Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Sex Med ; 21(8): 663-670, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38972662

ABSTRACT

BACKGROUND: The mechanism by which a state of low testosterone leads to erectile dysfunction (ED) has not been determined. Endocan is a novel marker of endothelial function. However, whether endocan is involved in the regulation of erectile function under low testosterone levels remains unclear. AIM: In this study we sought to determine whether a low-testosterone state inhibits erectile function by regulating endocan expression in the endothelial cells of the rat penile corpus cavernosum. METHODS: Thirty-six male Sprague-Dawley rats aged 8 weeks were randomly assigned to 6 groups (n = 6 per group) as follows: (1) control, (2) castration, (3) castration + testosterone treatment (treated with 3 mg/kg testosterone propionate per 2 days), (4) control + transfection (4 weeks after castration, injected with lentiviral vector (1 × 108 transduction units/mL, 10 µL), (5) castration + transfection, or (6) castration + empty transfection. One week after the injection, we measured the maximal intracavernous pressure/mean arterial pressure (ICPmax/MAP), serum testosterone and nitric oxide (NO) levels, and the expression of endocan, phospho-endothelial NO synthase (p-eNOS), eNOS, phospho-protein kinase B (p-AKT), and AKT in the rat penile corpus cavernosum. OUTCOMES: Under a low-androgen state, the expression of endocan in the rat penile corpus cavernosum was significantly increased, which inhibited the AKT/eNOS/NO signaling pathway and resulted in ED. RESULTS: In the castration group, the expression of endocan in the rat penile corpus cavernosum was significantly higher than that in the control group (P < .05). Additionally, the levels of p-AKT/AKT, p-eNOS/eNOS, and NO in the rat penile corpus cavernosum and ICPmax/MAP were significantly lower in the castration group than in the control group (P < .05). In the castration + transfection group compared with the castration group there was a significant decrease in the expression of endocan (P < .05) and an increase in the ratios of p-AKT/AKT, p-eNOS/eNOS, and ICPmax/MAP (P < .05) in the rat penile corpus cavernosum. CLINICAL IMPLICATIONS: Downregulating the expression of endocan in the penile corpus cavernosum may be a feasible approach for treating ED caused by hypoandrogenism. STRENGTHS AND LIMITATIONS: The results of this study indicte that endocan may affect NO levels and erectile function through multiple signaling pathways, but further experiments are needed to clarify the relationship between endocan and androgens. CONCLUSION: A low-testosterone state inhibits the AKT/eNOS/NO signaling pathway by increasing the expression of endocan in the rat penile corpus cavernosum and impairing erectile function in rats. Decreasing the expression of endocan in the penile corpus cavernosum can improve erectile function in rats with low testosterone levels.


Subject(s)
Erectile Dysfunction , Nitric Oxide Synthase Type III , Penis , Proteoglycans , Rats, Sprague-Dawley , Testosterone , Animals , Male , Penis/metabolism , Erectile Dysfunction/etiology , Erectile Dysfunction/metabolism , Rats , Testosterone/blood , Nitric Oxide Synthase Type III/metabolism , Proteoglycans/metabolism , Penile Erection/physiology , Penile Erection/drug effects , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Endothelial Cells/metabolism
2.
PLoS One ; 19(7): e0306926, 2024.
Article in English | MEDLINE | ID: mdl-38990890

ABSTRACT

The primary objective of this work was to delve into the potential therapeutic advantages and dissect the molecular mechanisms of salidroside in enhancing erectile function in rats afflicted with diabetic microvascular erectile dysfunction (DMED), addressing both the whole-animal and cellular dimensions.We established a DMED model in Sprague‒Dawley (SD) rats and conducted in vivo experiments. The DMED rats were administered varying doses of salidroside, the effects of which on DMED were compared. Erectile function was evaluated by applying electrical stimulation to the cavernous nerves and measuring intracavernous pressure in real time. The penile tissue underwent histological examination and Western blotting. Hydrogen peroxide (H2O2) was employed in the in vitro trial to induce an oxidative stress for the purpose of identifying alterations in cell viability. The CCK-8 assay was used to measure the viability of corpus cavernous smooth muscle cells (CCSMCs) treated with vs. without salidroside. Flow cytometry was utilized to detect alterations in intracellular reactive oxygen species (ROS). Apoptosis was assessed through Western blotting and TdT-mediated dUTP nick-end labelling (TUNEL). Animal and cellular experiments indicate that the Nrf2/HO-1 signalling pathway may be upregulated by salidroside, leading to the improvement of erectile function in diabetic male rats by alleviating oxidative stress and reducing apoptosis in corpus cavernosum tissue.


Subject(s)
Apoptosis , Erectile Dysfunction , Glucosides , NF-E2-Related Factor 2 , Oxidative Stress , Phenols , Rats, Sprague-Dawley , Reactive Oxygen Species , Signal Transduction , Animals , Male , Oxidative Stress/drug effects , Erectile Dysfunction/drug therapy , Erectile Dysfunction/metabolism , Erectile Dysfunction/etiology , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Phenols/pharmacology , Phenols/therapeutic use , Glucosides/pharmacology , Rats , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/drug therapy , Penis/drug effects , Penis/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism , Cell Survival/drug effects
3.
Sci Rep ; 14(1): 16457, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39014129

ABSTRACT

Erectile dysfunction (ED) is the most prevalent consequences in men with diabetes mellitus (DM). Recent studies demonstrates that neutrophil extracellular traps (NETs) play important roles in DM and its complications. Nevertheless, whether NETs are involved in ED remains unknown. This work intended to explore the role and mechanisms of NETs in ED in the context of DM. Here, we observed that NET generation and pyroptosis were promoted in DM rats with ED compared with controls. Mechanistically, NETs facilitated NLRP3 inflammasome activation and subsequently triggered pyroptosis under high glucose stress, ultimately leading to ED. Intriguingly, DNase I (a NET degrading agent) alleviated ED and corpus cavernosum injury in DM rats. Overall, NETs might induce ED in DM by promoting NLRP3-mediated pyroptosis in the corpus cavernosum.


Subject(s)
Diabetes Mellitus, Experimental , Erectile Dysfunction , Extracellular Traps , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Extracellular Traps/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Erectile Dysfunction/metabolism , Erectile Dysfunction/etiology , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Neutrophils/metabolism , Rats, Sprague-Dawley , Inflammasomes/metabolism , Deoxyribonuclease I/metabolism , Penis/metabolism , Penis/pathology
4.
Biomed Pharmacother ; 177: 116987, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897159

ABSTRACT

Erectile dysfunction is a complex and common complication of diabetes mellitus, which lacks an effective treatment. The repairing role of vascular endothelium is the current research hotspot of diabetic mellitus erectile dysfunction (DMED), and the activation of PI3K/AKT/eNOS pathway positively affects the repair of vascular endothelium. The herbal extract isorhamnetin has significant vasoprotective effects and has great potential in treating DMED. This study aimed to clarify whether isorhamnetin has an ameliorative effect on DMED and to investigate the modulation of the PI3K/AKT/eNOS signaling pathway by isorhamnetin to discover its potential mechanism of action. In vivo experiments were performed using a streptozotocin-induced diabetic rat model, and efficacy was assessed after 4 weeks of isorhamnetin gavage administration at 10 mg/kg or 20 mg/kg. Erectile function in rats was assessed by maximum intracavernous pressure/mean arterial pressure (ICPmax/MAP), and changes in corpus cavernosum (CC) fibrosis, inflammation levels, oxidative stress levels, and apoptosis were assessed by molecular biology techniques. In vitro experiments using high glucose-induced corpus cavernosum endothelial cells were performed to further validate the anti-apoptotic effect of isorhamnetin and its regulation of the PI3K/AKT/eNOS pathway. The findings demonstrated that isorhamnetin enhanced erectile function, decreased collagen content, and increased smooth muscle content in the CC of diabetic rats. In addition, isorhamnetin decreased the serum levels of pro-inflammatory factors IL-6, TNF-α, and IL-1ß, increased the levels of anti-inflammatory factors IL-10 and IL-4, increased the activities of SOD, GPx, and CAT as well as the levels of NO, and decreased the levels of MDA in corpus cavernosum tissues. Isorhamnetin also increased the content of CD31 in CC tissues of diabetic rats, activated the PI3K/AKT/eNOS signaling pathway, and inhibited apoptosis. In conclusion, isorhamnetin exerts a protective effect on erectile function in diabetic rats by reducing the inflammatory response, attenuating the level of oxidative stress and CC fibrosis, improving the endothelial function and inhibiting apoptosis. The mechanism underlying these effects may be linked to the activation of the PI3K/AKT/eNOS pathway.


Subject(s)
Erectile Dysfunction , Oxidative Stress , Quercetin , Signal Transduction , Animals , Male , Rats , Apoptosis/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Erectile Dysfunction/drug therapy , Erectile Dysfunction/etiology , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Penile Erection/drug effects , Penis/drug effects , Penis/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/pharmacology , Quercetin/analogs & derivatives , Rats, Sprague-Dawley , Signal Transduction/drug effects
5.
Adv Sci (Weinh) ; 11(30): e2306514, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874549

ABSTRACT

The mechanisms of adenosine and specific adenosine receptor subtypes in promoting penile rehabilitation remain unclear. Single-cell RNA sequencing of human corpus cavernosum,  adenosine deaminase (ADA) and adenosine receptors knock-out mice (ADA-/-, A1-/-, A2a-/-, A2b-/-, and A3-/-), and primary corpus cavernosum smooth muscle cells are used to determine receptor subtypes responsible for adenosine-induced erection. Three rat models are established to characterize refractory erectile dysfunction (ED): age-related ED, bilateral cavernous nerve crush related ED (BCNC), and diabetes mellitus-induced ED. In single-cell RNA sequencing data, the corpus cavernosum of ED patients show a decrease in adenosine A1, A2a and A2b receptors. In vivo, A2b receptor knock-out abolishes adenosine-induced erection but not that of A1, A2a, or A3 receptor. Under hypoxic conditions in vitro, activating the A2b receptor increases HIF-1α and decreases PDE5 expression. In refractory ED models, activating the A2b receptor with Bay 60-6583 improves erectile function and down-regulates HIF-1α and TGF-ß. Administering Dipyridamole (40 mg Kg-1) to BCNC rats improve penile adenosine levels and erectile function. Our study reveals that the A2b receptor mediates adenosine-induced penile erection. Activating the A2b receptor promotes penile rehabilitation of refractory ED by alleviating hypoxia and fibrosis.


