Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.796
1.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822367

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Mice , Microglia/metabolism , Microglia/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects , Neuroinflammatory Diseases/metabolism , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Mice, Inbred C57BL , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Male , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Lipopolysaccharides/toxicity
2.
Mol Nutr Food Res ; 68(10): e2300871, 2024 May.
Article En | MEDLINE | ID: mdl-38704749

SCOPE: Prenatal nutrition imbalance correlates with developmental origin of cardiovascular diseases; however whether maternal high-sucrose diet (HS) during pregnancy causes vascular damage in renal interlobar arteries (RIA) from offspring still keeps unclear. METHODS AND RESULTS: Pregnant rats are fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Swollen mitochondria and distributed myofilaments are observed in vascular smooth muscle cells of RIA exposed to prenatal HS. Maternal HS increases phenylephrine (PE)-induced vasoconstriction in the RIA from adult offspring. NG-Nitro-l-arginine (L-Name) causes obvious vascular tension in response to PE in offspring from control group, not in HS. RNA-Seq of RIA is performed to reveal that the gene retinoid X receptor g (RXRg) is significantly decreased in the HS group, which could affect vascular function via interacting with PPARγ pathway. By preincubation of RIA with apocynin (NADPH inhibitor) or capivasertib (Akt inhibitor), the results indicate that ROS and Akt are the vital important factors to affect the vascular function of RIA exposure to prenatal HS. CONCLUSION: Maternal HS during the pregnancy increases PE-mediated vasoconstriction of RIA from adult offspring, which is mainly related to the enhanced Akt and ROS regulated by the weakened PPARγ-RXRg.


PPAR gamma , Prenatal Exposure Delayed Effects , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Reactive Oxygen Species , Signal Transduction , Vasoconstriction , Animals , Pregnancy , Female , PPAR gamma/metabolism , PPAR gamma/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Vasoconstriction/drug effects , Dietary Sucrose/adverse effects , Rats , Renal Artery/drug effects , Male , Phenylephrine/pharmacology , Maternal Nutritional Physiological Phenomena
3.
BMC Cardiovasc Disord ; 24(1): 242, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724937

BACKGROUND: Cardiac autonomic neuropathy (CAN) is a complication of diabetes mellitus (DM) that increases the risk of morbidity and mortality by disrupting cardiac innervation. Recent evidence suggests that CAN may manifest even before the onset of DM, with prediabetes and metabolic syndrome potentially serving as precursors. This study aims to identify genetic markers associated with CAN development in the Kazakh population by investigating the SNPs of specific genes. MATERIALS AND METHODS: A case-control study involved 82 patients with CAN (cases) and 100 patients without CAN (controls). A total of 182 individuals of Kazakh nationality were enrolled from a hospital affiliated with the RSE "Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan". 7 SNPs of genes FTO, PPARG, SNCA, XRCC1, FLACC1/CASP8 were studied. Statistical analysis was performed using Chi-square methods, calculation of odds ratios (OR) with 95% confidence intervals (CI), and logistic regression in SPSS 26.0. RESULTS: Among the SNCA gene polymorphisms, rs2737029 was significantly associated with CAN, almost doubling the risk of CAN (OR 2.03(1.09-3.77), p = 0.03). However, no statistically significant association with CAN was detected with the rs2736990 of the SNCA gene (OR 1.00 CI (0.63-1.59), p = 0.99). rs12149832 of the FTO gene increased the risk of CAN threefold (OR 3.22(1.04-9.95), p = 0.04), while rs1801282 of the PPARG gene and rs13016963 of the FLACC1 gene increased the risk twofold (OR 2.56(1.19-5.49), p = 0.02) and (OR 2.34(1.00-5.46), p = 0.05) respectively. rs1108775 and rs1799782 of the XRCC1 gene were associated with reduced chances of developing CAN both before and after adjustment (OR 0.24, CI (0.09-0.68), p = 0.007, and OR 0.43, CI (0.22-0.84), p = 0.02, respectively). CONCLUSION: The study suggests that rs2737029 (SNCA gene), rs12149832 (FTO gene), rs1801282 (PPARG gene), and rs13016963 (FLACC1 gene) may be predisposing factors for CAN development. Additionally, SNPs rs1108775 and rs1799782 (XRCC1 gene) may confer resistance to CAN. Only one polymorphism rs2736990 of the SNCA gene was not associated with CAN.


