Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 717
1.
Clin Transl Med ; 14(6): e1733, 2024 Jun.
Article En | MEDLINE | ID: mdl-38877637

BACKGROUND AND AIMS: Smoking is recognised as an independent risk factor in the development of chronic pancreatitis (CP). Cystic fibrosis transmembrane conductance regulator (CFTR) function and ductal fluid and bicarbonate secretion are also known to be impaired in CP, so it is crucial to understand the relationships between smoking, pancreatic ductal function and the development of CP. METHODS: We measured sweat chloride (Cl-) concentrations in patients with and without CP, both smokers and non-smokers, to assess CFTR activity. Serum heavy metal levels and tissue cadmium concentrations were determined by mass spectrometry in smoking and non-smoking patients. Guinea pigs were exposed to cigarette smoke, and cigarette smoke extract (CSE) was prepared to characterise its effects on pancreatic HCO3 - and fluid secretion and CFTR function. We administered cerulein to both the smoking and non-smoking groups of mice to induce pancreatitis. RESULTS: Sweat samples from smokers, both with and without CP, exhibited elevated Cl- concentrations compared to those from non-smokers, indicating a decrease in CFTR activity due to smoking. Pancreatic tissues from smokers, regardless of CP status, displayed lower CFTR expression than those from non-smokers. Serum levels of cadmium and mercury, as well as pancreatic tissue cadmium, were increased in smokers. Smoking, CSE, cadmium, mercury and nicotine all hindered fluid and HCO3 - secretion and CFTR activity in pancreatic ductal cells. These effects were mediated by sustained increases in intracellular calcium ([Ca2+]i), depletion of intracellular ATP (ATPi) and mitochondrial membrane depolarisation. CONCLUSION: Smoking impairs pancreatic ductal function and contributes to the development of CP. Heavy metals, notably cadmium, play a significant role in the harmful effects of smoking. KEY POINTS: Smoking and cigarette smoke extract diminish pancreatic ductal fluid and HCO3 - secretion as well as the expression and function of CFTR Cd and Hg concentrations are significantly higher in the serum samples of smokers Cd accumulates in the pancreatic tissue of smokers.


Metals, Heavy , Pancreatitis, Chronic , Humans , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/chemically induced , Animals , Metals, Heavy/metabolism , Male , Mice , Female , Middle Aged , Guinea Pigs , Adult , Pancreatic Ducts/metabolism , Pancreatic Ducts/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Smoking/adverse effects , Smoking/metabolism , Disease Models, Animal
2.
Front Immunol ; 15: 1381319, 2024.
Article En | MEDLINE | ID: mdl-38742118

Introduction: Inflammation of the pancreas contributes to the development of diabetes mellitus. Although it is well-accepted that local inflammation leads to a progressive loss of functional beta cell mass that eventually causes the onset of the disease, the development of islet inflammation remains unclear. Methods: Here, we used single-cell RNA sequencing to explore the cell type-specific molecular response of primary human pancreatic cells exposed to an inflammatory environment. Results: We identified a duct subpopulation presenting a unique proinflammatory signature among all pancreatic cell types. Discussion: Overall, the findings of this study point towards a role for duct cells in the propagation of islet inflammation, and in immune cell recruitment and activation, which are key steps in the pathophysiology of diabetes mellitus.


Inflammation , Pancreatic Ducts , Single-Cell Analysis , Transcriptome , Humans , Pancreatic Ducts/pathology , Pancreatic Ducts/metabolism , Pancreatic Ducts/immunology , Inflammation/immunology , Inflammation/genetics , Gene Expression Profiling , Diabetes Mellitus/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Cells, Cultured , Inflammation Mediators/metabolism
3.
Sci Rep ; 14(1): 6401, 2024 03 16.
Article En | MEDLINE | ID: mdl-38493252

Organoid is a tissue-engineered organ-like structure that resemble as an organ. Porcine islet-derived organoid might be used as an alternative donor of porcine islet xenotransplantation, a promising therapy for severe diabetes. In this study, we elucidated the characteristics of porcine islet organoids derived from porcine islets as a cell source for transplantation. Isolated porcine islets were 3D-cultured using growth factor-reduced matrigel in organoid culture medium consist of advanced DMEM/F12 with Wnt-3A, R-spondin, EGF, Noggin, IGF-1, bFGF, nicotinamide, B27, and some small molecules. Morphological and functional characteristics of islet organoids were evaluated in comparison with 2D-cultured islets in advanced DMEM/F12 medium. Relatively short-term (approximately 14 days)-cultured porcine islet organoids were enlarged and proliferated, but had an attenuated insulin-releasing function. Long-term (over a month)-cultured islet organoids could be passaged and cryopreserved. However, they showed pancreatic duct characteristics, including cystic induction, strong expression of Sox9, loss of PDX1 expression, and no insulin-releasing function. These findings were seen in long-term-cultured porcine islets. In conclusion, our porcine islet organoids showed the characteristics of pancreatic ducts. Further study is necessary for producing porcine islet-derived organoids having characteristics as islets.


Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Swine , Islets of Langerhans/metabolism , Insulin/metabolism , Pancreatic Ducts/metabolism , Organoids/metabolism , Tissue Engineering
5.
J Physiol ; 602(6): 1065-1083, 2024 Mar.
Article En | MEDLINE | ID: mdl-38389307

Type 1 diabetes is a disease of the endocrine pancreas; however, it also affects exocrine function. Although most studies have examined the effects of diabetes on acinar cells, much less is known regarding ductal cells, despite their important protective function in the pancreas. Therefore, we investigated the effect of diabetes on ductal function. Diabetes was induced in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice following an i.p. administration of streptozotocin. Pancreatic ductal fluid and HCO3 - secretion were determined using fluid secretion measurements and fluorescence microscopy, respectively. The expression of ion transporters was measured by real-time PCR and immunohistochemistry. Transmission electron microscopy was used for the morphological characterization of the pancreas. Serum secretin and cholecystokinin levels were measured by an enzyme-linked immunosorbent assay. Ductal fluid and HCO3 - secretion, CFTR activity, and the expression of CFTR, Na+ /H+ exchanger-1, anoctamine-1 and aquaporin-1 were significantly elevated in diabetic mice. Acute or chronic glucose treatment did not affect HCO3 - secretion, but increased alkalizing transporter activity. Inhibition of CFTR significantly reduced HCO3 - secretion in both normal and diabetic mice. Serum levels of secretin and cholecystokinin were unchanged, but the expression of secretin receptors significantly increased in diabetic mice. Diabetes increases fluid and HCO3 - secretion in pancreatic ductal cells, which is associated with the increased function of ion and water transporters, particularly CFTR. KEY POINTS: There is a lively interaction between the exocrine and endocrine pancreas not only under physiological conditions, but also under pathophysiological conditions The most common disease affecting the endocrine part is type-1 diabetes mellitus (T1DM), which is often associated with pancreatic exocrine insufficiency Compared with acinar cells, there is considerably less information regarding the effect of diabetes on pancreatic ductal epithelial cells, despite the fact that the large amount of fluid and HCO3 - produced by ductal cells is essential for maintaining normal pancreatic functions Ductal fluid and HCO3 - secretion increase in T1DM, in which increased cystic fibrosis transmembrane conductance regulator activation plays a central role. We have identified a novel interaction between T1DM and ductal cells. Presumably, the increased ductal secretion represents a defence mechanism in the prevention of diabetes, but further studies are needed to clarify this issue.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Animals , Mice , Bicarbonates/metabolism , Cholecystokinin/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Pancreatic Ducts/metabolism , Secretin/metabolism
7.
J Nucl Med ; 65(1): 52-58, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167622

Pancreatic intraductal papillary mucinous neoplasms (IPMNs) are grossly visible (typically > 5 mm) intraductal epithelial neoplasms of mucin-producing cells, arising in the main pancreatic duct or its branches. According to the current 2-tiered grading scheme, these lesions are categorized as having either low-grade (LG) dysplasia, which has a benign prognosis, or high-grade (HG) dysplasia, which formally represents a carcinoma in situ and thus can transform to pancreatic ductal adenocarcinoma (PDAC). Because both entities require different treatments according to their risk of becoming malignant, a precise pretherapeutic diagnostic differentiation is inevitable for adequate patient management. Recently, our group has demonstrated that 68Ga-fibroblast activation protein (FAP) inhibitor (FAPI) PET/CT shows great potential for the differentiation of LG IPMNs, HG IPMNs, and PDAC according to marked differences in signal intensity and tracer dynamics. The purpose of this study was to biologically validate FAP as a target for PET imaging by analyzing immunohistochemical FAP expression in LG IPMNs, HG IPMNs, and PDAC and comparing with SUV and time to peak (TTP) measured in our prior study. Methods: To evaluate the correlation of the expression level of FAP and α-smooth muscle actin (αSMA) in neoplasm-associated stroma depending on the degree of dysplasia in IPMNs, 98 patients with a diagnosis of LG IPMN, HG IPMN, PDAC with associated HG IPMN, or PDAC who underwent pancreatic surgery at the University Hospital Heidelberg between 2017 and 2023 were identified using the database of the Institute of Pathology, University Hospital Heidelberg. In a reevaluation of hematoxylin- and eosin-stained tissue sections of formalin-fixed and paraffin-embedded resection material from the archive, which was originally generated for histopathologic routine diagnostics, a regrading of IPMNs was performed by a pathologist according to the current 2-tiered grading scheme, consequently eliminating the former diagnosis of "IPMN with intermediate-grade dysplasia." For each case, semithin tissue sections of 3 paraffin blocks containing neoplasm were immunohistologically stained with antibodies directed against FAP and αSMA. In a masked approach, a semiquantitative analysis of the immunohistochemically stained slides was finally performed by a pathologist by adapting the immunoreactive score (IRS) and human epidermal growth factor receptor 2 (Her2)/neu score to determine the intensity and percentage of FAP- and αSMA-positive cells. Afterward, the IRS of 14 patients who underwent 68Ga-FAPI-74 PET/CT in our previous study was compared with their SUVmax, SUVmean, and TTP for result validation. Results: From 98 patients, 294 specimens (3 replicates per patient) were immunohistochemically stained for FAP and αSMA. Twenty-three patients had LG IPMNs, 11 had HG IPMNs, 10 had HG IPMNs plus PDAC, and 54 had PDAC. The tumor stroma was in all cases variably positive for FAP. The staining intensity, percentage of FAP-positive stroma, IRS, and Her2/neu score increased with higher malignancy. αSMA expression could be shown in normal pancreatic stroma as well as within peri- and intraneoplastic desmoplastic reaction. No homogeneous increase in intensity, percentage, IRS, and Her2/neu score with higher malignancy was observed for αSMA. The comparison of the mean IRS of FAP with the mean SUVmax, SUVmean, and TTP of 68Ga-GAPI-74 PET/CT showed a matching value increasing with higher malignancy in 68Ga-FAPI-74 PET imaging and immunohistochemical FAP expression. Conclusion: The immunohistochemical staining of IPMNs and PDAC validates FAP as a biology-based stromal target for in vivo imaging. Increasing expression of FAP in lesions with a higher degree of malignancy matches the expectation of a stronger FAP expression in PDAC and HG IPMNs than in LG IPMNs and corroborates our previous findings of higher SUVs and a longer TTP in PDAC and HG IPMNs than in LG IPMNs.


Adenocarcinoma, Mucinous , Carcinoma, Pancreatic Ductal , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Gallium Radioisotopes , Pancreatic Intraductal Neoplasms/diagnostic imaging , Pancreatic Intraductal Neoplasms/pathology , Positron Emission Tomography Computed Tomography , Adenocarcinoma, Mucinous/diagnosis , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/surgery , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Positron-Emission Tomography
8.
J Cyst Fibros ; 23(1): 169-171, 2024 Jan.
Article En | MEDLINE | ID: mdl-37633792

Pancreatic secretions become viscous and acidic in Cystic fibrosis (CF), highlighting the role of CFTR in pancreatic fluid and bicarbonate secretion. Forskolin-induced swelling (FIS) assay developed in intestinal organoids measures residual CFTR function. It is not known whether FIS reflects bicarbonate secretion in pancreas, an organ that secretes near-isotonic NaHCO3 levels. To investigate this, we generated pancreatic duct organoids from CF and non-CF pigs. Epithelial and ductal origin was confirmed with epithelial markers, ion transporters and lack of acinar, islet cell markers. CF organoids were small with no identifiable lumen; CFTR was expressed only in non-CF organoids. Utilizing FIS, organoid size increased only in response to chloride, not bicarbonate. This report highlights pancreatic duct organoids isolated for the first time from CF pigs and evidence for chloride and not bicarbonate driving pancreatic organoid swelling. These organoids would be useful to test chloride permeability of CFTR mutations that cause CF pancreatic disease.


Cystic Fibrosis , Animals , Swine , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Chlorides/metabolism , Bicarbonates/metabolism , Pancreatic Ducts/metabolism , Colforsin/pharmacology , Organoids/metabolism
9.
Elife ; 122023 10 12.
Article En | MEDLINE | ID: mdl-37823551

The splicing factor SF3B1 is recurrently mutated in various tumors, including pancreatic ductal adenocarcinoma (PDAC). The impact of the hotspot mutation SF3B1K700E on the PDAC pathogenesis, however, remains elusive. Here, we demonstrate that Sf3b1K700E alone is insufficient to induce malignant transformation of the murine pancreas, but that it increases aggressiveness of PDAC if it co-occurs with mutated KRAS and p53. We further show that Sf3b1K700E already plays a role during early stages of pancreatic tumor progression and reduces the expression of TGF-ß1-responsive epithelial-mesenchymal transition (EMT) genes. Moreover, we found that SF3B1K700E confers resistance to TGF-ß1-induced cell death in pancreatic organoids and cell lines, partly mediated through aberrant splicing of Map3k7. Overall, our findings demonstrate that SF3B1K700E acts as an oncogenic driver in PDAC, and suggest that it promotes the progression of early stage tumors by impeding the cellular response to tumor suppressive effects of TGF-ß.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Mutation , Pancreatic Ducts/metabolism , Pancreatic Neoplasms/pathology , Phosphoproteins/metabolism , RNA Splicing Factors/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism , Pancreatic Neoplasms
10.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article En | MEDLINE | ID: mdl-37445810

Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.


Acidosis , Neoplasms , Humans , Hydrogen-Ion Concentration , Bicarbonates/metabolism , Extracellular Matrix/metabolism , Collagen Type I , Pancreatic Ducts/metabolism , Epithelial Cells/metabolism , Sodium-Hydrogen Exchangers
11.
J Mol Med (Berl) ; 101(3): 295-310, 2023 03.
Article En | MEDLINE | ID: mdl-36790532

Pancreas ductal adenocarcinoma (PDAC) remains a malignant tumor with very poor prognosis and low 5-year overall survival. Here, we aimed to simultaneously target mitochondria and lysosomes as a new treatment paradigm of malignant pancreas cancer in vitro and in vivo. We demonstrate that the clinically used sphingosine analog FTY-720 together with PAPTP, an inhibitor of mitochondrial Kv1.3, induce death of pancreas cancer cells in vitro and in vivo. The combination of both drugs results in a marked inhibition of the acid sphingomyelinase and accumulation of cellular sphingomyelin in vitro and in vivo in orthotopic and flank pancreas cancers. Mechanistically, PAPTP and FTY-720 cause a disruption of both mitochondria and lysosomes, an alteration of mitochondrial bioenergetics and accumulation of cytoplasmic Ca2+, events that collectively mediate cell death. Our findings point to an unexpected cross-talk between lysosomes and mitochondria mediated by sphingolipid metabolism. We show that the combination of PAPTP and FTY-720 induces massive death of pancreas cancer cells, thereby leading to a substantially delayed and reduced PDAC growth in vivo. KEY MESSAGES: FTY-720 inhibits acid sphingomyelinase in pancreas cancer cells (PDAC). FTY-720 induces sphingomyelin accumulation and lysosomal dysfunction. The mitochondrial Kv1.3 inhibitor PAPTP disrupts mitochondrial functions. PAPTP and FTY-720 synergistically kill PDAC in vitro. The combination of FTY-720 and PAPTP greatly delays PDAC growth in vivo.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Sphingomyelin Phosphodiesterase , Sphingomyelins/metabolism , Fingolimod Hydrochloride , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Lysosomes/metabolism , Mitochondria/metabolism , Cell Line, Tumor , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Pancreatic Neoplasms
12.
Gene ; 858: 147191, 2023 Mar 30.
Article En | MEDLINE | ID: mdl-36632913

The ubiquitin-proteasome system (UPS) is a major pathway for cellular protein degradation. The molecular function of the UPS is the removal of damaged proteins, and this function is applied in many biological processes, including inflammation, proliferation, and apoptosis. Accumulating evidence also suggests that the UPS also has a key role in pancreatic ß-cell transdifferentiation in diabetes and can be targeted for treatment of diabetic diseases. In this review, we summarized the mechanistic roles of the UPS in the biochemical activities of pancreatic ß-cells, including the role of the UPS in insulin synthesis and secretion, as well as ß-cell degradation. Also, we discuss how the UPS mediates the transdifferentiation of pancreatic duct epithelial cells into ß-cells as the experimental basis for the development of new strategies for the treatment of diabetes in regenerative medicine.


Diabetes Mellitus , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Cell Transdifferentiation , Pancreatic Ducts/metabolism
13.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article En | MEDLINE | ID: mdl-36499343

Pancreatic ductal adenocarcinoma (PDAC) is characterized by intra-tumoral heterogeneity, and patients are always diagnosed after metastasis. Thus, finding out how to effectively estimate metastatic risk underlying PDAC is necessary. In this study, we proposed scMetR to evaluate the metastatic risk of tumor cells based on single-cell RNA sequencing (scRNA-seq) data. First, we identified diverse cell types, including tumor cells and other cell types. Next, we grouped tumor cells into three sub-populations according to scMetR score, including metastasis-featuring tumor cells (MFTC), transitional metastatic tumor cells (TransMTC), and conventional tumor cells (ConvTC). We identified metastatic signature genes (MSGs) through comparing MFTC and ConvTC. Functional enrichment analysis showed that up-regulated MSGs were enriched in multiple metastasis-associated pathways. We also found that patients with high expression of up-regulated MSGs had worse prognosis. Spatial mapping of MFTC showed that they are preferentially located in the cancer and duct epithelium region, which was enriched with the ductal cells' associated inflammation. Further, we inferred cell-cell interactions, and observed that interactions of the ADGRE5 signaling pathway, which is associated with metastasis, were increased in MFTC compared to other tumor sub-populations. Finally, we predicted 12 candidate drugs that had the potential to reverse expression of MSGs. Taken together, we have proposed scMetR to estimate metastatic risk in PDAC patients at single-cell resolution which might facilitate the dissection of tumor heterogeneity.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gene Expression Regulation, Neoplastic , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Pancreatic Ducts/metabolism , Pancreatic Neoplasms
14.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article En | MEDLINE | ID: mdl-36499358

Pancreatic cancer (PC) is a devastating malignant tumor of gastrointestinal (GI) tumors characterized by late diagnosis, low treatment success and poor prognosis. The most common pathological type of PC is pancreatic ductal adenocarcinoma (PDAC), which accounts for approximately 95% of PC. PDAC is primarily driven by the Kirsten rat sarcoma virus (KRAS) oncogene. Ferroptosis was originally described as ras-dependent cell death but is now defined as a regulated cell death caused by iron accumulation and lipid peroxidation. Recent studies have revealed that ferroptosis plays an important role in the development and therapeutic response of tumors, especially PDAC. As the non-apoptotic cell death, ferroptosis may minimize the emergence of drug resistance for clinical trials of PDAC. This article reviews what has been learned in recent years about the mechanisms of ferroptosis in PDAC, introduces the association between ferroptosis and the KRAS target, and summarizes several potential strategies that are capable of triggering ferroptosis to suppress PDAC progression.


Carcinoma, Pancreatic Ductal , Ferroptosis , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Ducts/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms
15.
Genes (Basel) ; 13(6)2022 06 05.
Article En | MEDLINE | ID: mdl-35741777

Chronic pancreatitis (CP) is a fibroinflammatory disorder of the pancreas. Our understanding of CP pathogenesis is partly limited by the incomplete characterization of pancreatic cell types. Here, we performed single-cell RNA sequencing on 3825 cells from the pancreas of one control mouse and mice with caerulein-induced CP. An analysis of the single-cell transcriptomes revealed 16 unique clusters and cell type-specific gene expression patterns in the mouse pancreas. Sub-clustering of the pancreatic mesenchymal cells from the control mouse revealed four clusters of cells with specific gene expression profiles (combinatorial expressions of Smoc2, Cxcl14, Tnfaip6, and Fn1). We observed that immune cells in the pancreas of the CP mice were abundant and diverse in cellular type. Compared to the control, 547 upregulated genes (including Mmp7, Ttr, Rgs5, Adh1, and Cldn2) and 257 downregulated genes were identified in ductal cells from the CP group. The elevated expression levels of MMP7 and TTR were further verified in the pancreatic ducts of CP patients. This study provides a preliminary description of the single-cell transcriptome profiles of mouse pancreata and accurately demonstrates the characteristics of pancreatic ductal cells in CP. The findings provide insight into novel disease-specific biomarkers and potential therapeutic targets of CP.


Pancreatitis, Chronic , Transcriptome , Animals , Humans , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Mice , Pancreas/pathology , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Pancreatitis, Chronic/genetics , Transcriptome/genetics
16.
Front Immunol ; 13: 840887, 2022.
Article En | MEDLINE | ID: mdl-35432336

Immune responses are an integral part of the pathogenesis of pancreatitis. Studies applying the mouse model of pancreatitis induced by partial ligation of the pancreatic duct to explore the pancreatic immune microenvironment are still lacking. The aim of the present study is to explore the macrophage profile and associated regulatory mechanisms in mouse pancreatitis, as well as the correlation with human chronic pancreatitis (CP). In the present study, the mouse model of pancreatitis was induced by partial ligation of the pancreatic duct. Mice in the acute phase were sacrificed at 0, 4, 8, 16, 32, 72 h after ligation, while mice in the chronic phase were sacrificed at 7, 14, 21, 28 days after ligation. We found that the pancreatic pathological score, expression of TNF-α and IL-6 were elevated over time and peaked at 72h in the acute phase, while in the chronic phase, the degree of pancreatic fibrosis peaked at day 21 after ligation. Pancreatic M1 macrophages and pyroptotic macrophages showed a decreasing trend over time, whereas M2 macrophages gradually rose and peaked at day 21. IL-4 is involved in the development of CP and is mainly derived from pancreatic stellate cells (PSCs). The murine pancreatitis model constructed by partial ligation of the pancreatic duct, especially the CP model, can ideally simulate human CP caused by obstructive etiologies in terms of morphological alterations and immune microenvironment characteristics.


Pancreatitis, Chronic , Animals , Disease Models, Animal , Humans , Macrophages/metabolism , Mice , Pancreas/pathology , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Pancreatic Ducts/surgery , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/surgery
17.
J Exp Clin Cancer Res ; 41(1): 137, 2022 Apr 11.
Article En | MEDLINE | ID: mdl-35410237

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic neoplasm with high metastatic potential and poor clinical outcome. Like other solid tumors, PDAC in the early stages is often asymptomatic, and grows very slowly under a distinct acidic pHe (extracellular pH) microenvironment. However, most previous studies have only reported the fate of cancerous cells upon cursory exposure to acidic pHe conditions. Little is known about how solid tumors-such as the lethal PDAC originating within the pancreatic duct-acinar system that secretes alkaline fluids-evolve to withstand and adapt to the prolonged acidotic microenvironmental stress. METHODS: Representative PDAC cells were exposed to various biologically relevant periods of extracellular acidity. The time effects of acidic pHe stress were determined with respect to tumor cell proliferation, phenotypic regulation, autophagic control, metabolic plasticity, mitochondrial network dynamics, and metastatic potentials. RESULTS: Unlike previous short-term analyses, we found that the acidosis-mediated autophagy occurred mainly as an early stress response but not for later adaptation to microenvironmental acidification. Rather, PDAC cells use a distinct and lengthy process of reversible adaptive plasticity centered on the early fast and later slow mitochondrial network dynamics and metabolic adjustment. This regulates their acute responses and chronic adaptations to the acidic pHe microenvironment. A more malignant state with increased migratory and invasive potentials in long-term acidosis-adapted PDAC cells was obtained with key regulatory molecules being closely related to overall patient survival. Finally, the identification of 34 acidic pHe-related genes could be potential targets for the development of diagnosis and treatment against PDAC. CONCLUSIONS: Our study offers a novel mechanism of early rapid response and late reversible adaptation of PDAC cells to the stress of extracellular acidosis. The presence of this distinctive yet slow mode of machinery fills an important knowledge gap in how solid tumor cells sense, respond, reprogram, and ultimately adapt to the persistent microenvironmental acidification.


Acidosis , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adaptation, Physiological , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Hydrogen-Ion Concentration , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Tumor Microenvironment/genetics , Pancreatic Neoplasms
18.
Br J Pharmacol ; 179(13): 3452-3469, 2022 07.
Article En | MEDLINE | ID: mdl-35102550

BACKGROUND AND PURPOSE: The volume regulated anion channel (VRAC) is known to be involved in different aspects of cancer cell behaviour and response to therapies. For this reason, we investigated the effect of DCPIB, a presumably specific blocker of VRAC, in two types of cancer: pancreatic duct adenocarcinoma (PDAC) and melanoma. EXPERIMENTAL APPROACH: We used patch-clamp electrophysiology, supported by Ca2+ imaging, gene expression analysis, docking simulation and mutagenesis. We employed two PDAC lines (Panc-1 and MiaPaCa-2), as well as a primary (IGR39) and a metastatic (IGR37) melanoma line. KEY RESULTS: DCPIB markedly increased whole-cell currents in Panc-1, MiaPaca2 and IGR39, but not in IGR37 cells. The currents were mostly mediated by KCa 1.1 channels, commonly known as BK channels. We confirmed DCPIB activation of BK channels also in HEK293 cells transfected with α subunits of this channel. Further experiments showed that in IGR39, and to a smaller degree also in Panc-1 cells, DCPIB induced a rapid Ca2+ influx. This, in turn, indirectly potentiated BK channels and, in IGR39 cells, additionally activated other Ca2+ -dependent channels. However, Ca2+ influx was not required for activation of BK channels by DCPIB, as such activation involved the extracellular part of the protein and we have identified a residue crucial for binding. CONCLUSION AND IMPLICATIONS: DCPIB directly targeted BK channels and, also, acutely increased intracellular Ca2+ . Our findings extend the list of DCPIB effects that should be taken into consideration for future development of DCPIB-based modulators of ion channels and other membrane proteins.


Adenocarcinoma , Melanoma , Anions/metabolism , HEK293 Cells , Humans , Large-Conductance Calcium-Activated Potassium Channels , Melanoma/drug therapy , Melanoma/metabolism , Pancreatic Ducts/metabolism
19.
J Cyst Fibros ; 21(1): 172-180, 2022 01.
Article En | MEDLINE | ID: mdl-34016558

BACKGROUND: Cystic fibrosis (CF) related diabetes is the most common comorbidity for CF patients and associated with islet dysfunction. Exocrine pancreas remodeling in CF alters the microenvironment in which islets reside. Since CFTR is mainly expressed in pancreatic ductal epithelium, we hypothesized altered CF ductal secretions could impact islet function through paracrine signals. METHOD: We evaluated the secretome and cellular proteome of polarized WT and CF ferret ductal epithelia using quantitative ratiometric mass spectrometry. Differentially secreted proteins (DSPs) or expressed cellular proteins were used to mine pathways, upstream regulators and the CFTR interactome to map candidate CF-associated alterations in ductal signaling and phenotype. Candidate DSPs were evaluated for their in vivo pancreatic expression patterns and their functional impact on islet hormone secretion. RESULTS: The secretome and cellular proteome of CF ductal epithelia was significantly altered relative to WT and implicated dysregulated TGFß, WNT, and BMP signaling pathways. Cognate receptors of DSPs from CF epithelia were equally distributed among endocrine, exocrine, and stromal pancreatic cell types. IGFBP7 was a downregulated DSP in CF ductal epithelia in vitro and exhibited reduced CF ductal expression in vivo. IGFBP7 also altered WT islet insulin secretion in response to glucose. Many CFTR-associated proteins, including SLC9A3R1, were differentially expressed in the CF cellular proteome. Upstream regulators of the differential CF ductal proteome included TGFß, PDX1, AKT/PTEN, and INSR signaling. Data is available via ProteomeXchange with identifier PXD025126. CONCLUSION: These findings provide a proteomic roadmap for elucidating disturbances in autocrine and paracrine signals from CF pancreatic ducts and how they may alter islet function and maintenance.


Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Diabetes Mellitus/metabolism , Exocrine Pancreatic Insufficiency/metabolism , Ferrets/metabolism , Pancreas, Exocrine/metabolism , Animals , Humans , Pancreatic Ducts/metabolism , Proteome/metabolism , Secretome/metabolism
20.
Gastroenterology ; 162(2): 604-620.e20, 2022 02.
Article En | MEDLINE | ID: mdl-34695382

BACKGROUND & AIMS: Acinar to ductal metaplasia (ADM) occurs in the pancreas in response to tissue injury and is a potential precursor for adenocarcinoma. The goal of these studies was to define the populations arising from ADM, the associated transcriptional changes, and markers of disease progression. METHODS: Acinar cells were lineage-traced with enhanced yellow fluorescent protein (EYFP) to follow their fate post-injury. Transcripts of more than 13,000 EYFP+ cells were determined using single-cell RNA sequencing (scRNA-seq). Developmental trajectories were generated. Data were compared with gastric metaplasia, KrasG12D-induced neoplasia, and human pancreatitis. Results were confirmed by immunostaining and electron microscopy. KrasG12D was expressed in injury-induced ADM using several inducible Cre drivers. Surgical specimens of chronic pancreatitis from 15 patients were evaluated by immunostaining. RESULTS: scRNA-seq of ADM revealed emergence of a mucin/ductal population resembling gastric pyloric metaplasia. Lineage trajectories suggest that some pyloric metaplasia cells can generate tuft and enteroendocrine cells (EECs). Comparison with KrasG12D-induced ADM identifies populations associated with disease progression. Activation of KrasG12D expression in HNF1B+ or POU2F3+ ADM populations leads to neoplastic transformation and formation of MUC5AC+ gastric-pit-like cells. Human pancreatitis samples also harbor pyloric metaplasia with a similar transcriptional phenotype. CONCLUSIONS: Under conditions of chronic injury, acinar cells undergo a pyloric-type metaplasia to mucinous progenitor-like populations, which seed disparate tuft cell and EEC lineages. ADM-derived EEC subtypes are diverse. KrasG12D expression is sufficient to drive neoplasia when targeted to injury-induced ADM populations and offers an alternative origin for tumorigenesis. This program is conserved in human pancreatitis, providing insight into early events in pancreas diseases.


Acinar Cells/metabolism , Carcinoma, Pancreatic Ductal/genetics , Metaplasia/genetics , Pancreatic Ducts/metabolism , Pancreatic Neoplasms/genetics , Acinar Cells/cytology , Cell Plasticity/genetics , Enteroendocrine Cells/cytology , Enteroendocrine Cells/metabolism , Gene Expression Profiling , Humans , Metaplasia/metabolism , Mucin 5AC/genetics , Pancreas/cytology , Pancreas/metabolism , Pancreatic Ducts/cytology , Pancreatitis/genetics , Pancreatitis/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Single-Cell Analysis
...