Subject(s)
Disease Models, Animal , Erectile Dysfunction , Receptor, Adenosine A2B , Male , Animals , Erectile Dysfunction/metabolism , Erectile Dysfunction/rehabilitation , Erectile Dysfunction/drug therapy , Erectile Dysfunction/genetics , Receptor, Adenosine A2B/metabolism , Receptor, Adenosine A2B/genetics , Rats , Mice , Humans , Penis/metabolism , Penis/physiopathology , Mice, Knockout , Rats, Sprague-Dawley , Adenosine/metabolism , Penile Erection/drug effects , Penile Erection/physiology
6.
Elife ; 122024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856719

ABSTRACT

Erectile dysfunction (ED) affects a significant proportion of men aged 40-70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.


Subject(s)
Erectile Dysfunction , Penis , Pericytes , Single-Cell Gene Expression Analysis , Animals , Humans , Male , Mice , Erectile Dysfunction/genetics , Erectile Dysfunction/metabolism , Mice, Inbred C57BL , Penis/metabolism , Pericytes/metabolism , Transcriptome
7.
Br J Pharmacol ; 181(15): 2566-2582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38604613

ABSTRACT

BACKGROUND AND PURPOSE: An estimated 40% of patients with erectile dysfunction have a poor prognosis for improvement with currently available treatments. The present study investigated whether a newly developed monoamine transport inhibitor, IP2015, improves erectile function. EXPERIMENTAL APPROACH: We investigated the effects of IP2015 on monoamine uptake and binding, erectile function in rats and diabetic mice and the effect on corpus cavernosum contractility. KEY RESULTS: IP2015 inhibited the uptake of 5-HT, noradrenaline and dopamine by human monoamine transporters expressed in cells and in rat brain synaptosomes. Intracavernosal pressure measurement in anaesthetized rats revealed that IP2015 dose-dependently increased the number and the duration of spontaneous erections. Whereas pretreatment with the dopamine D2-like receptor antagonists, clozapine and (-)-sulpiride, or cutting the cavernosal nerve inhibited IP2015-induced erectile responses, the phosphodiesterase type 5 inhibitor sildenafil further enhanced the IP2015-mediated increase in intracavernosal pressure. IP2015 also increased the number of erections in type 2 diabetic db/db mice. Direct intracavernosal injection of IP2015 increased penile pressure, and in corpus cavernosum strips, IP2015 induced concentration-dependent relaxations. These relaxations were enhanced by sildenafil and blunted by endothelial cell removal, a nitric oxide synthase inhibitor, NG-nitro-l-arginine and a D1-like receptor antagonist, SCH23390. Quantitative polymerase chain reaction (qPCR) showed the expression of the dopamine transporter in the rat corpus cavernosum. CONCLUSION AND IMPLICATIONS: Our findings suggest that IP2015 stimulates erectile function by a central mechanism involving dopamine reuptake inhibition and direct NO-mediated relaxation of the erectile tissue. This novel multi-modal mechanism of action could offer a new treatment approach to erectile dysfunction.


Subject(s)
Dopamine , Nitric Oxide , Penile Erection , Rats, Sprague-Dawley , Male , Animals , Dopamine/metabolism , Nitric Oxide/metabolism , Penile Erection/drug effects , Rats , Mice , Humans , Mice, Inbred C57BL , Erectile Dysfunction/drug therapy , Erectile Dysfunction/metabolism , Piperazines/pharmacology , Penis/drug effects , Penis/metabolism , Dose-Response Relationship, Drug
8.
J Pediatr Surg ; 59(8): 1526-1530, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38631998

ABSTRACT

BACKGROUND: A buried penis (BP) is rare in which the penile body is retracted into the prepubic adipose tissue. This research focuses on differences in smooth muscle myosin heavy chain (SMMHC) isoform expressions in the dartos fascia. METHODS: A total of 82 children, 41 of whom had BPs, who applied for circumcision between May and November 2021, were included in the study. The cases were divided into four groups aged ≥6 years (NP6, n = 18) and aged ≤3 years (NP3, n = 17) with normal penile appearance, aged ≥6 years (BP6, n = 23) and aged ≤3 years (BP,n = 24) with a BP. SMMHC isoforms mRNA gene expression analyses were performed by quantitative PCR technique in dartos fascia obtained from foreskin removed by circumcision. RESULTS: Compared to the NP3 group, the SM1 mRNA expressed in the BP6 group was statistically significantly higher (p < 0.005). SM2 mRNA levels expressed in dartos fascia were considerably higher in NP6 and NP3 groups compared to BP6 and BP3 groups (p < 0.001). The SM2/SM1 ratio was 0.85 in the BP6 group and 1.46 in the NP6 group, which was statistically significant (p = 0.006) and increased from 0.87 in the BP3 group to 2.21 in the NP3 group (p < 0.001). CONCLUSION: In a buried penis, there is a difference in the expression of SMMHC isoforms. SM1 is highly expressed, while SM2 decreases, increasing the SM2/SM1 ratio. This causes increased contractility in the smooth muscle, leading to retraction of the penile body. The dartos fascia surrounding it resembles aberrant muscle tissue in boys with a BP. LEVEL OF EVIDENCE: Level III. TYPE OF STUDY: Case-control study.


Subject(s)
Myosin Heavy Chains , Penis , Protein Isoforms , Humans , Male , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Child , Child, Preschool , Protein Isoforms/genetics , Penis/metabolism , RNA, Messenger/metabolism , RNA, Messenger/analysis , Infant , Circumcision, Male , Penile Diseases/metabolism , Penile Diseases/genetics , Smooth Muscle Myosins/metabolism , Smooth Muscle Myosins/genetics , Smooth Muscle Myosins/analysis
9.
J Sex Med ; 21(5): 367-378, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38451311

ABSTRACT

BACKGROUND: Cavernous nerve (CN) injury, caused by prostatectomy and diabetes, initiates a remodeling process (smooth muscle apoptosis and increased collagen) in the corpora cavernosa of the penis of patients and animal models that is an underlying cause of erectile dysfunction (ED), and the Sonic hedgehog (SHH) pathway plays an essential role in the response of the penis to denervation, as collagen increases with SHH inhibition and decreases with SHH treatment. AIM: We examined if part of the mechanism of how SHH prevents penile remodeling and increased collagen with CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1) and examined the relationship between SHH, BMP4, GREM1, and collagen in penis of ED patients and rat models of CN injury, SHH inhibition, and SHH, BMP4, and GREM1 treatment. METHODS: Corpora cavernosa of Peyronie's disease (control), prostatectomy, and diabetic ED patients were obtained (N = 30). Adult Sprague Dawley rats (n = 90) underwent (1) CN crush (1-7 days) or sham surgery; (2) CN injury and BMP4, GREM1, or mouse serum albumin (control) treatment via Affi-Gel beads or peptide amphiphile (PA) for 14 days; (3) 5E1 SHH inhibitor, IgG, or phosphate-buffered saline (control) treatment for 2 to 4 days; or (4) CN crush with mouse serum albumin or SHH for 9 days. OUTCOMES: Immunohistochemical and Western analysis for BMP4 and GREM1, and collagen analysis by hydroxyproline and trichrome stain were performed. RESULTS: BMP4 and GREM1 proteins were identified in corpora cavernosa smooth muscle of prostatectomy, diabetic, and Peyronie's patients, and in rat smooth muscle, sympathetic nerve fibers, perineurium, blood vessels, and urethra. Collagen decreased 25.4% in rats with CN injury and BMP4 treatment (P = .02) and increased 61.3% with CN injury and GREM1 treatment (P = .005). Trichrome stain showed increased collagen in rats treated with GREM1. Western analysis identified increased BMP4 and GREM1 in corpora cavernosa of prostatectomy and diabetic patients, and after CN injury (1-2 days) in our rat model. Localization of BMP4 and GREM1 changed with SHH inhibition. SHH treatment increased the monomer form of BMP4 and GREM1, altering their range of signaling. CLINICAL IMPLICATIONS: A better understanding of penile remodeling and how fibrosis occurs with loss of innervation is essential for development of novel ED therapies. STRENGTHS AND LIMITATIONS: The relationship between SHH, BMP4, GREM1, and collagen is complex in the penis. CONCLUSION: BMP4 and GREM1 are downstream targets of SHH that impact collagen and may be useful in collaboration with SHH to prevent penile remodeling and ED.


Subject(s)
Bone Morphogenetic Protein 4 , Collagen , Erectile Dysfunction , Hedgehog Proteins , Intercellular Signaling Peptides and Proteins , Penis , Signal Transduction , Animals , Humans , Male , Middle Aged , Rats , Bone Morphogenetic Protein 4/metabolism , Collagen/metabolism , Cytokines , Disease Models, Animal , Erectile Dysfunction/metabolism , Erectile Dysfunction/etiology , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Penile Induration/metabolism , Penis/innervation , Penis/metabolism , Prostatectomy , Rats, Sprague-Dawley , Signal Transduction/physiology
10.
Exp Cell Res ; 436(2): 113980, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38401686

ABSTRACT

BACKGROUND: Hypospadias is a common congenital abnormality of the penile. Abnormal regulation of critical genes involved in urethral development leads to hypospadias. We used the Rab25-/- mice and foreskin fibroblasts transfected with lentivirus in vitro and in vivo to investigate the role of Rab25 in hypospadias. METHODS: The expression levels of various molecules in tissue samples and foreskin fibroblasts were confirmed using molecular biology methods (western blotting, PCR, immunohistochemistry, etc.). A scanning electron microscope (SEM) was used to visualize the external morphology of genital tubercles (GTs) of gestation day (GD) 18.5 male wild-type (WT) and Rab25-/- mice. RESULTS: An expanded distal cleft and V-shaped urethral opening were observed in GD 18.5 Rab25-/- mice. We demonstrated that Rab25 mediated hypospadias through the ß1 integrin/EGFR pathway. In addition, silencing Rab25 inhibited cell proliferation and migration and promoted apoptosis in the foreskin fibroblasts; Ki-67- and TUNEL-positive cells were mainly concentrated near the urethral seam. CONCLUSION: These findings suggest that Rab25 plays an essential role in hypospadias by activation of ß1 integrin/EGFR pathway, and Rab25 is a critical mediator of urethral seam formation in GD18.5 male fetal mice.


Subject(s)
Hypospadias , Humans , Male , Mice , Animals , Hypospadias/genetics , Hypospadias/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Urethra/metabolism , Penis/metabolism , ErbB Receptors/metabolism , rab GTP-Binding Proteins/genetics
11.
Histol Histopathol ; 39(8): 1009-1015, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38221876

ABSTRACT

Exposure to prolonged stress in pregnancy and/or lactation can lead to the future development of diseases. We aimed to study the effects of maternal stress on the biometry, metabolism, and penile morphology of young Wistar rats. Animals were divided into two experimental groups: Control Group (C) - pups from control mothers, without any intervention (n=5); and Chronic Stress Group (S) - pups from mothers who suffered variable stress in the third week of pregnancy (14th to 21st day; n=5). Food intake and body mass of the pups (n=10, in the C group and n=9 in the S group) were checked; at euthanasia (three months old), fat deposits and penis were removed. At birth and weaning, S animals were lighter than C animals, [-33.72% (p=0.0422) and -17.07% (p=0.0018)], respectively. However, the final body mass and body mass delta showed no differences. Food intake and fat deposits also did not differ. However, the S group was hyperglycemic at 30 and 60 days of life [+20.59% (p=0.0042) and +14.56% (p=0.0079), respectively], despite the glycemia measured at 90 days showing no difference between groups. Penile areas and surface densities of the corpora cavernosa components were similar between groups. The results indicate that maternal stress is an important metabolic programmer, which generates low birth weight and accelerated recovery of body mass after birth (catch-up). However, in an early analysis (90 days of life), exposure to gestational stress did not change the morphology of the offspring's penis in adulthood.


Subject(s)
Penis , Prenatal Exposure Delayed Effects , Rats, Wistar , Stress, Psychological , Animals , Male , Female , Pregnancy , Penis/metabolism , Rats , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Stress, Psychological/metabolism , Animals, Newborn , Body Weight
12.
Andrology ; 12(6): 1449-1462, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38273709

ABSTRACT

BACKGROUND: The relationship between erectile dysfunction (ED) and type 1 diabetes mellitus (T1DM) is currently a hot topic of medical research. It has been reported that autophagy plays a crucial role in causing erectile dysfunction in T1DM. Recent research has shown that mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) is strongly linked to the development of T1DM. However, the specific mechanism by which it regulates the erectile function is not yet fully understood. OBJECTIVES: To investigate whether HMGCS2 affects erectile function in type 1 diabetic rats by regulating autophagy in corpus cavernosum endothelial cells (CCECs). MATERIALS AND METHODS: First, the rat model of T1DM was established. Then, the ratio of maximum penile intracavernous pressure (ICPmax) and mean arterial pressure (MAP) was detected to assess the erectile function in various groups, and the protein expression of HMGCS2, mTOR and p-mTOR was evaluated by western blot (WB) and immunohistochemistry (IHC). To explore the relationship between HMGCS2 and the mTOR signaling pathway in T1DM ED rats, we silenced the expression of HMGCS2 and activated the mTOR signaling pathway with MHY1485 in CCECs and then assessed the expression of beclin1, P62, LC3, autophagosome, endothelial nitric oxide synthase (eNOS), phosphorylation of eNOS (p-eNOS), and nitric oxide (NO) to evaluate autophagy and the erectile function by reverse transcription quantitative polymerase chain reaction and western blot. RESULTS: The study conducted on T1DM ED rats showed that the expression of HMGCS2 was significantly increased, while the autophagy was suppressed. Additionally, the mTOR signaling pathway was highly activated. In contrast, when HMGCS2 was silenced in vitro, p-mTOR/mTOR was reduced, and autophagy was improved. These effects were accompanied by the enhanced activity of eNOS. Furthermore, when HMGCS2 was silenced and the mTOR signaling pathway was simultaneously activated, the results revealed a decrease in autophagy as well as a reduction in activity of eNOS in comparison to just silencing HMGCS2 alone. DISCUSSION AND CONCLUSION: HMGCS2 upregulation in T1DM rats inhibited autophagy and eNOS activity by activating the mTOR pathway and led to a decrease in the erectile function.


Subject(s)
Autophagy , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Erectile Dysfunction , Hydroxymethylglutaryl-CoA Synthase , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Male , Erectile Dysfunction/metabolism , Erectile Dysfunction/physiopathology , TOR Serine-Threonine Kinases/metabolism , Rats , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Penis/metabolism , Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism
13.
Andrology ; 12(6): 1280-1293, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38227138