Genetic Predisposition to Disease , PPAR gamma , Polymorphism, Single Nucleotide , Humans , Male , Middle Aged , Female , Case-Control Studies , Kazakhstan/epidemiology , Risk Factors , PPAR gamma/genetics , Aged , Phenotype , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Risk Assessment , Genetic Association Studies , X-ray Repair Cross Complementing Protein 1/genetics , Heart Diseases/genetics , Heart Diseases/ethnology , Heart Diseases/diagnosis , Autonomic Nervous System Diseases/genetics , Autonomic Nervous System Diseases/diagnosis , Adult , Diabetic Neuropathies/genetics , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/ethnology , Diabetic Neuropathies/epidemiology , Autonomic Nervous System/physiopathology , Genetic Markers , alpha-Synuclein
4.
EBioMedicine ; 103: 105124, 2024 May.
Article En | MEDLINE | ID: mdl-38701619

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Clofazimine , Disease Models, Animal , Huntingtin Protein , Leprostatic Agents , PPAR gamma , Peptides , Zebrafish , Clofazimine/pharmacology , PPAR gamma/metabolism , PPAR gamma/genetics , Animals , Humans , Peptides/pharmacology , Leprostatic Agents/pharmacology , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism
5.
Anim Sci J ; 95(1): e13951, 2024.
Article En | MEDLINE | ID: mdl-38703069

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Adipocytes , Adipogenesis , Buffaloes , Cell Differentiation , Cell Proliferation , Fatty Acid-Binding Proteins , PPAR gamma , RNA, Long Noncoding , Animals , Buffaloes/genetics , Buffaloes/metabolism , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Gene Expression , Cells, Cultured , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Food Quality
6.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791384

The PAX8/PPARγ rearrangement, producing the PAX8-PPARγ fusion protein (PPFP), is thought to play an essential role in the oncogenesis of thyroid follicular tumors. To identify PPFP-targeted drug candidates and establish an early standard of care for thyroid tumors, we performed ensemble-docking-based compound screening. Specifically, we investigated the pocket structure that should be adopted to search for a promising ligand compound for the PPFP; the position of the ligand-binding pocket on the PPARγ side of the PPFP is similar to that of PPARγ; however, the shape is slightly different between them due to environmental factors. We developed a method for selecting a PPFP structure with a relevant pocket and high prediction accuracy for ligand binding. This method was validated using PPARγ, whose structure and activity values are known for many compounds. Then, we performed docking calculations to the PPFP for 97 drug or drug-like compounds registered in the DrugBank database with a thiazolidine backbone, which is one of the characteristics of ligands that bind well to PPARγ. Furthermore, the binding affinities of promising ligand candidates were estimated more reliably using the molecular mechanics Poisson-Boltzmann surface area method. Thus, we propose promising drug candidates for the PPFP with a thiazolidine backbone.


Molecular Docking Simulation , Oncogene Proteins, Fusion , PPAR gamma , Thyroid Neoplasms , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , PPAR gamma/metabolism , PPAR gamma/chemistry , PPAR gamma/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/chemistry , Ligands , PAX8 Transcription Factor/metabolism , PAX8 Transcription Factor/genetics , Protein Binding , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Binding Sites , Computer Simulation
7.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791441

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.


Bone Morphogenetic Protein Receptors, Type II , Endothelial Cells , PPAR gamma , Proto-Oncogene Proteins c-akt , Pulmonary Artery , Receptor, Notch1 , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Endothelial Cells/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Male , Cell Proliferation , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Female , Cells, Cultured
8.
J Microbiol Biotechnol ; 34(5): 1073-1081, 2024 May 28.
Article En | MEDLINE | ID: mdl-38719777

Obesity is spawned by an inequality between the portion of energy consumed and the quantity of energy expended. Disease entities such as cardiovascular disease, arteriosclerosis, hypertension, and cancer, which are correlated with obesity, influence society and the economy. Suppression of adipogenesis, the process of white adipocyte generation, remains a promising approach for treating obesity. Oil Red O staining was used to differentiate 3T3-L1 cells for screening 20 distinct Lactobacillus species. Among these, Lactobacillus acidophilus DS0079, referred to as YBS1, was selected for further study. YBS1 therapy decreased 3T3-L1 cell development. Triglyceride accumulation and mRNA expression of the primary adipogenic marker, peroxisome proliferator-activated receptor gamma (PPARγ), including its downstream target genes, adipocyte fatty acid binding protein 4 and adiponectin, were almost eliminated. YBS1 inhibited adipocyte differentiation at the early stage (days 0-2), but no significant difference was noted between the mid-stage (days 2-4) and late-stage (days 4-6) development. YBS1 stimulated the activation of p38 mitogen-activated protein kinase (p38 MAPK) during the early stages of adipogenesis; however, this effect was eliminated by the SB203580 inhibitor. The data showed that YBS1 administration inhibited the initial development of adipocytes via stimulation of the p38 MAPK signaling pathway, which in turn controlled PPARγ expression. In summary, YBS1 has potential efficacy as an anti-obesity supplement and requires further exploration.


3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Lactobacillus acidophilus , Obesity , PPAR gamma , Signal Transduction , p38 Mitogen-Activated Protein Kinases , PPAR gamma/metabolism , PPAR gamma/genetics , Animals , Mice , p38 Mitogen-Activated Protein Kinases/metabolism , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , Obesity/metabolism , Anti-Obesity Agents/pharmacology , Probiotics/pharmacology , Triglycerides/metabolism
9.
PLoS One ; 19(5): e0298274, 2024.
Article En | MEDLINE | ID: mdl-38753762

The membrane peroxisomal proteins PEX11, play a crucial role in peroxisome proliferation by regulating elongation, membrane constriction, and fission of pre-existing peroxisomes. In this study, we evaluated the function of PEX11B gene in neural differentiation of human embryonic stem cell (hESC) by inducing shRNAi-mediated knockdown of PEX11B expression. Our results demonstrate that loss of PEX11B expression led to a significant decrease in the expression of peroxisomal-related genes including ACOX1, PMP70, PEX1, and PEX7, as well as neural tube-like structures and neuronal markers. Inhibition of SIRT1 using pharmacological agents counteracted the effects of PEX11B knockdown, resulting in a relative increase in PEX11B expression and an increase in differentiated neural tube-like structures. However, the neuroprotective effects of SIRT1 were eliminated by PPAR inhibition, indicating that PPARÉ£ may mediate the interaction between PEX11B and SIRT1. Our findings suggest that both SIRT1 and PPARÉ£ have neuroprotective effects, and also this study provides the first indication for a potential interaction between PEX11B, SIRT1, and PPARÉ£ during hESC neural differentiation.


Cell Differentiation , Human Embryonic Stem Cells , Membrane Proteins , PPAR gamma , Sirtuin 1 , Humans , Sirtuin 1/metabolism , Sirtuin 1/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Cell Differentiation/drug effects , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neurons/metabolism , Neurons/cytology , Neurons/drug effects , Cell Line , Peroxisomes/metabolism
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732125

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


3T3-L1 Cells , Adipocytes , Adipogenesis , Anti-Obesity Agents , Hypoglycemic Agents , PPAR gamma , Plant Extracts , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , alpha-Glucosidases/metabolism , AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Crassulaceae/chemistry , Lipid Metabolism/drug effects , Cell Differentiation/drug effects
11.
Pak J Pharm Sci ; 37(1): 79-84, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741403

Vanadyl sulfate (VS), is a component of some food supplements and experimental drugs. This study was carried out to present a novel method for induction of Type 2 diabetes in rats, then for the first time in literature, for evaluating the effect of VS on metabolic parameters and gene expression, simultaneously. 40 male wistar rats were distributed between the four groups, equally. High fat diet and fructose were used for diabetes induction. Diabetic rats treated by two different dose of VS for 12 weeks. Metabolic profiles were evaluated by commercial available kits and gene expression were assayed by real time-PCR. Compared to controls, in non-treated diabetic rats, weight, glucose, triglyceride, total cholesterol, insulin and insulin resistance were increased significantly (p-value <0.05) that indicated induction of type 2 diabetes. Further, the results showed that VS significantly reduced weight, insulin secretion, Tumor Necrosis Factor-alpha (TNF-α) genes expression, lipid profiles except HDL that we couldn't find any significant change and increased Peroxisome Proliferator-Activated Receptor- gamma (PPAR-γ) gene expression in VS-treated diabetic animals in comparison with the non-treated diabetics. Our study demonstrated that vanadyl supplementation in diabetic rats had advantageous effects on metabolic profiles and related gene expression.


Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , PPAR gamma , Rats, Wistar , Tumor Necrosis Factor-alpha , Vanadium Compounds , Animals , Male , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Blood Glucose/drug effects , Blood Glucose/metabolism , Vanadium Compounds/pharmacology , Insulin Resistance , Rats , Insulin/blood , Hypoglycemic Agents/pharmacology , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects
12.
PLoS One ; 19(5): e0294003, 2024.
Article En | MEDLINE | ID: mdl-38781157

Cofactors interacting with PPARγ can regulate adipogenesis and adipocyte metabolism by modulating the transcriptional activity and selectivity of PPARγ signaling. ZFP407 was previously demonstrated to regulate PPARγ target genes such as GLUT4, and its overexpression improved glucose homeostasis in mice. Here, using a series of molecular assays, including protein-interaction studies, mutagenesis, and ChIP-seq, ZFP407 was found to interact with the PPARγ/RXRα protein complex in the nucleus of adipocytes. Consistent with this observation, ZFP407 ChIP-seq peaks significantly overlapped with PPARγ ChIP-seq peaks, with more than half of ZFP407 peaks overlapping with PPARγ peaks. Transcription factor binding motifs enriched in these overlapping sites included CTCF, RARα/RXRγ, TP73, and ELK1, which regulate cellular development and function within adipocytes. Site-directed mutagenesis of frequent PPARγ phosphorylation or SUMOylation sites did not prevent its regulation by ZFP407, while mutagenesis of ZFP407 domains potentially necessary for RXR and PPARγ binding abrogated any impact of ZFP407 on PPARγ activity. These data suggest that ZFP407 controls the activity of PPARγ, but does so independently of post-translational modifications, likely by direct binding, establishing ZFP407 as a newly identified PPARγ cofactor. In addition, ZFP407 ChIP-seq analyses identified regions that did not overlap with PPARγ peaks. These non-overlapping peaks were significantly enriched for the transcription factor binding motifs of TBX19, PAX8, HSF4, and ZKSCAN3, which may contribute to the PPARγ-independent functions of ZFP407 in adipocytes and other cell types.


Adipocytes , PPAR gamma , Retinoid X Receptor alpha , Signal Transduction , Animals , Humans , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Binding Sites , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Phosphorylation , PPAR gamma/metabolism , PPAR gamma/genetics , Protein Binding , Retinoid X Receptor alpha/metabolism , Retinoid X Receptor alpha/genetics , Sumoylation , Transcription Factors/metabolism , Transcription Factors/genetics
13.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731499

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


CCAAT-Enhancer-Binding Protein-alpha , Carbon , Maillard Reaction , Mesenchymal Stem Cells , PPAR gamma , Sterol Regulatory Element Binding Protein 1 , Humans , Carbon/chemistry , PPAR gamma/genetics , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Quantum Dots/chemistry , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Sulfur/chemistry
14.
J Agric Food Chem ; 72(21): 12171-12183, 2024 May 29.
Article En | MEDLINE | ID: mdl-38748640

Ulcerative colitis (UC) is a complex chronic inflammatory disease closely associated with gut homeostasis dysfunction. The previous studies have shown that stachyose, a functional food additive, has the potential to enhance gut health and alleviate UC symptoms. However, the underlying mechanism of its effects remains unknown. In this study, our findings showed that dietary supplements of stachyose had a significant dose-dependent protective effect on colitis symptoms, regulation of gut microbiota, and restoration of the Treg/Th17 cell balance in dextran sulfate sodium (DSS) induced colitis mice. To further validate these findings, we conducted fecal microbiota transplantation (FMT) to treat DSS-induced colitis in mice. The results showed that microbiota from stachyose-treated mice exhibited a superior therapeutic effect against colitis and effectively regulated the Treg/Th17 cell balance in comparison to the control group. Moreover, both stachyose supplementation and FMT resulted in an increase in butyrate production and the activation of PPARγ. However, this effect was partially attenuated by PPARγ antagonist GW9662. These results suggested that stachyose alleviates UC symptoms by modulating gut microbiota and activating PPARγ. In conclusion, our work offers new insights into the benefical effects of stachyose on UC and its potential role in modulating gut microbiota.


Butyrates , Colitis, Ulcerative , Gastrointestinal Microbiome , Mice, Inbred C57BL , PPAR gamma , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Mice , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Gastrointestinal Microbiome/drug effects , Humans , Male , Signal Transduction/drug effects , Colitis, Ulcerative/immunology , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Oligosaccharides/administration & dosage , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Dextran Sulfate/adverse effects
15.
Cell Death Dis ; 15(5): 350, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773070

Seipin is one key mediator of lipid metabolism that is highly expressed in adipose tissues as well as in the brain. Lack of Seipin gene, Bscl2, leads to not only severe lipid metabolic disorders but also cognitive impairments and motor disabilities. Myelin, composed mainly of lipids, facilitates nerve transmission and is important for motor coordination and learning. Whether Seipin deficiency-leaded defects in learning and motor coordination is underlined by lipid dysregulation and its consequent myelin abnormalities remains to be elucidated. In the present study, we verified the expression of Seipin in oligodendrocytes (OLs) and their precursors, oligodendrocyte precursor cells (OPCs), and demonstrated that Seipin deficiency compromised OPC differentiation, which led to decreased OL numbers, myelin protein, myelinated fiber proportion and thickness of myelin. Deficiency of Seipin resulted in impaired spatial cognition and motor coordination in mice. Mechanistically, Seipin deficiency suppressed sphingolipid metabolism-related genes in OPCs and caused morphological abnormalities in lipid droplets (LDs), which markedly impeded OPC differentiation. Importantly, rosiglitazone, one agonist of PPAR-gamma, substantially restored phenotypes resulting from Seipin deficiency, such as aberrant LDs, reduced sphingolipids, obstructed OPC differentiation, and neurobehavioral defects. Collectively, the present study elucidated how Seipin deficiency-induced lipid dysregulation leads to neurobehavioral deficits via impairing myelination, which may pave the way for developing novel intervention strategy for treating metabolism-involved neurological disorders.


Cell Differentiation , Cognitive Dysfunction , GTP-Binding Protein gamma Subunits , Myelin Sheath , Oligodendrocyte Precursor Cells , Animals , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , Mice , Oligodendrocyte Precursor Cells/metabolism , Myelin Sheath/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/genetics , Lipid Metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Mice, Inbred C57BL , PPAR gamma/metabolism , PPAR gamma/genetics , Mice, Knockout , Male , Rosiglitazone/pharmacology
16.
Mol Med ; 30(1): 67, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773379

BACKGROUND: Gouty arthritis (GA) is characterized by monosodium urate (MSU) crystal accumulation that instigates NLRP3-mediated pyroptosis; however, the underlying regulatory mechanisms have yet to be fully elucidated. The present research endeavors to elucidate the regulatory mechanisms underpinning this MSU-induced pyroptotic cascade in GA. METHODS: J774 cells were exposed to lipopolysaccharide and MSU crystals to establish in vitro GA models, whereas C57BL/6 J male mice received MSU crystal injections to mimic in vivo GA conditions. Gene and protein expression levels were evaluated using real-time quantitative PCR, Western blotting, and immunohistochemical assays. Inflammatory markers were quantified via enzyme-linked immunosorbent assays. Pyroptosis was evaluated using immunofluorescence staining for caspase-1 and flow cytometry with caspase-1/propidium iodide staining. The interaction between MDM2 and PPARγ was analyzed through co-immunoprecipitation assays, whereas the interaction between BRD4 and the MDM2 promoter was examined using chromatin immunoprecipitation and dual-luciferase reporter assays. Mouse joint tissues were histopathologically evaluated using hematoxylin and eosin staining. RESULTS: In GA, PPARγ was downregulated, whereas its overexpression mitigated NLRP3 inflammasome activation and pyroptosis. MDM2, which was upregulated in GA, destabilized PPARγ through the ubiquitin-proteasome degradation pathway, whereas its silencing attenuated NLRP3 activation by elevating PPARγ levels. Concurrently, BRD4 was elevated in GA and exacerbated NLRP3 activation and pyroptosis by transcriptionally upregulating MDM2, thereby promoting PPARγ degradation. In vivo experiments showed that BRD4 silencing ameliorated GA through this MDM2-PPARγ-pyroptosis axis. CONCLUSION: BRD4 promotes inflammation and pyroptosis in GA through MDM2-mediated PPARγ degradation, underscoring the therapeutic potential of targeting this pathway in GA management.


Arthritis, Gouty , PPAR gamma , Proto-Oncogene Proteins c-mdm2 , Pyroptosis , Transcription Factors , Animals , Male , Mice , Arthritis, Gouty/metabolism , Arthritis, Gouty/genetics , Arthritis, Gouty/pathology , Arthritis, Gouty/chemically induced , Bromodomain Containing Proteins , Cell Line , Disease Models, Animal , Inflammasomes/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nuclear Proteins , PPAR gamma/metabolism , PPAR gamma/genetics , Proteolysis , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Uric Acid/metabolism
17.
J Endocrinol ; 262(1)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38692289

CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type-specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44-deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARγ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.


3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Cycle , Hyaluronan Receptors , PPAR gamma , Adipogenesis/genetics , Adipogenesis/physiology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Mice , Cell Cycle/genetics , Cell Cycle/physiology , Humans , Adipocytes/metabolism , Gene Deletion , Cell Differentiation/genetics , Male , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction/physiology
18.
PLoS One ; 19(5): e0303528, 2024.
Article En | MEDLINE | ID: mdl-38753618

Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,ß; TRα,ß) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,ß, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRß and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.


Arsenic , Hypothalamus , Mitochondria , PPAR gamma , RNA, Messenger , Animals , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Mitochondria/metabolism , Mitochondria/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Arsenic/toxicity , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/genetics , Male , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Cell Respiration/drug effects , Gene Expression Regulation/drug effects
19.
Int J Mol Sci ; 25(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38791298

Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior.


Nucleus Accumbens , Ventral Tegmental Area , Animals , Rats , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/drug effects , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Smoke/adverse effects , Nicotine/adverse effects , Rats, Wistar , Nicotiana/adverse effects , Tobacco Use Disorder/metabolism , Phosphorylation/drug effects
20.
Mol Cell Endocrinol ; 589: 112249, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38604550

Using a three-dimensional (3-D) in vitro culture model, we report the dose dependent effect of 17ß-estradiol and testosterone on the adipogenic differentiation and maturation of human adipose derived stem cells (hASCs) obtained from female and male patients. Considering sexual dimorphism, we expected male and female adipocytes to respond differently to the sex steroids. Both male and female hASC spheroids were exposed to 100 nM and 500 nM of 17ß-estradiol and testosterone either at the beginning of the adipogenic maturation (Phase I) to discourage intracellular triglyceride accumulation or exposed after adipogenic maturation (Phase II) to reduce the intracellular triglyceride accumulation. The results show that 17ß-estradiol leads to a dose dependent reduction in intracellular triglyceride accumulation in female hASC spheroids compared to the both untreated and testosterone-treated cells. Affirming our hypothesis, 17ß-estradiol prevented intracellular triglyceride accumulation during Phase I, while it stimulated lipolysis during Phase II. PPAR-γ and adiponectin gene expression also reduced upon 17ß-estradiol treatment in female cells. Interestingly, 17ß-estradiol and testosterone had only a modest effect on the male hASC spheroids. Collectively, our findings suggest that 17ß-estradiol can prevent fat accumulation in adipocytes during early and late stages of maturation in females.


Adipogenesis , Adiponectin , Estradiol , Sex Characteristics , Testosterone , Humans , Adipogenesis/drug effects , Male , Female , Estradiol/pharmacology , Testosterone/pharmacology , Adiponectin/metabolism , Triglycerides/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Cells, Cultured , PPAR gamma/metabolism , PPAR gamma/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Stem Cells/cytology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Lipolysis/drug effects
...