Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.290
1.
Drug Res (Stuttg) ; 74(5): 241-249, 2024 Jun.
Article En | MEDLINE | ID: mdl-38830372

Pentoxifylline (PTX), a non-selective phosphodiesterase inhibitor, has demonstrated protective effects against lung injury in animal models. Given the significance of pulmonary toxicity resulting from paraquat (PQ) exposure, the present investigation was designed to explore the impact of PTX on PQ-induced pulmonary oxidative impairment in male mice.Following preliminary studies, thirty-six mice were divided into six groups. Group 1 received normal saline, group 2 received a single dose of PQ (20 mg/kg; i.p.), and group 3 received PTX (100 mg/kg/day; i.p.). Additionally, treatment groups 4-6 were received various doses of PTX (25, 50, and 100 mg/kg/day; respectively) one hour after a single dose of PQ. After 72 hours, the animals were sacrificed, and lung tissue was collected.PQ administration caused a significant decrease in hematocrit and an increase in blood potassium levels. Moreover, a notable increase was found in the lipid peroxidation (LPO), nitric oxide (NO), and myeloperoxidase (MPO) levels, along with a notable decrease in total thiol (TTM) and total antioxidant capacity (TAC) contents, catalase (CAT) and superoxide dismutase (SOD) enzymes activity in lung tissue. PTX demonstrated the ability to improve hematocrit levels; enhance SOD activity and TTM content; and decrease MPO activity, LPO and NO levels in PQ-induced pulmonary toxicity. Furthermore, these findings were well-correlated with the observed lung histopathological changes.In conclusion, our results suggest that the high dose of PTX may ameliorate lung injury by improving the oxidant/antioxidant balance in animals exposed to PQ.


Antioxidants , Lipid Peroxidation , Lung , Paraquat , Pentoxifylline , Superoxide Dismutase , Animals , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Paraquat/toxicity , Mice , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Lipid Peroxidation/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects , Catalase/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Nitric Oxide/metabolism , Peroxidase/metabolism , Lung Injury/chemically induced , Lung Injury/drug therapy , Phosphoric Diester Hydrolases/metabolism
2.
Pestic Biochem Physiol ; 202: 105971, 2024 Jun.
Article En | MEDLINE | ID: mdl-38879290

Paraquat (PQ) poisoning leads to irreversible fibrosis in the lungs with high mortality and no known antidote. In this study, we investigated the effect of the SET and MYND domain containing 2 (SMYD2) on PQ-induced pulmonary fibrosis (PF) and its potential mechanisms. We established an in vivo PQ-induced PF mouse model by intraperitoneal injection of PQ (20 mg/kg) and in vitro PQ (25 µM)-injured MLE-12 cell model. On the 15th day of administration, tissue injury, inflammation, and fibrosis in mice were evaluated using various methods including routine blood counts, blood biochemistry, blood gas analysis, western blotting, H&E staining, ELISA, Masson staining, and immunofluorescence. The findings indicated that AZ505 administration mitigated tissue damage, inflammation, and collagen deposition in PQ-poisoned mice. Mechanistically, both in vivo and in vitro experiments revealed that AZ505 treatment suppressed the PQ-induced epithelial-mesenchymal transition (EMT) process by downregulating GLI pathogenesis related 2 (GLIPR2) and ERK/p38 pathway. Further investigations demonstrated that SMYD2 inhibition decreased GLIPR2 methylation and facilitated GLIPR2 ubiquitination, leading to GLIPR2 destabilization in PQ-exposed MLE-12 cells. Moreover, rescue experiments conducted in vitro demonstrated that GLIPR2 overexpression eliminated the inhibitory effect of AZ505 on the ERK/p38 pathway and EMT. Our results reveal that the SMYD2 inhibitor AZ505 may act as a novel therapeutic candidate to suppress the EMT process by modulating the GLIPR2/ERK/p38 axis in PQ-induced PF.


Epithelial-Mesenchymal Transition , Paraquat , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Epithelial-Mesenchymal Transition/drug effects , Mice , Paraquat/toxicity , Male , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Cell Line , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics
3.
Int J Mol Med ; 54(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38874017

In paraquat (PQ)­induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone­2,6­disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ­intoxicated Sprague­Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ­induced ALI and its related mechanisms. A PQ­intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF­α, IL­1ß and IL­6 were assessed using an ELISA. Transwell and Cell Counting Kit­8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial­cadherin, zonula occludens­1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol­3­kinase (PI3K)/protein kinase B (AKT)/endothelial­type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ­induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ­induced ALI.


Acute Lung Injury , Capillary Permeability , Lung , Nitric Oxide Synthase Type III , Paraquat , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Proto-Oncogene Proteins c-akt/metabolism , Nitric Oxide Synthase Type III/metabolism , Capillary Permeability/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Humans , Male , Signal Transduction/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Paraquat/adverse effects , Paraquat/toxicity , Rats , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Oxidative Stress/drug effects
4.
Sci Total Environ ; 934: 173119, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38750743

Paraquat (PQ) is a broad-spectrum herbicide used worldwide and is a hazardous chemical to human health. Cumulative evidence strengthens the association between PQ exposure and the development of Parkinson's disease (PD). However, the underlying mechanism and effective interventions against PQ-induced neurotoxicity remain unclear. In this study, C57BL/6 J mice were treated with PQ (i.p., 10 mg/kg, twice a week) and melatonin (i.g., 20 mg/kg, twice a week) for 8 weeks. Results showed that PQ-induced motor deficits and midbrain dopaminergic neuronal damage in C57BL/6 J mice were protected by melatonin pretreatment. In isolated primary midbrain neurons and SK-N-SH cells, reduction of cell viability, elevation of total ROS levels, axonal mitochondrial transport defects and mitochondrial dysfunction caused by PQ were attenuated by melatonin. After screening of expression of main motors driving axonal mitochondrial transport, data showed that PQ-decreased KIF5A expression in mice midbrain and in SK-N-SH cell was antagonized by melatonin. Using the in vitro KIF5A-overexpression model, it was found that KIF5A overexpression inhibited PQ-caused neurotoxicity and mitochondrial dysfunction in SK-N-SH cells. In addition, application of MTNR1B (MT2) receptor antagonist, 4-P-PDOT, significantly counteracted the protection of melatonin against PQ-induced neurotoxicity. Further, Kif5a-knockdown diminished melatonin-induced alleviation of motor deficits and neuronal damage against PQ in C57BL/6 J mice. The present study establishes a causal link between environmental neurotoxicants exposure and PD etiology and provides effective interventive targets in the pathogenesis of PD.


Kinesins , Melatonin , Mesencephalon , Mice, Inbred C57BL , Mitochondria , Paraquat , Paraquat/toxicity , Animals , Melatonin/pharmacology , Mice , Mesencephalon/drug effects , Mesencephalon/metabolism , Kinesins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Herbicides/toxicity , Neurons/drug effects , Dopaminergic Neurons/drug effects , Axonal Transport/drug effects
5.
Neurobiol Dis ; 196: 106522, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38705492

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Reactive Oxygen Species , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Animals , Reactive Oxygen Species/metabolism , Rats , Trichloroethylene/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Rotenone/toxicity , Parkinson Disease/metabolism , Parkinson Disease/prevention & control , Paraquat/toxicity , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Oxidative Stress/drug effects , Humans , Environmental Pollutants/toxicity , Rats, Sprague-Dawley
6.
Respir Res ; 25(1): 212, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762455

Paraquat (PQ) is a widely used herbicide and a common cause of poisoning that leads to pulmonary fibrosis with a high mortality rate. However, the underlying mechanisms of PQ-induced pulmonary fibrosis and whether pulmonary epithelial cell senescence is involved in the process remain elusive. In this study, PQ-induced pulmonary epithelial cell senescence and Hippo-YAP/TAZ activation were observed in both C57BL/6 mice and human epithelial cells. PQ-induced senescent pulmonary epithelial cells promoted lung fibroblast transformation through secreting senescence-associated secretory phenotype (SASP) factors. Yap/Taz knockdown in mice lungs significantly decreased the expression of downstream profibrotic protein Ctgf and senescent markers p16 and p21, and alleviated PQ-induced pulmonary fibrosis. Interfering YAP/TAZ in senescent human pulmonary epithelial cells resulted in decreased expression of the anti-apoptosis protein survivin and elevated level of apoptosis. In conclusion, our findings reveal a novel mechanism by which the involvement of Hippo-YAP/TAZ activation in pulmonary epithelial cell senescence mediates the pathogenesis of PQ-induced pulmonary fibrosis, thereby offering novel insights and potential targets for the clinical management of PQ poisoning as well as providing the mechanistic insight of the involvement of Yap/Taz activation in cell senescence in pulmonary fibrosis and its related pulmonary disorders. The YIN YANG balance between cell senescence and apoptosis is important to maintain the homeostasis of the lung, the disruption of which will lead to disease.


Adaptor Proteins, Signal Transducing , Cellular Senescence , Mice, Inbred C57BL , Paraquat , Pulmonary Fibrosis , Transcription Factors , YAP-Signaling Proteins , Animals , Cellular Senescence/drug effects , Cellular Senescence/physiology , YAP-Signaling Proteins/metabolism , Humans , Mice , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Paraquat/toxicity , Male , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Trans-Activators/metabolism , Trans-Activators/genetics
7.
Environ Pollut ; 355: 124211, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38795820

Exposure to pesticide could contribute to neurodevelopmental and neurodegenerative disorders. Notably, research suggests that prenatal or early postnatal exposure to paraquat (PQ), an herbicide, might trigger neurodevelopmental toxicity in neural stem cells (NSCs) via oxidative stress. However, the molecular mechanisms of PQ-induced perturbations in NSCs, particularly at the metabolite level, are not fully understood. Using a dose-response metabolomics approach, we examined metabolic changes in murine NSCs exposed to different PQ doses (0, 10, 20, 40 µM) for 24h. At 20 µM, PQ treatment led to significant metabolic alterations, highlighting unique toxic mechanisms. Metabolic perturbations, mainly affecting amino acid metabolism pathways (e.g., phenylalanine, tyrosine, arginine, tryptophan, and pyrimidine metabolism), were associated with oxidative stress, mitochondrial dysfunction, and cell cycle dysregulation. Dose-response models were used to identify potential biomarkers (e.g., Putrescine, L-arginine, ornithine, L-histidine, N-acetyl-L-phenylalanine, thymidine) reflecting early damage from low-dose PQ exposure. These biomarkers could be used as points of departure (PoD) for characterizing PQ exposure hazard in risk assessment. Our study offers insights into mechanisms and risk assessment related to PQ-induced neurotoxicity in NSCs.


Biomarkers , Herbicides , Metabolomics , Neural Stem Cells , Oxidative Stress , Paraquat , Animals , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Mice , Paraquat/toxicity , Biomarkers/metabolism , Herbicides/toxicity , Oxidative Stress/drug effects , Risk Assessment , Dose-Response Relationship, Drug
8.
J Hazard Mater ; 473: 134607, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38761765

Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.


Complement C1q , Computer Simulation , Microglia , Paraquat , Phagocytosis , Paraquat/toxicity , Animals , Complement C1q/immunology , Complement C1q/metabolism , Phagocytosis/drug effects , Microglia/drug effects , Adverse Outcome Pathways , Male , Neurotoxicity Syndromes/immunology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/etiology , Mice , Brain/drug effects , Herbicides/toxicity , CD11b Antigen/metabolism , Complement C3/metabolism , Molecular Docking Simulation , Synapses/drug effects , Mice, Inbred C57BL
9.
Chem Biol Interact ; 397: 111062, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38763349

Acute lung injury is the leading cause of paraquat (PQ) poisoning-related mortality. The mechanism by which macrophages are involved in PQ-induced acute lung injury remains unclear. In recent years, the role of metabolic reprogramming in macrophage functional transformation has received significant attention. The current study aimed to identify the role of altered macrophage glucose metabolism and molecular mechanisms in PQ poisoning-induced acute lung injury. We established a model of acute lung injury in PQ-intoxicated mice via the intraperitoneal injection of PQ. PQ exposure induces macrophage M1 polarization and promotes the release of inflammatory factors, which causes the development of acute lung injury in mice. In vitro analysis revealed that PQ altered glucose metabolism, which could be reversed by siRNA transfection to silence the expression of HK1, a key enzyme in glucose metabolism. RNA sequencing revealed that the ERK/MAPK pathway was the crucial molecular mechanism of PQ pathogenesis. Further, U0126, an ERK inhibitor, could inhibit PQ-induced HK1 activation and macrophage M1 polarization. These findings provide novel insights into the previously unrecognized mechanism of ERK/MAPK-HK1 activation in PQ poisoning.


Acute Lung Injury , Glucose , Hexokinase , MAP Kinase Signaling System , Macrophages , Mice, Inbred C57BL , Paraquat , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Paraquat/toxicity , Mice , Glucose/metabolism , Macrophages/metabolism , Macrophages/drug effects , Hexokinase/metabolism , MAP Kinase Signaling System/drug effects , Male , Signal Transduction/drug effects , RAW 264.7 Cells
10.
J Hazard Mater ; 472: 134559, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38735189

Parkinson's disease (PD) is a prevalent neurodegenerative disease and approximately one third of patients with PD are estimated to experience depression. Paraquat (PQ) is the most widely used herbicide worldwide and PQ exposure is reported to induce PD with depression. However, the specific brain region and neural networks underlying the etiology of depression in PD, especially in the PQ-induced model, have not yet been elucidated. Here, we report that the VGluT2-positive glutamatergic neurons in the paraventricular thalamic nucleus (PVT) promote depression in the PQ-induced PD mouse model. Our results show that PVTVGluT2 neurons are activated by PQ and their activation increases the susceptibility to depression in PD mice. Conversely, inhibition of PVTVGluT2 neurons reversed the depressive-behavioral changes induced by PQ. Similar to the effects of intervention the soma of PVTVGluT2 neurons, stimulation of their projections into the central amygdaloid nucleus (CeA) also strongly influenced depression in PD mice. PQ induced malfunctioning of the glutamate system and changes in the dendritic and synaptic morphology in the CeA through its role on PVTVGluT2 neuronal activation. In summary, our results demonstrate that PVTVGluT2 neurons are key neuronal subtypes for depression in PQ-induced PD and promote depression processes through the PVTVGluT2-CeA pathway.


Midline Thalamic Nuclei , Neurons , Paraquat , Vesicular Glutamate Transport Protein 2 , Animals , Paraquat/toxicity , Male , Vesicular Glutamate Transport Protein 2/metabolism , Neurons/drug effects , Midline Thalamic Nuclei/drug effects , Midline Thalamic Nuclei/metabolism , Depression/chemically induced , Depression/metabolism , Mice, Inbred C57BL , Herbicides/toxicity , Mice , Parkinson Disease/metabolism
11.
J Assoc Physicians India ; 72(3): 100-104, 2024 Mar.
Article En | MEDLINE | ID: mdl-38736128

Paraquat (1,1'-dimethyl-4,4'-dipyridylium) is a liquid herbicide, linked to both accidental and intentional ingestion, which can result in severe and frequently lethal poisoning. It has been known to cause injury to the lungs, kidneys, and liver. We retrospectively reviewed five cases over the last 4 years with a history of paraquat ingestion. The time duration between ingestion and high-resolution computed tomography (HRCT) was assessed. HRCT chest scan was variable, ranging from 4 to 18 days postexposure. The follow-up of the patients was also reviewed.


Herbicides , Paraquat , Tomography, X-Ray Computed , Humans , Paraquat/poisoning , Herbicides/poisoning , Tomography, X-Ray Computed/methods , Retrospective Studies , Male , Adult , Female , Lung/diagnostic imaging
12.
Biomedica ; 44(1): 16-34, 2024 03 31.
Article En, Es | MEDLINE | ID: mdl-38648344

Paraquat®, or N,N'-dimethyl-4,4'-bipyridinium dichloride, is a bipyridyl compound used as a non-selective herbicide and desiccant that can cause acute poisoning through all routes of exposure. There is no known antidote, and the available treatments are based on avoiding its absorption and timely removing it, in adults and children. We describe a case series of 14 pediatric patients from the department of Cauca, Colombia, with acute intoxication after oral intake of paraquat. Patients were referred to a medium-high complexity hospital in southwestern Colombia and treated according to an institutional protocol for acute paraquat poisoning. Acute paraquat poisoning after oral ingestion is associated with a high mortality rate, even with timely medical attention, as the compound has no known antidote and quickly reaches systemic concentrations for fulminant poisoning. Based on the available literature, our center has proposed a clinical protocol including early standard management, immunosuppressive and antioxidant treatments, and systemic removal techniques. This protocol suggests an adequate approach to acute paraquat poisoning in the pediatric population.


El dicloruro de 1,1'-dimetil-4,4'-bipiridilo (Paraquat®) es un compuesto químico de la familia de las piridinas, utilizado como herbicida no selectivo y desecante. Este compuesto puede causar intoxicación aguda por todas las vías de exposición. En el momento, no hay un antídoto conocido y los tratamientos disponibles, incluidos los pediátricos, se basan en contrarrestar su absorción y propiciar su remoción oportuna. Se describe una serie de casos de 14 pacientes pediátricos, procedentes en su mayoría del departamento del Cauca, con intoxicación aguda por ingestión de paraquat. Los pacientes fueron remitidos y atendidos en un hospital de mediana a alta complejidad en el suroccidente colombiano, con un protocolo institucional para el manejo de la intoxicación aguda por el herbicida. La intoxicación aguda con paraquat por vía oral se asocia con una alta tasa de mortalidad, aún con atención médica oportuna, pues fácilmente se alcanzan concentraciones sistémicas para ser fulminante. Basado en la literatura disponible, el Hospital Universitario San José ha propuesto un protocolo clínico ­adecuado para la intoxicación aguda por paraquat en población pediátrica­ que incluye manejo estándar temprano, tratamiento inmunosupresor y antioxidante, y técnicas para su remoción sistémica.


Algorithms , Herbicides , Paraquat , Humans , Paraquat/poisoning , Child , Female , Male , Child, Preschool , Adolescent , Herbicides/poisoning , Poisoning/therapy , Poisoning/drug therapy , Colombia , Acute Disease , Infant , Antioxidants/therapeutic use , Clinical Protocols , Antidotes/therapeutic use
13.
Environ Pollut ; 352: 124035, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38670424

The exact mechanisms underlying the initiation and exacerbation of Parkinson's disease (PD) by paraquat remain unclear. We have revealed that exosomes mediate neurotoxicity induced by low dose paraquat exposure by transmitting intercellular signaling. Exposure to 40 µM paraquat promoted exosome release from mouse microglia cells (BV2) in vitro. Paraquat exposure at 100 µM caused degeneration of mouse dopaminergic MN9D cells and inhibited microglia exosome uptake by fluorescently labeling exosomes. We established an incubation model for exosomes and dopaminergic neuron cells under PQ treatment. The results indicated that microglial exosomes alleviated degeneration, increasing proliferation and PD-related protein expression of dopaminergic neurons; however, paraquat reversed this effect. Then, through exosome high-throughput sequencing and qRT-PCR experiments, miR-92a-3p and miR-24-3p were observed to transfer from exosomes to dopaminergic neurons, inhibited by paraquat. The specificity of miR-92a-3p and miR-24-3p was verified in PD patients exosomes, indicating the potential diagnostic value of the exosomal miRNAs in paraquat-induced PD. These results suggest glia-neuron communication in paraquat-induced neurodegeneration and may identify stable paraquat-mediated PD biomarkers, offering clues for early recognition and prevention of pesticide-induced degenerative diseases.


Biomarkers , Dopaminergic Neurons , Exosomes , MicroRNAs , Microglia , Paraquat , Parkinson Disease , Paraquat/toxicity , Exosomes/metabolism , Animals , Microglia/drug effects , Microglia/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Dopaminergic Neurons/drug effects , Biomarkers/metabolism , Neuroprotection/drug effects , Humans , Cell Line
14.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Article En | MEDLINE | ID: mdl-38597493

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Paraquat , Renin-Angiotensin System , Rats , Animals , Male , Reactive Oxygen Species/metabolism , Paraquat/metabolism , Paraquat/pharmacology , Angiotensin II/metabolism , Angiotensin II/pharmacology , Creatinine/metabolism , Creatinine/urine , Interleukin-6 , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Kidney , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Sodium/metabolism , Sodium/pharmacology , NADPH Oxidases/metabolism , NADPH Oxidases/pharmacology
15.
Anal Methods ; 16(15): 2340-2348, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38562104

The presence of paraquat in the environment poses a danger to human health, leading to a growing demand for an uncomplicated and highly responsive method to detect paraquat. This work reports a new, simple, and sensitive colorimetric aptasensor based on the designed aptamers containing 1-5 paraquat binding sites (R1-R5) in combination with gold nanoparticles (AuNPs). Although the aptamers with more binding sites exhibited greater paraquat interaction capability, the aptasensor based on the R3 aptamer showed the highest detection sensitivity for paraquat in a linear range of 5-50 nM with a limit of detection of 1.29 nM, meaning that it is 2.14 fold more sensitive than the R1-aptasensor. This R3-aptasensor selectively detected paraquat but not the other tested herbicides, including difenzoquat, 2,4-D, ametryn, atrazine, and glufosinate. Also, it efficiently detected paraquat spiked in water samples within the precision acceptance criterion of recovery rates (96.8-105.0%) and the relative standard deviations (1.50-3.81%). These results demonstrated the development of a new aptasensor for paraquat detection, in which the multiple paraquat binding sites of the aptamers could enhance detection sensitivity.


Aptamers, Nucleotide , Metal Nanoparticles , Humans , Gold/chemistry , Paraquat , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Colorimetry/methods
16.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Article En | MEDLINE | ID: mdl-38582594

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Acute Lung Injury , Paraquat , Pulmonary Fibrosis , Mice , Animals , Paraquat/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta/toxicity , Transforming Growth Factor beta1/toxicity , Transforming Growth Factor beta1/metabolism , Collagen/toxicity , Collagen/metabolism , Transforming Growth Factors/toxicity
17.
Article Zh | MEDLINE | ID: mdl-38677987

Objective: To analyze the differential genes and related signaling pathways of microglia subpopulations in Parkinson's disease (PD) -like mouse brains induced by paraquat (PQ) based on single-cell RNA sequencing, and provide clues to elucidate the mechanism of PQ-induced PD-like changes in the brain of animals. Methods: In September 2021, six male 6-week-old C57BL/6 mice were randomly divided into control group and experimental group (three mice in each group) . The mice were injected with saline, 10.0 mg/kg PQ intraperitoneally, once every three days, and 10 consecutive injections were used for modeling. After infection, the brains of mice were taken and 10×Genomics single-cell RNA sequencing was performed. Microglia subpopulations were screened based on gene expression characteristics, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The differential genes of microglia subpopulations between the experimental group and control group were further screened, and functional enrichment analysis was performed using bioinformatics tools. Mouse microglia (BV2 cells) were treated with 0, 60, 90 µmol/L PQ solution, respectively. And real-time fluorescence quantitative PCR experiments were conducted to validate the expressions of differential genes hexokinase 2 (Hk2) , ATPase H+ Transporting V0 Subunit B (Atp6v0b) and Neuregulin 1 (Nrg1) . Results: Cluster 7 and Cluster 20 were identified as microglia subpopulations based on the signature genes inositol polyphosphate-5-phosphatase d, Inpp5d (Inpp5d) and transforming growth factor beta receptor 1 (Tgfbr1) , and they reflected the microglia-activated M2 phenotype. The bioinformatics analysis showed that the characteristic genes of identified microglia subpopulations were enriched in endocytosis. In terms of molecular function, it mainly enriched in transmembrane receptor protein kinase activity and cytokine binding. The up-regulated genes of Cluster 7 were mainly enriched in lysosomal pathway, endocytosis pathway, and down-regulated genes were mainly enriched in neurodegenerative disease and other signaling pathways. The up-regulated genes of Cluster 20 were mainly enriched in signaling pathways related to PD, and down-regulated genes were mainly enriched in cyclic adenosine 3', 5'-monophosphate (cAMP) signaling pathways, neurological development, synaptic function and other signaling pathways. The results of real-time fluorescence quantitative PCR showed that the expressions of Hk2 mRNA and Atp6v0b mRNA increased and the expression of Nrg1 mRNA decreased in the 90 µmol/L PQ-treated BV2 cells compared with the 0 µmol/L, and the differences were statistically significant (P<0.05) . Conclusion: Microglia are activated in the PQ-induced PD-like mouse model and polarized toward the M2 phenotype. And their functions are associated with lysosomal (endocytosis) , synaptic functions and the regulation of PD-related pathways.


Brain , Mice, Inbred C57BL , Microglia , Paraquat , Animals , Paraquat/toxicity , Mice , Male , Microglia/drug effects , Microglia/metabolism , Brain/metabolism , Brain/drug effects , Parkinson Disease/genetics , Parkinson Disease/metabolism , Disease Models, Animal , Signal Transduction , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Gene Expression Profiling
18.
Neurochem Res ; 49(7): 1677-1686, 2024 Jul.
Article En | MEDLINE | ID: mdl-38451434

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and the most common movement disorder. Although PD etiology is not fully understood, alpha (α)-synuclein is a key protein involved in PD pathology. MicroRNAs (miRNA), small gene regulatory RNAs that control gene expression, have been identified as biomarkers and potential therapeutic targets for brain diseases, including PD. In particular, miR-124 is downregulated in the plasma and brain samples of PD patients. Recently we showed that the brain delivery of miR-124 counteracts 6-hydroxydopamine-induced motor deficits. However, its role in α-synuclein pathology has never been addressed. Here we used paraquat (PQ)-induced rat PD model to evaluate the role of miR-124-3p in α-synuclein accumulation and dopaminergic neuroprotection. Our results showed that an intranigral administration of miR-124-3p reduced the expression and aggregation of α-synuclein in the substantia nigra (SN) of rats exposed to PQ. NADPH oxidases (NOX), responsible for reactive oxygen species generation, have been considered major players in the development of α-synuclein pathology. Accordingly, miR-124-3p decreased protein expression levels of NOX1 and its activator, small GTPase Rac1, in the SN of PQ-lesioned rats. Moreover, miR-124-3p was able to counteract the reduced levels of pituitary homeobox 3 (PITX3), a protein required for the dopaminergic phenotype, induced by PQ in the SN. This is the first study showing that miR-124-3p decreases PQ-induced α-synuclein levels and the associated NOX1/Rac1 signaling pathway, and impacts PITX3 protein levels, supporting the potential of miR-124-3p as a disease-modifying agent for PD and related α-synucleinopathies.


MicroRNAs , Paraquat , alpha-Synuclein , Animals , MicroRNAs/metabolism , alpha-Synuclein/metabolism , Paraquat/toxicity , Male , Rats , Rats, Wistar , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Disease Models, Animal , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Rats, Sprague-Dawley
19.
Genes (Basel) ; 15(3)2024 02 23.
Article En | MEDLINE | ID: mdl-38540341

Heterozygous carriers of the glucocerebrosidase 1 (GBA) L444P Gaucher mutation have an increased risk of developing Parkinson's disease (PD). The GBA mutations result in elevated alpha synuclein (aSyn) levels. Heterozygous mice carrying one allele with the L444P mutation knocked-into the mouse gene show increased aSyn levels and are more sensitive to motor deficits following exposure to the neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP than wild-type mice. Paraquat (PQ), a herbicide, increases PD risk in most studies. Its effects on the brain involve alterations in the gut microbiome. Exposure to dextran sulfate sodium (DSS), a mouse model of colitis, can be used to determine whether gut microbiome alterations are sufficient to induce PD-relevant phenotypes. We rederived the A53T-L444P and A53T mouse lines to assess whether PQ, PQ in combination with radiation exposure (IR), and DSS have differential effects in A53T and A53T-L444P mice and whether these effects are associated with alterations in the gut microbiome. PQ and PQ + IR have differential effects in A53T and A53T-L444P mice. In contrast, effects of DSS are only seen in A53T-L444P mice. Exposure and genotype modulate the relationship between the gut microbiome and behavioral performance. The gut microbiome may be an important mediator of how environmental exposures or genetic mutations yield behavioral and cognitive impacts.


Gastrointestinal Microbiome , Parkinson Disease , Mice , Animals , Paraquat/toxicity , Dextran Sulfate , Parkinson Disease/genetics , Glucosylceramidase/genetics , Cognition
20.
Environ Pollut ; 349: 123875, 2024 May 15.
Article En | MEDLINE | ID: mdl-38548152

With the evidence emerging that abnormal expression of long noncoding RNAs (lncRNAs) are involved in onset of Parkinson's disease (PD), the role of NR_030777 contributing to this disease is of great interest. We recently found that a novel lncRNA "NR_030777" demonstrates protective effects on PQ-induced neurodegeneration. However, the underlying molecular mechanisms of NR_030777 in the regulation of mitochondrial fission and mitophagy involved in PQ-induced neuronal damage remain to be explored. NR_030777 brain conditional overexpressing mice as well as in vitro primary neuronal cells from cerebral cortex and Neuro2a cells were adopted. Immunofluorescence, Immunohistochemistry, qRT-PCR and Western blotting were used to evaluate the expression levels of RNA and proteins. RNA immunoprecipitation and RNA pulldown experiment were used to evaluate the interaction of NR_030777 with its target proteins. NR_030777 and mitophagy were increased, and tyrosine hydroxylase (TH) levels recovered after NR_030777 overexpression upon PQ treatment. The overexpression and knockdown of NR_030777 unveiled that NR_030777 positively regulated mitophagy such as the upregulation of LC3B-II:I, ATG12-ATG5, p62 and NBR1. Moreover, the application of mdivi-1, a DRP-1 inhibitor, in combination with NR_030777 genetic modified cells unveiled that NR_030777 promoted DRP1-mediated mitochondrial fission and mitophagy. Furthermore, NR_030777 were directly bound to CDK1 to increase p-DRP1 levels at the Ser616 site, leading to mitochondrial fission and mitophagy. On the other hand, NR_030777 acted directly on ATG12 within the ATG12-ATG5 complex in the 800-1400 nt region to modulate the membrane formation. Accordingly, NR_030777 deficiency in neuron cells compromised cell mitophagy. Finally, the above findings were confirmed using NR_030777-overexpressing mice. NR_030777 exerted a protective effect on PQ-exposed mice by enhancing mitophagy. Our data provide the first scientific evidence for the precise invention of PQ-induced PD. Our findings further propose a breakthrough for understanding the regulatory relationship between NR_030777, CDK1, ATG12 and mitophagy in PQ-induced PD.


CDC2 Protein Kinase , Mitochondrial Dynamics , Mitophagy , Parkinson Disease , RNA, Long Noncoding , Animals , Mice , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Neurons/metabolism , Neurons/drug effects , Paraquat/toxicity , Parkinson Disease/metabolism , Parkinson Disease/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
...