ABSTRACT

BACKGROUND: Diabetes mellitus-induced erectile dysfunction (DMED) has become a common disease in adult men that can seriously reduce the quality of life of patients, and new therapies are urgently needed. miRNA-100 has many targets and can induce autophagy and reduce fibrosis by inhibiting the mTOR pathway and the TGF-ß pathway. However, no research has been conducted with miR-100 in the field of DMED, and the specific mechanism of action is still unclear. OBJECTIVES: To ascertain the effects of miR-100 on corpus cavernosum tissue of DMED rats and vascular endothelial cells in a high glucose environment and to elucidate the relevant mechanisms in autophagy, fibrosis and inflammation to find a new approach for the DMED therapy. METHODS: Thirty rats were divided into three groups: the control group, the DMED group, and the DMED + miR-100 group. Using intraperitoneal injections of streptozotocin, all rats except the control group were modeled with diabetes mellitus, which was verified using the apomorphine (APO) test. For rats in the DMED + miR-100 group, rno-miR-100-5p agomir (50 nmol/kg, every 2 days, 6 times in total) was injected via the tail vein. After 13 weeks, the erectile function of each rat was assessed using cavernous manometry, and the corpus cavernosum tissue was harvested for subsequent experiments. For cellular experiments, human coronary microartery endothelial cells (HCMEC) were divided into four groups: the control group, the high-glucose (HG, 40 mM) group, the HG + mimic group, and the HG + inhibitor group. The cells were cultured for 6 days and collected for subsequent experiments 2 days after transfection. RESULTS: Diabetic modeling impaired the erectile function in rats, and miR-100 reversed this effect. By measuring autophagy-related proteins such as mTOR/Raptor/Beclin1/p62/LC3B, we found that miR-100 could suppress the expression of mTOR and induce autophagy. The analysis of the eNOS/NO/cGMP axis function indicated that impaired endothelial function was improved by miR-100. By evaluating the TGF-ß1/CTGF/Smad2/3 and NF-κB/TNF-α pathways, we found that miR-100 could lower the level of inflammation and fibrosis, which contributed to the improvement of the erectile function. Cellular experiments can be used as supporting evidence for these findings. CONCLUSION: MiR-100 can improve the erectile function by inhibiting mTOR and thus inducing autophagy, improving the endothelial function through the eNOS/NO/cGMP axis, and exerting antifibrotic and anti-inflammatory effects, which may provide new ideas and directions for the treatment of DMED.


Subject(s)
Autophagy , Diabetes Mellitus, Experimental , Erectile Dysfunction , Fibrosis , MicroRNAs , Animals , Male , Erectile Dysfunction/etiology , Erectile Dysfunction/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Rats , Diabetes Mellitus, Experimental/complications , Rats, Sprague-Dawley , Penis/metabolism , Endothelial Cells/metabolism
14.
Asian Journal of Andrology ; (6): 452-459, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-1009710

ABSTRACT

This study aimed to investigate the functional and morphological changes in the corpus cavernosum after cavernous nerve (CN) injury or neurectomy and then reveal whether treatment with the angiotensin II Type 1 receptor antagonist losartan would improve erectile function as well as its potential mechanisms. A total of 48 10-week-old Sprague-Dawley male rats, weighing 300-350 g, were randomly divided into the following four groups (n = 12 per group): sham operation (Sham) group, bilateral cavernous nerve injury (BCNI) group, losartan-treated BCNI (BCNI + Losartan) group, and bilateral cavernous neurectomy (Neurectomy) group. Losartan was administered once daily by oral gavage at a dose of 30 mg kg-1 day-1 for 4 weeks starting on the day of surgery. The BCNI and the Neurectomy groups exhibited decreases in erectile response and increases in apoptosis and oxidative stress, compared with the Sham group. Treatment with losartan could have a modest effect on erectile function and significantly prevent corporal apoptosis and oxidative stress. The phospho-B-cell lymphoma 2 (Bcl-2)-associated death promoter (p-Bad)/Bad and phospho-the protein kinase B (p-AKT)/AKT ratios were substantially lower, while the Bcl-2-associated X protein (Bax)/Bcl-2 ratio, nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap-1), transforming growth factor-β 1 (TGF-β 1) and heme oxygenase-1 (HO-1) levels, and caspase-3 activity were higher in the BCNI and Neurectomy groups than in the Sham group. After 4 weeks of daily administration with losartan, these expression levels were remarkably attenuated compared with the BCNI group. Taken together, our results suggested that early administration of losartan after CN injury could slightly improve erectile function and significantly reduce corporal apoptosis and oxidative stress by inhibiting the Akt/Bad/Bax/caspase-3 and Nrf2/Keap-1 pathways.


Subject(s)
Animals , Male , Rats , Angiotensin II Type 1 Receptor Blockers/pharmacology , Apoptosis/drug effects , Denervation , Disease Models, Animal , Erectile Dysfunction/metabolism , Losartan/pharmacology , Oxidative Stress/drug effects , Penile Erection/drug effects , Penis/metabolism , Rats, Sprague-Dawley
15.
Asian Journal of Andrology ; (6): 24-29, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-1009523

ABSTRACT

Emerging evidence indicates that aldosterone and mineralocorticoid receptors (MRs) are associated with the pathogenesis of erectile dysfunction. However, the molecular mechanisms remain largely unknown. In this study, freshly isolated penile corpus cavernosum tissue from rats was treated with aldosterone, with or without MRs inhibitors. Nuclear factor (NF)-kappa B (NF-κB) activity was evaluated by real-time quantitative PCR, luciferase assay, and immunoblot. The results demonstrated that mRNA levels of the NF-κB target genes, including inhibitor of NF-κB alpha (IκB-α), NF-κB1, tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6), were higher after aldosterone treatment. Accordingly, phosphorylation of p65/RelA, IκB-α, and inhibitor of NF-κB kinase-β was markedly increased by aldosterone. Furthermore, knockdown of MRs prevented activation of the NF-κB canonical pathway by aldosterone. Consistent with this finding, ectopic overexpression of MRs enhanced the transcriptional activation of NF-κB by aldosterone. More importantly, the MRs antagonist, spironolactone blocked aldosterone-mediated activation of the canonical NF-κB pathway. In conclusion, aldosterone has an inflammatory effect in the corpus cavernosum penis, inducing NF-κB activation via an MRs-dependent pathway, which may be prevented by selective MRs antagonists. These data reveal the possible role of aldosterone in erectile dysfunction as well as its potential as a novel pharmacologic target for treatment.


Subject(s)
Animals , Male , Rats , Aldosterone/pharmacology , Cytokines/biosynthesis , Gene Knockdown Techniques , I-kappa B Kinase/antagonists & inhibitors , Interleukin-6/genetics , Mineralocorticoid Receptor Antagonists/pharmacology , NF-kappa B/genetics , Penis/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , RNA, Messenger/biosynthesis , Rats, Inbred WKY , Receptors, Mineralocorticoid/genetics , Signal Transduction/drug effects , Spironolactone/pharmacology , Transcriptional Activation , Tumor Necrosis Factor-alpha/biosynthesis , NF-kappaB-Inducing Kinase
16.
Asian Journal of Andrology ; (6): 448-453, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-1009605

ABSTRACT

Erectile dysfunction (ED) associated with type 2 diabetes is a severe problem that requires effective treatment. Pancreatic kininogenase (PK) has the potential to improve the erectile function of ED patients. This study aims to investigate the effect of PK on erectile function in streptozotocin-induced type 2 diabetic ED rats. To achieve this goal, we divided male Sprague-Dawley rats into five groups. One group was not treated, and the other four groups were treated with saline, sildenafil, PK or sildenafil, and PK, respectively, for 4 weeks after the induction of type 2 diabetic ED. Then, intracavernous pressure under cavernous nerve stimulation was measured, and penile tissue was collected for further study. Endothelial nitric oxide synthase levels, smooth muscle content, endothelium content, cyclic guanosine monophosphate (cGMP) levels in the corpus cavernosum, and neuronal nitric oxide synthase levels in the dorsal penile nerve were measured. Improved erectile function and endothelium and smooth muscle content in the corpus cavernosum were observed in diabetic ED rats. When treating diabetic ED rats with PK and sildenafil at the same time, a better therapeutic effect was achieved. These data demonstrate that intraperitoneal injection of PK can improve erectile function in a rat model of type 2 diabetic ED. With further research on specific mechanisms of erectile function improvement, PK may become a novel treatment for diabetic ED.


Subject(s)
Animals , Male , Rats , Cyclic GMP/metabolism , Diabetes Mellitus, Experimental/physiopathology , Erectile Dysfunction/physiopathology , Kallikreins/therapeutic use , Muscle, Smooth, Vascular/physiopathology , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type III/metabolism , Penile Erection/physiology , Penis/metabolism , Rats, Sprague-Dawley , Sildenafil Citrate/therapeutic use , Treatment Outcome , Urological Agents/therapeutic use
17.
Braz. j. med. biol. res ; 51(3): e6329, 2018. graf
Article in English | LILACS | ID: biblio-889035

ABSTRACT

Recent evidence shows that chronic ethanol consumption increases endothelin (ET)-1 induced sustained contraction of trabecular smooth muscle cells of the corpora cavernosa in corpus cavernosum of rats by a mechanism that involves increased expression of ETA and ETB receptors. Our goal was to evaluate the effects of alcohol and diabetes and their relationship to miRNA-155, miRNA-199 and endothelin receptors in the corpus cavernosum and blood of rats submitted to the experimental model of diabetes mellitus and chronic alcoholism. Forty-eight male Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D), and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study the protein expression of endothelin receptors by immunohistochemistry and expression of miRNAs-155 and -199 in serum and the cavernous tissue. Immunostaining for endothelin receptors was markedly higher in the A, D, and AD groups than in the C group. Moreover, a significant hypoexpression of the miRNA-199 in the corpus cavernosum tissue from the AD group was observed, compared to the C group. When analyzing the microRNA profile in blood, a significant hypoexpression of miRNA-155 in the AD group was observed compared to the C group. The miRNA-199 analysis demonstrated significant hypoexpression in D and AD groups compared to the C group. Our findings in corpus cavernosum showed downregulated miRNA-155 and miRNA-199 levels associated with upregulated protein expression and unaltered mRNA expression of ET receptors suggesting decreased ET receptor turnover, which can contribute to erectile dysfunction in diabetic rats exposed to high alcohol levels.


Subject(s)
Animals , Male , Rats , Alcoholism/metabolism , Diabetes Mellitus, Experimental/metabolism , Endothelin-1/analysis , MicroRNAs/analysis , Penis/metabolism , Receptor, Endothelin A/analysis , Receptor, Endothelin B/analysis , Alcoholism/complications , Alcoholism/physiopathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Immunohistochemistry , Penis/physiopathology , Rats, Wistar
18.
Article in English | WPRIM (Western Pacific) | ID: wpr-58423

ABSTRACT

The aim of this study was to investigate whether the omega-3 fatty acids help to improve erectile function in an atherosclerosis-induced erectile dysfunction rat model. A total of 20 male Sprague-Dawley rats at age 8 weeks were divided into three groups: Control group (n = 6, untreated sham operated rats), Pathologic group (n = 7, untreated rats with chronic pelvic ischemia [CPI]), and Treatment group (n = 7, CPI rats treated with omega-3 fatty acids). For the in vivo study, electrical stimulation of the cavernosal nerve was performed and erectile function was measured in all groups. Immunohistochemical antibody staining was performed for transforming growth factor beta-1 (TGF-β1), endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor 1-alpha (HIF-1α). In vivo measurement of erectile function in the Pathologic group showed significantly lower values than those in the Control group, whereas the Treatment group showed significantly improved values in comparison with those in the Pathologic group. The results of western blot analysis revealed that systemically administered omega-3 fatty acids ameliorated the cavernosal molecular environment. Our study suggests that omega-3 fatty acids improve intracavernosal pressure and have a beneficial role against pathophysiological consequences such as fibrosis or hypoxic damage on a CPI rat model, which represents a structural erectile dysfunction model.


Subject(s)
Animals , Male , Rats , Atherosclerosis/complications , Blotting, Western , Carotid Arteries/physiology , Chronic Disease , Disease Models, Animal , Electric Stimulation , Fatty Acids, Omega-3/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia/etiology , Nitric Oxide Synthase Type III/metabolism , Penile Erection/drug effects , Penis/metabolism , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism
19.
Braz. j. med. biol. res ; 47(10): 876-885, 10/2014. tab, graf
Article in English | LILACS | ID: lil-722165

ABSTRACT

The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F1α (6-keto-PGF1α; a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM22-52, a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP8-37, a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with NG-nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K+ channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K+ channels), and apamin (Ca2+-activated channel blocker) did not affect AM-induced relaxation. AM increased nitrate levels and 6-keto-PGF1α in rat CSM. The major new contribution of this research is that it demonstrated expression of AM and its receptor in rat CSM. Moreover, we provided evidence that AM-induced relaxation in this tissue is mediated by AM receptors by a mechanism that involves the nitric oxide-cGMP pathway, a vasodilator prostanoid, and the opening of voltage-dependent K+ channels.


Subject(s)
Animals , Male , Adrenomedullin/pharmacology , Calcitonin Receptor-Like Protein/analysis , Muscle, Smooth/drug effects , Parasympatholytics/pharmacology , Penis/drug effects , Vasodilator Agents/pharmacology , /pharmacology , /analysis , Adrenomedullin/genetics , Adrenomedullin/metabolism , Blotting, Western , Calcitonin Receptor-Like Protein/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclooxygenase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Immunohistochemistry , Indazoles/pharmacology , Muscle Relaxation , Muscle, Smooth/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/analysis , Nitric Oxide/analogs & derivatives , Penis/metabolism , Potassium Channels, Voltage-Gated/metabolism , Rats, Wistar , Real-Time Polymerase Chain Reaction , RNA, Messenger/metabolism , Receptor Activity-Modifying Protein 1/genetics , Receptor Activity-Modifying Protein 1/metabolism , /metabolism , /genetics , /metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism
20.
Article in English | WPRIM (Western Pacific) | ID: wpr-80576

ABSTRACT

Cartilage oligomeric matrix protein-angiopoietin-1 (COMP-Ang1) is an angiogenic factor for vascular angiogenesis. The aim was to investigate the effect of an intracavernosal injection of COMP-Ang1 on cavernosal angiogenesis in a diabetic rat model. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats made up the experimental group (1 yr old) and Long-Evans Tokushima Otsuka (LETO) rats made up the control group. The experimental group was divided into vehicle only, 10 microg COMP-Ang1, and 20 microg COMP-Ang1. COMP-Ang1 was injected into the corpus cavernosum of the penis. After 4 weeks, the penile tissues of the rats were obtained for immunohistochemistry and Western blot analysis. The immunoreactivity of PECAM-1 and VEGF was increased in the COMP-Ang1 group compared with the vehicle only group. Moreover, the expression of PECAM-1 and VEGF was notably augmented in the 20 microg Comp Ang-1 group. In the immunoblotting study, the expression of PECAM-1 and VEGF protein was significantly less in the OLEFT rats than in the control LETO rats. However, this expression was restored to control level after intracavernosal injection of COMP-Ang1. These results show that an intracavernosal injection of COMP-Ang1 enhances cavernous angiogenesis by structurally reinforcing the cavernosal endothelium.


Subject(s)
Animals , Male , Rats , Angiopoietin-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Blood Glucose/analysis , Blotting, Western , Body Weight , Cartilage Oligomeric Matrix Protein/genetics , Diabetes Mellitus, Experimental/pathology , Immunohistochemistry , Neovascularization, Physiologic/drug effects , Penis/metabolism , Rats, Long-Evans , Recombinant Fusion Proteins/biosynthesis , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL