Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
Nat Commun ; 15(1): 6851, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127707

ABSTRACT

Many archetypal and emerging classes of small-molecule therapeutics form covalent protein adducts. In vivo, both the resulting conjugates and their off-target side-conjugates have the potential to elicit antibodies, with implications for allergy and drug sequestration. Although ß-lactam antibiotics are a drug class long associated with these immunological phenomena, the molecular underpinnings of off-target drug-protein conjugation and consequent drug-specific immune responses remain incomplete. Here, using the classical ß-lactam penicillin G (PenG), we probe the B and T cell determinants of drug-specific IgG responses to such conjugates in mice. Deep B cell clonotyping reveals a dominant murine clonal antibody class encompassing phylogenetically-related IGHV1, IGHV5 and IGHV10 subgroup gene segments. Protein NMR and x-ray structural analyses reveal that these drive structurally convergent binding modes in adduct-specific antibody clones. Their common primary recognition mechanisms of the penicillin side-chain moiety (phenylacetamide in PenG)-regardless of CDRH3 length-limits cross-reactivity against other ß-lactam antibiotics. This immunogenetics-guided discovery of the limited binding solutions available to antibodies against side products of an archetypal covalent inhibitor now suggests future potential strategies for the 'germline-guided reverse engineering' of such drugs away from unwanted immune responses.


Subject(s)
Anti-Bacterial Agents , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/immunology , Immunoglobulin G/immunology , Penicillin G/immunology , Penicillin G/chemistry , B-Lymphocytes/immunology , Penicillins/immunology , Penicillins/chemistry , Female , Cross Reactions/immunology , Crystallography, X-Ray
2.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062934

ABSTRACT

Serine ß-lactamase TEM-1 is the first ß-lactamase discovered and is still common in Gram-negative pathogens resistant to ß-lactam antibiotics. It hydrolyzes penicillins and cephalosporins of early generations. Some of the emerging TEM-1 variants with one or several amino acid substitutions have even broader substrate specificity and resistance to known covalent inhibitors. Key amino acid substitutions affect catalytic properties of the enzyme, and secondary mutations accompany them. The occurrence of the secondary mutation M182T, called a "global suppressor", has almost doubled over the last decade. Therefore, we performed saturating mutagenesis at position 182 of TEM-1 to determine the influence of this single amino acid substitution on the catalytic properties, thermal stability, and ability for thermoreactivation. Steady-state parameters for penicillin, cephalothin, and ceftazidime are similar for all TEM-1 M182X variants, whereas melting temperature and ability to reactivate after incubation at a higher temperature vary significantly. The effects are multidirectional and depend on the particular amino acid at position 182. The M182E variant of ß-lactamase TEM-1 demonstrates the highest residual enzymatic activity, which is 1.5 times higher than for the wild-type enzyme. The 3D structure of the side chain of residue 182 is of particular importance as observed from the comparison of the M182I and M182L variants of TEM-1. Both of these amino acid residues have hydrophobic side chains of similar size, but their residual activity differs by three-fold. Molecular dynamic simulations add a mechanistic explanation for this phenomenon. The important structural element is the V159-R65-E177 triad that exists due to both electrostatic and hydrophobic interactions. Amino acid substitutions that disturb this triad lead to a decrease in the ability of the ß-lactamase to be reactivated.


Subject(s)
Amino Acid Substitution , Enzyme Stability , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism , Methionine/chemistry , Methionine/metabolism , Methionine/genetics , Models, Molecular , Mutagenesis , Kinetics , Molecular Dynamics Simulation , Penicillins/chemistry , Penicillins/metabolism
3.
Inorg Chem ; 63(27): 12593-12603, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38923955

ABSTRACT

Procedures for the preparation of transition metal complexes having intact bicyclic cepham or penam systems as ligands have been developed. Starting from readily available 4-azido-2-azetidinones, a synthetic approach has been tuned using a copper-catalyzed azide-alkyne cycloaddition between 3-azido-2-azetinones and alkynes, followed by methylation and transmetalation to Au(I) and Ir(III) complexes from the mesoionic carbene Ag(I) complexes. This methodology was applied to 6-azido penam and 7-azido cepham derivatives to build 6-(1,2,3-triazolyl)penam and 7-(1,2,3-triazolyl)cepham proligands, which upon methylation and metalation with Au(I) and Ir(III) complexes yielded products derived from the coordination of the metal to the penam C6 and cepham C7 positions, preserving intact the bicyclic structure of the penicillin and cephalosporin scaffolds. The crystal structure of complex 28b, which has an Ir atom directly bonded to the intact penicillin bicycle, was determined by X-ray diffraction. This is the first structural report of a penicillin-transition-metal complex having the bicyclic system of these antibiotics intact. The selectivity of the coordination processes was interpreted using DFT calculations.


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Coordination Complexes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Cephalosporins/chemistry , Cephalosporins/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Penicillins/chemistry , Penicillins/chemical synthesis , Molecular Structure , Models, Molecular , beta-Lactams/chemistry , beta-Lactams/chemical synthesis , beta Lactam Antibiotics
4.
Food Chem ; 456: 139946, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38852450

ABSTRACT

To effectively monitor multi-residues of penicillin antibiotics (PENs) in milk, we developed a novel ratiometric electrochemical aptasensor enabling simultaneous detection of PENs. The aptasensor employed a broad-spectrum aptamer as a recognition element, niobium carbide functionalized with methylene blue (Nb2C-MB) as a reference signal generator, and a ferrocene-labeled aptamer (Fc-Apt) as an output signal. Electrodes were modified with Fe-N-C doped carbon nanotubes (Fe-N-C-CNTs) to amplify detection signals further. During detection, Fc-Apt binding to PENs decreased Fc current intensity (IFc) and increased MB current intensity (IMB). The simultaneous detection of PENs was achieved using IMB/IFc as a quantitative signal. Under optimal conditions, a good linear relationship between IMB/IFc and antibiotic concentration was observed, indicating the aptasensor had a robustness. The limits of detection of aptasensor for four penicillin antibiotics and their mixed targets were 0.093-0.191 nM. This work provides a new approach to multi-residue detection of the same class of antibiotics.


Subject(s)
Anti-Bacterial Agents , Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Food Contamination , Milk , Penicillins , Milk/chemistry , Aptamers, Nucleotide/chemistry , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Penicillins/analysis , Penicillins/chemistry , Food Contamination/analysis , Limit of Detection , Drug Residues/analysis , Drug Residues/chemistry , Cattle
5.
J Med Chem ; 67(11): 9613-9627, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38776401

ABSTRACT

The development of antibacterial drugs with new mechanisms of action is crucial in combating the rise of antibiotic-resistant infections. Bacterial carbonic anhydrases (CAs, EC 4.2.1.1) have been validated as promising antibacterial targets against pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, and vancomycin-resistant enterococci. A multitarget strategy is proposed to design penicillin-based CA inhibitor hybrids for tackling resistance by targeting multiple bacterial pathways, thereby resensitizing drug-resistant strains to clinical antibiotics. The sulfonamide derivatives potently inhibited the CAs from N. gonorrhoeae and Escherichia coli with KI values in the range of 7.1-617.2 nM. Computational simulations with the main penicillin-binding protein (PBP) of N. gonorrhoeae indicated that these hybrid derivatives maintained the mechanism of action of the lead ß-lactams. A subset of derivatives showed potent PBP-related antigonococcal effects against multidrug-resistant N. gonorrhoeae strains, with several compounds significantly outperforming both the lead ß-lactam and CA inhibitor drugs (MIC values in the range 0.25 to 0.5 µg/mL).


Subject(s)
Anti-Bacterial Agents , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/enzymology , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Carbonic Anhydrases/metabolism , Penicillins/pharmacology , Penicillins/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Structure-Activity Relationship , Humans , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Molecular Structure , Escherichia coli/drug effects , Escherichia coli/enzymology
6.
Exp Biol Med (Maywood) ; 248(19): 1657-1670, 2023 10.
Article in English | MEDLINE | ID: mdl-38030964

ABSTRACT

Bacterial cell wall formation is essential for cellular survival and morphogenesis. The peptidoglycan (PG), a heteropolymer that surrounds the bacterial membrane, is a key component of the cell wall, and its multistep biosynthetic process is an attractive antibacterial development target. Penicillin-binding proteins (PBPs) are responsible for cross-linking PG stem peptides, and their central role in bacterial cell wall synthesis has made them the target of successful antibiotics, including ß-lactams, that have been used worldwide for decades. Following the discovery of penicillin, several other compounds with antibiotic activity have been discovered and, since then, have saved millions of lives. However, since pathogens inevitably become resistant to antibiotics, the search for new active compounds is continuous. The present review highlights the ongoing development of inhibitors acting mainly in the transpeptidase domain of PBPs with potential therapeutic applications for the development of new antibiotic agents. Both the critical aspects of the strategy, design, and structure-activity relationships (SAR) are discussed, covering the main published articles over the last 10 years. Some of the molecules described display activities against main bacterial pathogens and could open avenues toward the development of new, efficient antibacterial drugs.


Subject(s)
Anti-Bacterial Agents , beta-Lactams , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Anti-Bacterial Agents/pharmacology , beta-Lactams/chemistry , beta-Lactams/pharmacology , Penicillins/chemistry , Penicillins/metabolism , Penicillins/pharmacology , Bacteria/metabolism , Bacterial Proteins/chemistry
7.
J Chromatogr Sci ; 61(7): 644-655, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-35523719

ABSTRACT

Determination of penicillin residues in different industrial effluents including wastewater and air samples is important to prevent exposure to residual amounts of penicillin and the development of antibiotic resistance. A green high performance liquid chromatography (HPLC) method coupled with diode array detection has been developed and validated for multiplex determination of nine penicillin antibiotics in the industrial air dust and wastewater environmental samples of penicillin facility in addition to the monitoring of facility surface cleaning. Separation was performed on C18 column with gradient elution of methanol and phosphate buffer (pH 4) at a flow rate of 1.5 mL min-1 and ultra violet (UV) detection at 220 nm. Low limits of detection were achieved (0.1-0.3 µg mL-1) indicating good sensitivity of the proposed. The method was applied for ensuring the efficiency of cleaning validation after worst-case selection. Recovery studies of the studied penicillins from fortified stainless steel and polycarbonate surfaces and swabs were between 91.91 and 100.22% with relative standard deviation 0.11-1.79%. The presence of any of the studied penicillins in wastewater samples from penicillin plant drainage was checked. Also, total air dust concentration (mg m-3) and % of penicillin active material residues in air dust were calculated from the area of the exposed group in suspension, tablet and vial production lines. The proposed method can be recommended for routine analysis of air and wastewater environmental samples for the detection of penicillin antibiotics at low levels as well as monitoring of facility surface cleaning with high accuracy and precision.


Subject(s)
Penicillins , Wastewater , Penicillins/analysis , Penicillins/chemistry , Chromatography, High Pressure Liquid/methods
8.
Article in English | MEDLINE | ID: mdl-36078417

ABSTRACT

Antibiotic residues lead to the risk of resistance gene enrichment, which is the main reason why penicillin mycelial dreg (PMD) is defined as hazardous waste. Hydrothermal treatment (HT) is an effective method to treat penicillin mycelial dreg, but the degradation mechanism of penicillin is unclear. In the study, we researched the effects of pH (4-10) at 80-100 °C and metal ions (Mn2+, Fe2+, Cu2+, and Zn2+) at several concentrations on the HT of penicillin, identified the degradation products (DPs) under different conditions, and evaluated the antibacterial activity of hydrothermally treated samples. The results show that penicillin degradation kinetics highly consistent with pseudo-first-order model (R2 = 0.9447-0.9999). The degradation rates (k) at pH = 4, 7, and 10 were 0.1603, 0.0039, and 0.0485 min-1, indicating acidic conditions were more conducive to penicillin degradation. Among the four tested metal ions, Zn2+ had the most significant catalytic effect. Adding 5 mg·L-1 Zn2+ caused 100% degradation rate at pH = 7 after HT for 60 min. Six degradation products (DPs) with low mass-to-charge (m/z ≤ 335) were detected under acidic condition. However, only two and three DPs were observed in the samples catalyzed by Zn2+ and alkali, respectively, and penilloic acid (m/z = 309) was the main DPs under these conditions. Furthermore, no antibacterial activity to Bacillus pumilus was detected in the medium with up to 50% addition of the treated samples under acidic condition. Even though acid, alkali, and some metal ions can improve the degradation ability of penicillin, it was found that the most effective way for removing its anti-bacterial activity was under the acidic condition. Therefore, resistance residue indicates the amount of additive in the process of resource utilization, and avoids the enrichment of resistance genes.


Subject(s)
Anti-Bacterial Agents , Penicillins , Alkalies , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Hydrogen-Ion Concentration , Ions , Kinetics , Metals/pharmacology , Penicillins/chemistry , Penicillins/metabolism , Penicillins/pharmacology
9.
J Biol Chem ; 298(9): 102249, 2022 09.
Article in English | MEDLINE | ID: mdl-35835215

ABSTRACT

Isopenicillin N synthase (IPNS) catalyzes formation of the ß-lactam and thiazolidine rings of isopenicillin N from its linear tripeptide l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) substrate in an iron- and dioxygen (O2)-dependent four-electron oxidation without precedent in current synthetic chemistry. Recent X-ray free-electron laser studies including time-resolved serial femtosecond crystallography show that binding of O2 to the IPNS-Fe(II)-ACV complex induces unexpected conformational changes in α-helices on the surface of IPNS, in particular in α3 and α10. However, how substrate binding leads to conformational changes away from the active site is unknown. Here, using detailed 19F NMR and electron paramagnetic resonance experiments with labeled IPNS variants, we investigated motions in α3 and α10 induced by binding of ferrous iron, ACV, and the O2 analog nitric oxide, using the less mobile α6 for comparison. 19F NMR studies were carried out on singly and doubly labeled α3, α6, and α10 variants at different temperatures. In addition, double electron-electron resonance electron paramagnetic resonance analysis was carried out on doubly spin-labeled variants. The combined spectroscopic and crystallographic results reveal that substantial conformational changes in regions of IPNS including α3 and α10 are induced by binding of ACV and nitric oxide. Since IPNS is a member of the structural superfamily of 2-oxoglutarate-dependent oxygenases and related enzymes, related conformational changes may be of general importance in nonheme oxygenase catalysis.


Subject(s)
Oxidoreductases , Catalytic Domain , Electron Spin Resonance Spectroscopy , Ferrous Compounds/chemistry , Iron/chemistry , Nitric Oxide/chemistry , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxygen/chemistry , Oxygenases/metabolism , Penicillins/biosynthesis , Penicillins/chemistry , Protein Conformation , Substrate Specificity , Thiazolidines/chemistry
10.
Biosensors (Basel) ; 12(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35049671

ABSTRACT

Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO2-Ta2O5 layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta2O5-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.


Subject(s)
Tobacco Mosaic Virus , Electrolytes , Penicillinase/analysis , Penicillinase/chemistry , Penicillins/analysis , Penicillins/chemistry , Silicon Dioxide/chemistry , Urea/chemistry , Urease/chemistry
11.
Article in English | MEDLINE | ID: mdl-34506720

ABSTRACT

The aim of this study was to investigate the transfer of cephalexin, penicillin-G, and ampicillin & cloxacillin from cow's milk to cheese and whey. For this purpose, raw milk was artificially contaminated to different antibiotic levels and then heat-treated to prepare fresh cheese from it. Antibiotic levels of the milk, whey and cheese were measured with LC-MS/MS. The extent of heat degradation was not sufficient to remove the antibiotic residues from milk. Antibiotic concentrations in whey and fresh cheese were in good accordance with the concentration of the same compound in milk suggesting that contamination of the milk will result in contamination of the product. The investigated antibiotics were transferred less into the cheese curd (1.6-12.5% of the original amount), than into the whey (33.2-74.1%). For penicillin-G even 100% (complete removal) was experienced.


Subject(s)
Anti-Bacterial Agents/analysis , Cheese/analysis , Food Contamination/analysis , Milk/chemistry , Whey/chemistry , beta-Lactams/analysis , Ampicillin/chemistry , Animals , Cattle , Cephalexin/chemistry , Chromatography, High Pressure Liquid , Cloxacillin/chemistry , Female , Humans , Penicillins/chemistry , Tandem Mass Spectrometry
12.
Molecules ; 26(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34641579

ABSTRACT

Spiro compounds provide attractive targets in drug discovery due to their inherent three-dimensional structures, which enhance protein interactions, aid solubility and facilitate molecular modelling. However, synthetic methodology for the spiro-functionalisation of important classes of penicillin and cephalosporin ß-lactam antibiotics is comparatively limited. We report a novel method for the generation of spiro-cephalosporin compounds through a Michael-type addition to the dihydrothiazine ring. Coupling of a range of catechols is achieved under mildly basic conditions (K2CO3, DMF), giving the stereoselective formation of spiro-cephalosporins (d.r. 14:1 to 8:1) in moderate to good yields (28-65%).


Subject(s)
Cephalosporins/chemical synthesis , Spiro Compounds/chemical synthesis , Catechols/chemistry , Molecular Structure , Penicillins/chemistry
13.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: mdl-34417180

ABSTRACT

Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.


Subject(s)
Electrons , Oxidoreductases , Catalysis , Catalytic Domain , Crystallography, X-Ray , Ferric Compounds , Humans , Lasers , Oxidoreductases/chemistry , Oxygen/chemistry , Penicillins/chemistry , Penicillins/metabolism , Substrate Specificity
14.
Inorg Chem ; 60(15): 11081-11089, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34242020

ABSTRACT

A CuI-TbIII heterometallic MOF, namely 1·DMF, was obtained via a coordination assembly process of isonicotinic acid with CuI and TbIII. 1·DMF can be switched to 1·MeOH in methanol with a luminescent emission response. Meanwhile, 1·MeOH exhibits a reversible single-crystal transformation to 1·DMF after immersion in DMF. Both MOFs have superior physicochemical stability. The 1·DMF-based biosensor has a remarkable sensing performance toward penicillin.


Subject(s)
Copper/chemistry , Luminescence , Organometallic Compounds/chemistry , Penicillins/analysis , Terbium/chemistry , Density Functional Theory , Models, Molecular , Molecular Conformation , Penicillins/chemistry
15.
Future Med Chem ; 13(13): 1127-1139, 2021 07.
Article in English | MEDLINE | ID: mdl-33998275

ABSTRACT

Aim: Encouraged by the antitumor activity exhibited by triazolylpeptidyl penicillins, we decided to synthesize and evaluate a library of peptoid analogs. Results: The replacement of the dipeptide unit of the reference compound, TAP7f, was investigated. In addition, the effect of the triazole linking group on the biological activity of these new derivatives was evaluated, exchanging it with a glycine spacer. The cytotoxic effect of the library compounds was determined in the B16-F0 cell line and compared with the effects on normal murine mammary gland cells. Conclusion: Among the tested compounds, peptoid 4e exhibited the highest antiproliferative activity.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Penicillins/pharmacology , Peptoids/pharmacology , Triazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Mice , Molecular Conformation , Penicillins/chemical synthesis , Penicillins/chemistry , Peptoids/chemical synthesis , Peptoids/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry , Tumor Cells, Cultured
16.
J Med Chem ; 64(9): 6310-6328, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33913328

ABSTRACT

Pseudomonas aeruginosa, a major cause of nosocomial infections, is considered a paradigm of antimicrobial resistance, largely due to hyperproduction of chromosomal cephalosporinase AmpC. Here, we explore the ability of 6-pyridylmethylidene penicillin-based sulfones 1-3 to inactivate the AmpC ß-lactamase and thus rescue the activity of the antipseudomonal ceftazidime. These compounds increased the susceptibility to ceftazidime in a collection of clinical isolates and PAO1 mutant strains with different ampC expression levels and also improved the inhibition kinetics relative to avibactam, displaying a slow deacylation rate and involving the formation of an indolizine adduct. Bromide 2 was the inhibitor with the lowest KI (15.6 nM) and the highest inhibitory efficiency (kinact/KI). Computational studies using diverse AmpC enzymes revealed that the aromatic moiety in 1-3 targets a tunnel-like site adjacent to the catalytic serine and induces the folding of the H10 helix, indicating the potential value of this not-always-evident pocket in drug design.


Subject(s)
Immunity, Innate/drug effects , Penicillins/chemistry , Penicillins/pharmacology , Pseudomonas aeruginosa/drug effects , Sulfones/chemistry , beta-Lactam Resistance/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Design , Kinetics , Microbial Sensitivity Tests , beta-Lactamases
17.
J Ind Microbiol Biotechnol ; 48(3-4)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33713128

ABSTRACT

Penicillin-binding protein-type thioesterases (PBP-type TEs) are a recently identified group of peptide cyclases that catalyze head-to-tail macrolactamization of nonribosomal peptides. PenA, a new member of this group, is involved in the biosyntheses of cyclic pentapeptides. In this study, we demonstrated the enzymatic activity of PenA in vitro, and analyzed its substrate scope with a series of synthetic substrates. A comparison of the reaction profiles between PenA and SurE, a representative PBP-type TE, showed that PenA is more specialized for small peptide cyclization. A computational model provided a possible structural rationale for the altered specificity for substrate chain lengths.


Subject(s)
Penicillin-Binding Proteins/metabolism , Penicillins/chemistry , Peptides, Cyclic/metabolism , Biocatalysis , Cyclization , Penicillin-Binding Proteins/chemistry , Peptide Synthases/metabolism , Peptides, Cyclic/chemistry , Substrate Specificity
18.
Sci Rep ; 11(1): 3428, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33564036

ABSTRACT

Hemorrhage is the major hindrance over the wound healing, which triggers microbial infections and might provoke traumatic death. Herein, new hemostatic and antibacterial PVA/Kaolin composite sponges were crosslinked using a freeze-thawing approach and boosted by penicillin-streptomycin (Pen-Strep). Physicochemical characteristics of developed membranes were analyzed adopting Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), a thermal gravimetric analyzer (TGA), and differential scanning calorimetry (DSC). Furthermore, the impacts of kaolin concentrations on porosity, swelling behavior, gel fraction, and degradation of the membranes were investigated. SEM analyses revealed a spongy-like structure of hydrogels associated with high dispersion of kaolin inside PVA matrix. The thermal characteristics of PVA/Kaolin were significantly ameliorated compared to the prime PVA. Moreover, the results exhibited significant variations of swelling performance, surface roughness and pore capacity due to the alterations of kaolin contents. Besides, the adhesive strength ability was manifestly enhanced for PVA-K0.1 sponge. Biomedical evaluations including antibacterial activity, blood clotting index and thrombogenicity of the membranes were studied. The contact of PVA/Kaolin to blood revealed notable augmentation in blood clotting. Furthermore, the incorporation of kaolin into PVA presented mild diminution in antibacterial activities. Moreover, PVA/Kaolin composites illustrated no cellular toxicity towards fibroblast cells. These remarkable features substantiate that the PVA-K0.1 sponge could be applied as a multifunctional wound dressing.


Subject(s)
Anti-Bacterial Agents , Bandages , Hemostatics , Kaolin , Penicillins , Polyvinyl Alcohol , Streptomycin , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Humans , Kaolin/chemistry , Kaolin/pharmacology , Mice , NIH 3T3 Cells , Penicillins/chemistry , Penicillins/pharmacology , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Streptomycin/chemistry , Streptomycin/pharmacology , Wound Healing/drug effects
19.
Chembiochem ; 22(10): 1687-1705, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33415840

ABSTRACT

Isopenicillin N synthase (IPNS) is a non-heme iron oxidase (NHIO) that catalyses the cyclisation of tripeptide δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to bicyclic isopenicillin N (IPN). Over the last 25 years, crystallography has shed considerable light on the mechanism of IPNS catalysis. The first crystal structure, for apo-IPNS with Mn bound in place of Fe at the active site, reported in 1995, was also the first structure for a member of the wider NHIO family. This was followed by the anaerobic enzyme-substrate complex IPNS-Fe-ACV (1997), this complex plus nitric oxide as a surrogate for co-substrate dioxygen (1997), and an enzyme product complex (1999). Since then, crystallography has been used to probe many aspects of the IPNS reaction mechanism, by crystallising the protein with a diversity of substrate analogues and triggering the oxidative reaction by using elevated oxygen pressures to force the gaseous co-substrate throughout protein crystals and maximise synchronicity of turnover in crystallo. In this way, X-ray structures have been elucidated for a range of complexes closely related to and/or directly derived from key intermediates in the catalytic cycle, thereby answering numerous mechanistic questions that had arisen from solution-phase experiments, and posing many new ones. The results of these crystallographic studies have, in turn, informed computational experiments that have brought further insight. These combined crystallographic and computational investigations augment and extend the results of earlier spectroscopic analyses and solution phase studies of IPNS turnover, to enrich our understanding of this important protein and the wider NHIO enzyme family.


Subject(s)
Oxidoreductases/chemistry , Aspergillus/enzymology , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Ferrous Compounds/chemistry , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Molecular Dynamics Simulation , Oxidoreductases/genetics , Oxidoreductases/metabolism , Penicillins/chemistry , Penicillins/metabolism , Substrate Specificity
20.
Mini Rev Med Chem ; 21(5): 536-553, 2021.
Article in English | MEDLINE | ID: mdl-33109046

ABSTRACT

Triazole ring is a cyclic scaffold containing three heteroatoms of nitrogen. They display a broad variety of biological activities. The uncatalyzed/catalyzed 1,3-dipolar cycloadditions are a chemical reaction between a 1,3-dipole and a dipolarophile to achieve 1,2,3-triazoles. The hybrid approach is an innovative and powerful synthetic tool for the synthesis of two or more distinct entities in one molecule with novel biological activities. Owing to the high potential of ß-lactams to display noticeable biological properties, these compounds have been one of the important ingredients in hybrid molecules. The four-membered lactams have been recognized as a part of penicillin. There are various synthetic protocols for the synthesis of ß-lactams. Staudinger reaction of the Schiff bases with diphenylketenes is a successful and famous strategy for the synthesis of these products. Even though, the number of heterocyclic compounds is limited, plenty of hybrids based on heterocyclic compounds can be designed and prepared. The synthesis of hybrid products of triazole-ß-lactam has proved to be highly challenging. The current review article outlines the diversity and creativity in the elegant synthesis of triazole-ß-lactam hybrids as potential biological agents. Molecules including isatin, ferrocene, bile acid, chalcone, and etc were attached to ß-lactam with triazole linker, as well.


Subject(s)
Drug Design , Triazoles/chemistry , Triazoles/chemical synthesis , beta-Lactams/chemical synthesis , A549 Cells , Caco-2 Cells , Chemistry Techniques, Synthetic , Humans , Inhibitory Concentration 50 , PC-3 Cells , Penicillins/chemistry , Schiff Bases , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL