Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(13): 10986-11002, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38932487

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants, the elderly, and immune-compromised patients. While a half-life extended monoclonal antibody and 2 vaccines have recently been approved for infants and the elderly, respectively, options to prevent disease in immune-compromised patients are still needed. Here, we describe spiro-azetidine oxindoles as small molecule RSV entry inhibitors displaying favorable potency, developability attributes, and long-acting PK when injected as an aqueous suspension, suggesting their potential to prevent complications following RSV infection over a period of 3 to 6 months with 1 or 2 long-acting intramuscular (IM) or subcutaneous (SC) injections in these immune-compromised patients.


Subject(s)
Antiviral Agents , Azetidines , Oxindoles , Respiratory Syncytial Virus Infections , Spiro Compounds , Humans , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/drug therapy , Animals , Oxindoles/chemistry , Oxindoles/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/pharmacokinetics , Spiro Compounds/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/administration & dosage , Azetidines/chemistry , Azetidines/pharmacology , Azetidines/administration & dosage , Azetidines/pharmacokinetics , Pre-Exposure Prophylaxis/methods , Injections, Intramuscular , Indoles/chemistry , Indoles/administration & dosage , Indoles/pharmacology , Injections, Subcutaneous , Respiratory Syncytial Virus, Human/drug effects , Virus Internalization/drug effects
2.
Phys Chem Chem Phys ; 26(22): 16139-16152, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787638

ABSTRACT

Cyclin-dependent kinase 2 (CDK2) regulates cell cycle checkpoints in the synthesis and mitosis phases and plays a pivotal role in cancerous cell proliferation. The activation of CDK2, influenced by various protein signaling pathways, initiates the phosphorylation process. Due to its crucial role in carcinogenesis, CDK2 is a druggable hotspot target to suppress cancer cell proliferation. In this context, several studies have identified spirooxindoles as an effective class of CDK2 inhibitors. In the present study, three spirooxindoles (SOI1, SOI2, and SOI3) were studied to understand their inhibitory mechanism against CDK2 through a structure-based approach. Molecular docking and molecular dynamics (MD) simulations were performed to explore their interactions with CDK2 at the molecular level. The calculated binding free energy for the spirooxindole-based CDK2 inhibitors aligned well with experimental results regarding CDK2 inhibition. Energy decomposition (ED) analysis identified key binding residues, including I10, G11, T14, R36, F82, K89, L134, P155, T158, Y159, and T160, in the CDK2 active site and T-loop phosphorylation. Molecular mechanics (MM) energy was identified as the primary contributor to stabilizing inhibitor binding in the CDK2 protein structure. Furthermore, the analysis of binding affinity revealed that the inhibitor SOI1 binds more strongly to CDK2 compared to the other inhibitors under investigation. It demonstrated a robust interaction with the crucial residue T160 in the T-loop phosphorylation site, responsible for kinase activation. These insights into the inhibitory mechanism are anticipated to contribute to the development of potential CDK2 inhibitors using the spirooxindole scaffold.


Subject(s)
Cyclin-Dependent Kinase 2 , Indoles , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxindoles , Protein Kinase Inhibitors , Spiro Compounds , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Humans , Oxindoles/chemistry , Oxindoles/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Indoles/chemistry , Indoles/pharmacology , Thermodynamics , Structure-Activity Relationship , Molecular Structure , Protein Binding , Spirooxindoles
3.
PLoS Biol ; 22(5): e3002550, 2024 May.
Article in English | MEDLINE | ID: mdl-38768083

ABSTRACT

Alkenyl oxindoles have been characterized as autophagosome-tethering compounds (ATTECs), which can target mutant huntingtin protein (mHTT) for lysosomal degradation. In order to expand the application of alkenyl oxindoles for targeted protein degradation, we designed and synthesized a series of heterobifunctional compounds by conjugating different alkenyl oxindoles with bromodomain-containing protein 4 (BRD4) inhibitor JQ1. Through structure-activity relationship study, we successfully developed JQ1-alkenyl oxindole conjugates that potently degrade BRD4. Unexpectedly, we found that these molecules degrade BRD4 through the ubiquitin-proteasome system, rather than the autophagy-lysosomal pathway. Using pooled CRISPR interference (CRISPRi) screening, we revealed that JQ1-alkenyl oxindole conjugates recruit the E3 ubiquitin ligase complex CRL4DCAF11 for substrate degradation. Furthermore, we validated the most potent heterobifunctional molecule HL435 as a promising drug-like lead compound to exert antitumor activity both in vitro and in a mouse xenograft tumor model. Our research provides new employable proteolysis targeting chimera (PROTAC) moieties for targeted protein degradation, providing new possibilities for drug discovery.


Subject(s)
Cell Cycle Proteins , Oxindoles , Proteolysis , Ubiquitin-Protein Ligases , Humans , Animals , Proteolysis/drug effects , Mice , Ubiquitin-Protein Ligases/metabolism , Oxindoles/pharmacology , Oxindoles/metabolism , Oxindoles/chemistry , Cell Cycle Proteins/metabolism , Transcription Factors/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Nude , HEK293 Cells , Structure-Activity Relationship , Proteasome Endopeptidase Complex/metabolism , Azepines/pharmacology , Azepines/chemistry , Azepines/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Female , Bromodomain Containing Proteins , Receptors, Interleukin-17
4.
Eur J Med Chem ; 271: 116357, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38636130

ABSTRACT

The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was potently inhibited as an off-target kinase. The oxindole has long been considered a promiscuous kinase inhibitor template, but across these four specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different ranging from narrow to broad spectrum kinome coverage. We synthesized a large series of analogues, utilizing quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, kinome profiling, and small-molecule x-ray structural analysis to optimize TLK2 inhibition and kinome selectivity. This resulted in the identification of several narrow spectrum, sub-family selective, chemical tool compounds including 128 (UNC-CA2-103) that could enable elucidation of TLK2 biology.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors , Quantitative Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Humans , Molecular Structure , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Dose-Response Relationship, Drug , Models, Molecular
5.
Bioorg Chem ; 147: 107363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657527

ABSTRACT

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Subject(s)
Antioxidants , Dipeptidyl Peptidase 4 , Hypoglycemic Agents , Pyrazoles , Triazoles , alpha-Amylases , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Structure-Activity Relationship , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Dipeptidyl Peptidase 4/metabolism , Molecular Structure , Humans , Dose-Response Relationship, Drug , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Molecular Docking Simulation , Picrates/antagonists & inhibitors , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Benzopyrans , Nitriles
6.
Future Med Chem ; 16(9): 817-842, 2024.
Article in English | MEDLINE | ID: mdl-38634318

ABSTRACT

Background: A dual COX/5-LOX strategy was adopted to develop new oxindole derivatives with superior anti-inflammatory activity. Methods: Three series of oxindoles - esters 4a-p, 6a-l and imines 7a-o - were synthesized and evaluated for their anti-inflammatory and analgesic activities. Molecular docking and predicted pharmacokinetic parameters were done for the most active compounds. A new LC-MS/MS method was developed and validated for the quantification of 4h in rat plasma. Results: Compounds 4h, 6d, 6f, 6j and 7m revealed % edema inhibition up to 100.00%; also, 4l and 7j showed 100.00% writhing protection. Compound 4h showed dual inhibitory activity with IC50 = 0.0533 and 0.4195 µM for COX-2 and 5-LOX, respectively. Molecular docking rationalized the obtained biological activity. The pharmacokinetic parameters of 4h from rat plasma were obtained.


[Box: see text].


Subject(s)
Arachidonate 5-Lipoxygenase , Cyclooxygenase 2 , Edema , Molecular Docking Simulation , Oxindoles , Animals , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Rats , Arachidonate 5-Lipoxygenase/metabolism , Edema/drug therapy , Edema/chemically induced , Cyclooxygenase 2/metabolism , Male , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemical synthesis , Molecular Structure , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Structure-Activity Relationship , Analgesics/chemistry , Analgesics/pharmacology , Analgesics/chemical synthesis , Humans , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis
7.
Arch Pharm (Weinheim) ; 357(8): e2400029, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38627294

ABSTRACT

Imatinib mesylate was the first representative BCR-ABL1 tyrosine kinase inhibitor (TKI) class for the treatment of chronic myeloid leukemia. Despite the revolution promoted by TKIs in the treatment of this pathology, a resistance mechanism occurs against all BCR-ABL1 inhibitors, necessitating a constant search for new therapeutic options. To develop new antimyeloproliferative substances, we applied a medicinal chemistry tool known as molecular hybridization to design 25 new substances. These compounds were synthesized and biologically evaluated against K562 cells, which express BCR-ABL1, a constitutively active tyrosine kinase enzyme, as well as in WSS-1 cells (healthy cells). The new compounds are conjugated hybrids that contain phenylamino-pyrimidine-pyridine (PAPP) and an isatin backbone, which are the main pharmacophoric fragments of imatinib and sunitinib, respectively. A spiro-oxindole nucleus was used as a linker because it occurs in many compounds with antimyeloproliferative activity. Compounds 2a, 2b, 3c, 4c, and 4e showed promise, as they inhibited cell viability by between 45% and 61% at a concentration of 10 µM. The CC50 of the most active substances was determined to be within 0.8-9.8 µM.


Subject(s)
Antineoplastic Agents , Cell Survival , Imatinib Mesylate , Oxindoles , Humans , K562 Cells , Imatinib Mesylate/pharmacology , Oxindoles/pharmacology , Oxindoles/chemical synthesis , Oxindoles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Drug Screening Assays, Antitumor
8.
Org Biomol Chem ; 22(17): 3459-3467, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38597668

ABSTRACT

A water mediated three-component reaction of isatin, 4-aminocoumarin, and 1,3-cyclodicarbonyl compounds is reported for the synthesis of spiro[chromeno[4,3-b]cyclopenta[e]pyridine-7,3'-indoline]trione and the spiro[chromeno[4,3-b]quinoline 7,3'-indoline]trione. Up to 27 different spirooxindole derivatives were synthesized by this method. The bioactivity of these spirooxindole derivatives was evaluated and they were found to show antifungal activity against Cercospora arachidicola, Physalospora piricola, Rhizoctonia cerealis, and Fusarium moniliforme.


Subject(s)
Antifungal Agents , Benzopyrans , Indoles , Nitriles , Spiro Compounds , Water , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Water/chemistry , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Microbial Sensitivity Tests , Oxindoles/pharmacology , Oxindoles/chemical synthesis , Oxindoles/chemistry , Molecular Structure , Structure-Activity Relationship , Fusarium/drug effects
9.
Bioorg Chem ; 146: 107294, 2024 May.
Article in English | MEDLINE | ID: mdl-38507997

ABSTRACT

Oxindoles are potent anti-cancer agents and are also used against microbial and fungal infections and for treating neurodegenerative diseases. These oxindoles are earlier established as estrogen receptor (ER)-targeted agents for killing ER (+) cancer cells. Our previously developed bis-arylidene oxindole, Oxifen (OXF) exhibits effective targeting towards ER (+) cancer cells which has a structural resemblance with tamoxifen. Herein, we have designed and synthesized few structural analogues of OXF such as BPYOX, ACPOX and ACPOXF to examine its cytotoxicity in different cancer as well as non-cancer cell lines and its potential to form self- aggregates in aqueous solution. Among these series of molecules, ACPOXF showed maximum toxicity in colorectal cancer cell line which are ER (-) but it also kills non-cancer cell line HEK-293, thereby reducing its cancer cell selectivity. Incidentally, ACPOXF exhibits self-aggregation, without the help of a co-lipid with nanometric size in aqueous solution. ACPOXF self-aggregate was co-formulated with glucocorticoid receptor (GR) synthetic ligand, dexamethasone (Dex) (called, ACPOXF-Dex aggregate) which could selectively kill ER (-) colorectal cancer cells and also could increase survivability of colon-tumour bearing mice. ACPOXF-Dex induced ROS up-regulation followed by apoptosis through expression of caspase-3. Further, we observed upregulation of antiproliferative factor, p53 and epithelial-to-mesenchymal (EMT) reversal marker E-cadherin in tumour mass. In conclusion, a typical structural modification in ER-targeting Oxifen moiety resulted in its self-aggregation that enabled it to carry a GR-ligand, thus broadening its selective antitumor property especially as colon cancer therapeutics.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Mice , Humans , Animals , Ligands , HEK293 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , Receptors, Estrogen/metabolism , Oxindoles/chemistry , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation
10.
ChemMedChem ; 19(12): e202400052, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38517377

ABSTRACT

A series of spirocyclopropyl oxindoles with benzimidazole substitutions was synthesized and tested for their cytotoxicity against selected human cancer cells. Most of the molecules exhibited significant antiproliferative activity with compound 12 p being the most potent. It exhibited significant cytotoxicity against MCF-7 breast cancer cells (IC50 value 3.14±0.50 µM), evidenced by the decrease in viable cells and increased apoptotic features during phase contrast microscopy, such as AO/EB, DAPI and DCFDA staining studies. Compound 12 p also inhibited cell migration in wound healing assay. Anticancer potential of 12 p was proved by the inhibition of tubulin polymerization with IC50 of 5.64±0.15 µM. These results imply the potential of benzimidazole substituted spirocyclopropyl oxindoles, notably 12 p, as cytotoxic agent for the treatment of breast cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Benzimidazoles , Cell Proliferation , Drug Screening Assays, Antitumor , Oxindoles , Polymerization , Tubulin Modulators , Tubulin , Humans , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Tubulin/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Polymerization/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Cell Movement/drug effects , Cell Line, Tumor , Drug Development , MCF-7 Cells
11.
Chem Biodivers ; 21(6): e202301942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393713

ABSTRACT

This article reports one-pot synthesis of ten novel spirooxindoles using 5-methyl-2-thiohydantoin, isatin derivatives, and malononitrile in good to high yields (65-90 %). The structures of the synthesized compounds were deduced by 1H-NMR, 13C NMR, FT-IR, and Mass spectral data. The antibacterial activity of the compounds was evaluated against two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) based on the Kirby-Bauer method. According to the obtained data, the synthesized compounds show more activity against Gram-positive bacteria than Gram-negative bacteria. Also, the antioxidant activity of these compounds was measured using the DPPH radical scavenging test method, which showed good to excellent activity (59.65-94.03 %). Among them, the chlorinated derivatives (4 f-j) exhibited more antioxidant activity (84.85-94.03 %) than the other compounds (4 a-e) (56.65-74.4 %) and even ascorbic acid as a standard antioxidant compound (82.3 %).


Subject(s)
Anti-Bacterial Agents , Antioxidants , Indoles , Microbial Sensitivity Tests , Spiro Compounds , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Molecular Structure , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Picrates/antagonists & inhibitors , Pseudomonas aeruginosa/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Spirooxindoles , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Isatin/chemical synthesis , Isatin/chemistry , Isatin/pharmacology
12.
Bioorg Chem ; 143: 107091, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183683

ABSTRACT

This scientific review documents the recent progress of C3-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C3-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc. Regarding organic synthesis, several traditional and advanced strategies have been reported, particularly those that started with isatin derivatives.


Subject(s)
Benzopyrans , Nitriles , Spiro Compounds , Spirooxindoles , Molecular Docking Simulation , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Oxindoles/pharmacology , Oxindoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL