotic Pressure , Receptors, Glucocorticoid/metabolism , Osmoregulation/genetics , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Salinity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gills/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
12.
Mar Biotechnol (NY) ; 25(1): 161-173, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36631626

ABSTRACT

Tenualosa ilisha (Hilsa shad), an anadromous fish, usually inhabits coastal and estuarine waters, and migrates to freshwater for spawning. In this study, large-scale gill transcriptome analyses from three salinity regions, i.e., fresh, brackish and marine water, revealed 3277 differentially expressed genes (DEGs), out of which 232 were found to be common between marine vs freshwater and brackish vs freshwater. These genes were mapped into 54 KEGG Pathways, and the most significant of these were focal adhesion, adherens junction, tight junction, and PI3K-Akt signaling pathways. A total of 24 osmoregulatory genes were found to be differentially expressed in different habitats. The gene members of slc16 and slc2 families showed a dissimilar pattern of expressions, while two claudin genes (cldn11 & cldn10), transmembrane tm56b, and voltage-gated potassium channel gene kcna10 were downregulated in freshwater samples, as compared to that of brackish and marine environment. Protein-protein interaction (PPI) network analysis of 232 DEGs showed 101 genes to be involved in PPI, while fn1 gene was found to be interacting with the highest number of genes (36). Twenty-five hub genes belonged to 12 functional groups, with muscle structure development with seven genes, forming the major group. These results provided valuable information about the genes, potentially involved in the molecular mechanisms regulating water homeostasis in gills, during migration for spawning and low-salinity adaptation in Hilsa shad. These genes may form the basis for the bio-marker development for adaptation to the stress levied by major environmental changes, due to hatchery/culture conditions.


Subject(s)
Gills , Osmoregulation , Animals , Osmoregulation/genetics , Gills/metabolism , Osmotic Pressure , Phosphatidylinositol 3-Kinases/metabolism , Fishes/genetics , Fishes/metabolism , Gene Expression Profiling , Water/metabolism , Salinity
13.
Gene ; 851: 147013, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36323362

ABSTRACT

Salinity is an important factor in the aquatic environment, and its fluctuations always result in osmotic stress, which affects the survival, distribution, and physiological activities of crustaceans. Crustaceans counter them through osmoregulation, which consists of many mechanisms. Palaemon gravieri is an important economic species in Palaemonidae, widely distributed in the southern East China Sea and the China Yellow Sea, and has a good adaptability to salinity stress. Currently, there are only a few studies on the effects of salinity on P. graviera. Therefore, it is particularly important to study the molecular responses of P. gravieri to salinity fluctuations. In this study, P. gravieri was treated with salinities of 10, 25, and 40, and the hepatopancreas and gills of shrimp in the different salinity groups were sampled after 24 h. The samples were used for RNA extraction and transcriptome analysis. In total, 80,994 unigenes were obtained, of which 19,114 were annotated. The differences in gene expression between different tissues at the same salinity were more significant. Many metabolism-related genes were downregulated in the gills, such as beta-hexosaminidase subunit alpha (HEXA), 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), and Alcohol dehydrogenase class-3 (ADH5). Scanning transmission electron microscope analysis showed that the expression levels of some stress-(but not salinity stress) related genes changed after stress (mostly upregulated), suggesting the existence of secondary stress. Gene set enrichment analysis (GSEA) focused on the expression of transporters in osmoregulation, and the results showed that they mainly played a role in the gills, but ATP-binding cassette (ABC) transporters were more active in the hepatopancreas. This study showed that the response of P. gravieri to salinity change was different not only between the hepatopancreas and gills, but also between low salinity and higher salinity, and the ion transport-related genes were mainly expressed in the gills. Overall, these results improve our understanding of salt tolerance mechanism in P. gravieri.


Subject(s)
Hepatopancreas , Palaemonidae , Animals , Hepatopancreas/metabolism , Gills/metabolism , Palaemonidae/genetics , Gene Expression Profiling , Osmoregulation/genetics , Transcriptome
14.
Gene ; 851: 147044, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36379385

ABSTRACT

The stinging catfish Heteropneustes fossilis is a champion survivor under hypertonic stress and is suggested to be a profitable candidate for culture in slightly saline water in coastal regions. Fish gills are an essential site of osmoregulation and other physiological processes. To investigate the stress responses and mechanisms of salinity tolerance in stinging catfish, we sampled gills tissues from control and hypertonicity (100 mM NaCl solution) treated adult catfish and assessed for transcriptomic profiling by high throughput sequencing. The raw data generated was filtered and assembled for de novo transcriptome assembly. The final contig assembly produced a total of 1,71,478 unigene transcripts with an average transcript length of 898 bp and a GC content of 45%. A total of 22,231 transcripts matched with Chordata with BLAST search and were functionally annotated, out of which 21,814 were best-hit transcripts aligned with the UniProt database. Comparative transcriptomic analysis revealed that a total of 1951 genes were differentially expressed in the gills of NaCl-treated fish compared to the control. Functional and enrichment analysis of the Differentially expressed genes demonstrated that several GO pathway terms were significantly over-represented, such as 'catalytic activity', 'hydrolase activity' in molecular function category, 'membrane', 'integral component of membrane' in cellular component category and 'metabolic process', 'regulation of transcription' in biological process category. The functional analysis study of DEGs demonstrated that tolerance to hypertonic stress by stinging catfish is associated with a few pathways related to stress response, immune response, biosynthesis, metabolism, molecular transport, cytoskeleton remodeling, apoptosis, cell signaling, transcriptional regulation, etc. The present study provides a novel insight into the molecular responses of the air-breathing stinging catfish against salinity stress, which could elucidate the underlying mechanisms of adaptation of this stenohaline species under various environmental constraints.


Subject(s)
Catfishes , Gills , Animals , Gills/metabolism , Catfishes/genetics , Sodium Chloride/metabolism , Gene Expression Profiling , Osmoregulation/genetics
15.
Proc Natl Acad Sci U S A ; 119(40): e2212196119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161944

ABSTRACT

We used a representative of one of the oldest extant vertebrate lineages (jawless fish or agnathans) to investigate the early evolution and function of the growth hormone (GH)/prolactin (PRL) family. We identified a second member of the GH/PRL family in an agnathan, the sea lamprey (Petromyzon marinus). Structural, phylogenetic, and synteny analyses supported the identification of this hormone as prolactin-like (PRL-L), which has led to added insight into the evolution of the GH/PRL family. At least two ancestral genes were present in early vertebrates, which gave rise to distinct GH and PRL-L genes in lamprey. A series of gene duplications, gene losses, and chromosomal rearrangements account for the diversity of GH/PRL-family members in jawed vertebrates. Lamprey PRL-L is produced in the proximal pars distalis of the pituitary and is preferentially bound by the lamprey PRL receptor, whereas lamprey GH is preferentially bound by the lamprey GH receptor. Pituitary PRL-L messenger RNA (mRNA) levels were low in larvae, then increased significantly in mid-metamorphic transformers (stage 3); thereafter, levels subsided in final-stage transformers and metamorphosed juveniles. The abundance of PRL-L mRNA and immunoreactive protein increased in the pituitary of juveniles under hypoosmotic conditions, and treatment with PRL-L blocked seawater-associated inhibition of freshwater ion transporters. These findings clarify the origin and divergence of GH/PRL family genes in early vertebrates and reveal a function of PRL-L in osmoregulation of sea lamprey, comparable to a role of PRLs that is conserved in jawed vertebrates.


Subject(s)
Human Growth Hormone , Petromyzon , Animals , Growth Hormone/genetics , Growth Hormone/metabolism , Osmoregulation/genetics , Petromyzon/genetics , Petromyzon/metabolism , Phylogeny , Prolactin/genetics , Prolactin/metabolism , RNA, Messenger/metabolism , Vertebrates/genetics
16.
Gen Comp Endocrinol ; 329: 114120, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36055397

ABSTRACT

Eyestalk is considered the main neuroendocrine organ in crustaceans. Eyestalk regulates reproduction, molting, and energy metabolism by secreting several neurohormones. However, the role of eyestalk in salinity adaptation in crustaceans remains unclear. To reveal the role of eyestalk in salinity adaptation in Litopenaeus vannamei, we performed RNA-seq to compare the transcriptomic response of the eyestalk under low salinity (salinity 3) with that of the control group (salinity 25) for 8 weeks. A total of 479 mRNAs, including 150 upregulated and 329 downregulated mRNAs, were differentially expressed between the two salinity groups. The majority of the differentially expressed genes (DEGs) were enriched in biological pathways related to osmoregulation, metabolism and energy production, and oxidative stress. The most important DEGs associated with osmoregulation were CA4, ATP1A, ATP2B, ABCB1, ABCC4, PhoA, PhoB, NOS1, ACE, ANPEP, and the V-type H+-ATPase E-subunit. The metabolism-related DEGs were divided into three main categories: carbohydrate and energy metabolism (i.e., G6PC, UGT), protein and amino acid metabolism (i.e., SLC15A1, AhcY, GFAT), and lipid and fatty acid metabolism (i.e., GPAT3_4, CYP2J). The key DEGs related to the oxidative stress response were UGT, NDUFB1, QCR7, QCR8, P5CDh, COX6B, and CES1. These results provide evidence for the existence of an eyestalk-salinity adaptation-stress endocrine axis in L. vannamei. These findings provide a better understanding of the molecular mechanism underlying salinity adaptation in L. vannamei.


Subject(s)
Penaeidae , Salinity , Animals , Penaeidae/metabolism , Gene Expression Profiling , Transcriptome , Osmoregulation/genetics
17.
Integr Comp Biol ; 62(2): 357-375, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35661215

ABSTRACT

Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.


Subject(s)
Osmoregulation , Salinity , Acclimatization/physiology , Animals , Fishes/physiology , Gills , Osmoregulation/genetics , Selection, Genetic , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
18.
Mol Biol Rep ; 49(5): 3849-3861, 2022 May.
Article in English | MEDLINE | ID: mdl-35235155

ABSTRACT

BACKGROUND: Dromedary or one-humped camel (Camelus dromedarius) is distinctively acclimatized to survive the arid conditions of the desert environment. It has an excellent ability to compete dehydration with substantial tolerance for rapid dehydration. Therefore, it offers an excellent model for studying osmoregulation. Molecular characterization of Na+/K+ ATPase as a central regulator of electrolyte normohemostasis affords a better understanding of this mechanism in camel. Here is the first to resolve the full-length of alpha-1 subunit of sodium pump (ATP1A1) gene with its differential expression in dromedary tissues. RESULTS: The nucleotide sequence for the recovered full cDNA of ATP1A1was submitted to the GenBank (NCBI GenBank accession #MW628635) and bioinformatically analyzed. The cDNA sequence was of 3760 bp length with an open reading frame (ORF) of 3066 bp encoding a putative 1021 amino acids polypeptide with a molecular mass of 112696 Da. Blast search analysis revealed the shared high similarity of dromedary ATP1A1gene with other known ATP1A1genes in different species. The comparative analysis of its protein sequence confirmed the high identity with other mammalian ATP1A1 proteins. Further transcriptomic investigation for different organs was performed by real-time PCR to compare its level of expression among different organs. The results confirm a direct function between the ATP1A1 gene expression and the order of vital performance of these organs. The expression of ATP1A1 mRNA in the adrenal gland and brain was significantly higher than that in the other organs. The noticed down expression in camel kidney concomitant with overexpression in the adrenal cortex might interpret how dromedary expels access sodium without water loss with relative high ability to restrain mineralocorticoid-induced sodium retention on drinking salty water. CONCLUSION: The results reflect the importance of sodium pump in these organs. Na+/K+ ATPase in the adrenal gland and brain than other organs.


Subject(s)
Camelus , Sodium-Potassium-Exchanging ATPase , Animals , Camelus/genetics , Camelus/metabolism , Cloning, Molecular , DNA, Complementary/genetics , Dehydration , Osmoregulation/genetics , Sequence Alignment , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Water/metabolism
19.
Sci Rep ; 12(1): 807, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039520

ABSTRACT

Naked carp (Gymnocypris przewalskii), endemic to the saline-alkaline Lake Qinghai, have the capacity to tolerate combinations of high salinity and alkalinity, but migrate to spawn in freshwater rivers each year. In this study, we measured the drinking rate over a 24 h period for naked carp exposed to saline-alkaline lake waters with salinities of 15 (L15) and 17 (L17). We also assessed the daily feed intakes of naked carp exposed to L15 and fresh water (FW). Additionally, we studied the daily expression of acid-base regulation and osmoregulation related genes and proteins in the intestine of naked carp exposed to saline-alkaline lake waters. Our results revealed that the drinking rate at night was significantly higher than in daytime when exposed to either L15 or L17, while feed intakes in daytime were significantly higher than at night. The relative expression of Na+/K+-ATPase α (NKA-α), solute carrier family members 26A6 (SLC26A6) and 4A4 (SLC4A4) in the intestine of naked carp exposed to L17 at night was higher than in daytime. Specifically, NKA-α mRNA expression at 4:00 was 7.22-fold and 5.63-fold higher than that at 10:00 and 16:00, respectively, and the expression at 22:00 was 11.29-fold and 8.80-fold higher than that at 10:00 and 16:00, respectively. Similarly, SLC26A6 mRNA expression was greatest at 22:00, exceeding that observed at 4:00, 10:00 and 16:00 by 3.59, 4.44 and 11.14-fold, respectively. Finally, the expression of NKA-α and SLC26A6 protein at the single cell level was also higher at night than during the day, which was 1.65-fold and 1.37-fold higher at 22:00 respectively compared to 16:00. Overall, the present findings revealed that naked carp drinks at night and feeds during the day, demonstrating that intestinal ion regulation exhibits a daily rhythm when exposed to high saline and alkaline lake water.


Subject(s)
Carps/metabolism , Carps/physiology , Circadian Rhythm/physiology , Fresh Water , Intestines/metabolism , Ions/metabolism , Osmoregulation/physiology , Salinity , Acid-Base Equilibrium/physiology , Alkalies , Animals , Drinking/physiology , Eating/physiology , Gene Expression , Lakes , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Osmoregulation/genetics , RNA, Messenger
20.
Plant Signal Behav ; 17(1): 1994257, 2022 12 31.
Article in English | MEDLINE | ID: mdl-34875972

ABSTRACT

Glutamic acid (Glu) is not only a protein amino acid, but also a signaling molecule, which takes part in various physiological processes in plants. Our previous study found that root-irrigation with Glu could improve the heat tolerance of maize seedlings by plant Glu receptor-like channels-mediated calcium signaling (Protoplasma, 2019; 256:1165-1169), but its molecular mechanism remains unclear. In this study, based on the our previous work, the maize seedlings were treated with 1 mM Glu prior to be exposed to heat stress (HS), and then the expression of genes related to related to methylglyoxal (MG)-scavenging and osmoregulation systems was quantified. The results showed that Glu treatment up-regulated the gene expression of Zea mays aldo-keto reductase (ZmAKR) under both non-HS and HS conditions. Also, the gene expression of Zea mays alkenal/alkenone reductase (ZmAAR), glyoxalase II (ZmGly II), pyrroline-5-carboxylate synthase (ZmP5CS), betaine dehydrogenase (ZmBADH), and trehalase (ZmTRE) was up-regualted by exogenous Glu treatment under HS conditions. These data imply that signaling molecule Glu initiated the expression of genes related to MG-scavenging and osmoregulation systems in maize seedlings, further supporting the fact that Glu-enhanced heat tolerance in plants.


Subject(s)
Seedlings , Zea mays , Gene Expression Regulation, Plant , Glutamic Acid/metabolism , Osmoregulation/genetics , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology , Seedlings/metabolism , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL