Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.996
1.
Invest Ophthalmol Vis Sci ; 65(6): 12, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38842829

Purpose: To test the hypothesis that (C-C motif) ligand 2 (CCL2) and CCL3 impact retinal function decline and inflammation during Staphylococcus aureus endophthalmitis. Methods: Experimental endophthalmitis was initiated by intravitreal injection of 5000 colony-forming units of S. aureus into the eyes of C57BL/6J, CCL2-/-, or CCL3-/- mice. At 12 and 24 hours post-infection, retinal function, bacterial load, and myeloperoxidase levels were quantified. Results: During S. aureus endophthalmitis, we observed a significant improvement in retinal function in CCL2-/- mice relative to C57BL/6J mice at 12 hours but not at 24 hours. In CCL3-/- mice, retinal function was significantly improved relative to C57BL/6J mice at 12 and 24 hours. The absence of CCL2 did not alter intraocular S. aureus intraocular concentrations. However, CCL3-/- mice had significantly lower intraocular S. aureus at 12 hours but not at 24 hours. No difference in myeloperoxidase levels was observed between C57BL/6J and CCL2-/- mice at 12 hours. CCL3-/- mice had almost no myeloperoxidase at 12 hours. At 24 hours, increased myeloperoxidase was observed in CCL2-/- and CCL3-/- mice relative to C57BL/6J mice. Conclusions: Although the absence of CCL2 resulted in improved retinal function retention at 12 hours, CCL3 deficiency resulted in improved retinal function at 12 and 24 hours. CCL3 deficiency, but not CCL2 deficiency, resulted in almost no inflammation at 12 hours. However, at 24 hours, the absence of CCL2 or CCL3 resulted in significantly increased inflammation. These results suggest that, although both CCL2 and CCL3 impact intraocular infection outcomes, CCL3 may have a more significant impact in S. aureus endophthalmitis.


Chemokine CCL2 , Chemokine CCL3 , Disease Models, Animal , Endophthalmitis , Eye Infections, Bacterial , Mice, Inbred C57BL , Staphylococcal Infections , Staphylococcus aureus , Animals , Endophthalmitis/microbiology , Endophthalmitis/metabolism , Mice , Staphylococcal Infections/microbiology , Eye Infections, Bacterial/microbiology , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Mice, Knockout , Peroxidase/metabolism , Retina/metabolism , Retina/microbiology , Electroretinography
2.
Drug Res (Stuttg) ; 74(5): 241-249, 2024 Jun.
Article En | MEDLINE | ID: mdl-38830372

Pentoxifylline (PTX), a non-selective phosphodiesterase inhibitor, has demonstrated protective effects against lung injury in animal models. Given the significance of pulmonary toxicity resulting from paraquat (PQ) exposure, the present investigation was designed to explore the impact of PTX on PQ-induced pulmonary oxidative impairment in male mice.Following preliminary studies, thirty-six mice were divided into six groups. Group 1 received normal saline, group 2 received a single dose of PQ (20 mg/kg; i.p.), and group 3 received PTX (100 mg/kg/day; i.p.). Additionally, treatment groups 4-6 were received various doses of PTX (25, 50, and 100 mg/kg/day; respectively) one hour after a single dose of PQ. After 72 hours, the animals were sacrificed, and lung tissue was collected.PQ administration caused a significant decrease in hematocrit and an increase in blood potassium levels. Moreover, a notable increase was found in the lipid peroxidation (LPO), nitric oxide (NO), and myeloperoxidase (MPO) levels, along with a notable decrease in total thiol (TTM) and total antioxidant capacity (TAC) contents, catalase (CAT) and superoxide dismutase (SOD) enzymes activity in lung tissue. PTX demonstrated the ability to improve hematocrit levels; enhance SOD activity and TTM content; and decrease MPO activity, LPO and NO levels in PQ-induced pulmonary toxicity. Furthermore, these findings were well-correlated with the observed lung histopathological changes.In conclusion, our results suggest that the high dose of PTX may ameliorate lung injury by improving the oxidant/antioxidant balance in animals exposed to PQ.


Antioxidants , Lipid Peroxidation , Lung , Paraquat , Pentoxifylline , Superoxide Dismutase , Animals , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Paraquat/toxicity , Mice , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Lipid Peroxidation/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects , Catalase/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Nitric Oxide/metabolism , Peroxidase/metabolism , Lung Injury/chemically induced , Lung Injury/drug therapy , Phosphoric Diester Hydrolases/metabolism
3.
J Vet Sci ; 25(3): e35, 2024 May.
Article En | MEDLINE | ID: mdl-38834505

IMPORTANCE: Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis characterized by inflammation within the central nervous system. However, inflammation in non-neuronal tissues, including the lungs, has not been fully evaluated. OBJECTIVE: This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry. METHODS: Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry. RESULTS: Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05). Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice. CONCLUSIONS AND RELEVANCE: Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.


Encephalomyelitis, Autoimmune, Experimental , Lung , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Lung/pathology , Female , Immunohistochemistry , Osteopontin/metabolism , Galectin 3/metabolism , Peroxidase/metabolism , Hyaluronan Receptors/metabolism , Spinal Cord/pathology , Inflammation/pathology , Blotting, Western
4.
BMC Genom Data ; 25(1): 41, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711007

BACKGROUND: Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS: We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS: In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.


Gene Expression Regulation, Plant , Phylogeny , Plant Growth Regulators , Pyrus , Pyrus/genetics , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Melatonin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Peroxidase/genetics , Peroxidase/metabolism , Acetates/pharmacology , Acetates/metabolism , Fruit/genetics , Fruit/growth & development
5.
Front Immunol ; 15: 1360700, 2024.
Article En | MEDLINE | ID: mdl-38736886

Introduction: Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results: Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion: Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.


Monocytes , Myocardial Infarction , Peroxidase , Animals , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Peroxidase/metabolism , Monocytes/immunology , Monocytes/metabolism , Humans , Mice , Male , Cell Movement , Disease Models, Animal , Mice, Inbred C57BL , Female , Neutrophils/immunology , Neutrophils/metabolism , Mice, Knockout , Receptors, CCR2/metabolism , Middle Aged
6.
Anal Chim Acta ; 1309: 342698, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772661

BACKGROUND: The lateral flow immunoassay (LFIA) is widely employed as a point-of-care testing (POCT) technique. However, its limited sensitivity hinders its application in detecting biomarkers with low abundance. Recently, the utilization of nanozymes has been implemented to enhance the sensitivity of LFIA by catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The catalytic performance of nanozymes plays a crucial role in influencing the sensitivity of LFIA. RESULTS: The Cornus officinalis Sieb. et Zucc-Pd@Pt (CO-Pd@Pt) nanozyme with good peroxidase-like activity was synthesized herein through a facile one-pot method employing Cornus officinalis Sieb. et Zucc extract as a reducing agent. The morphology and composition of the CO-Pd@Pt nanozyme were characterized using TEM, SEM, XRD, and XPS. As a proof of concept, the as-synthesized CO-Pd@Pt nanozyme was utilized in LFIA (CO-Pd@Pt-LFIA) for the detection of human chorionic gonadotropin (hCG). Compared to conventional gold nanoparticles-based LFIA (AuNPs-LFIA), CO-Pd@Pt-LFIA demonstrated a significant enhancement in the limit of detection (LOD, 0.08 mIU/mL), which is approximately 160 times lower than that of AuNPs-LFIA. Furthermore, experiments evaluating accuracy, precision, selectivity, interference, and stability have confirmed the practical applicability of CO-Pd@Pt-LFIA for hCG content determination. SIGNIFICANCE: The present study presents a novel approach for the synthesis of bimetallic nanozymes through environmentally friendly methods, utilizing plant extracts as both protective and reducing agents. Additionally, an easily implementable technique is proposed to enhance signal detection in lateral flow immunoassays.


Palladium , Platinum , Palladium/chemistry , Platinum/chemistry , Immunoassay/methods , Humans , Metal Nanoparticles/chemistry , Limit of Detection , Peroxidase/chemistry , Peroxidase/metabolism , Benzidines/chemistry , Catalysis , Oxidation-Reduction
7.
ACS Appl Mater Interfaces ; 16(20): 26870-26885, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739846

Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of ß-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The ß-galactosidase enzyme partially degrades ß-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.


Benzidines , Boron Compounds , Colorimetry , Escherichia coli , Quantum Dots , beta-Galactosidase , Quantum Dots/chemistry , Colorimetry/methods , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Boron Compounds/chemistry , Benzidines/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Peroxidase/chemistry , Peroxidase/metabolism , Limit of Detection , Oxidation-Reduction , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification
8.
PLoS One ; 19(5): e0301358, 2024.
Article En | MEDLINE | ID: mdl-38771804

Drug-resistant bacteria arising from antibiotic abuse infections have always been a serious threat to human health. Killing bacteria with toxic reactive oxygen species (ROS) is an ideal antibacterial method for treating drug-resistant bacterial infections. Here, we prepared Pt-Ru bimetallic nanoclusters (Pt-Ru NCs) with higher peroxidase (POD)-like activity than Pt monometallic nanoclusters. Pt-Ru can easily catalyze the decomposition of H2O2 to produce ·OH, thereby catalyzing the transformation of 3,3',5,5'-tetramethylbiphenylamine (TMB) to blue oxidized TMB (oxTMB). We utilized the POD-like activity of the Pt-Ru NCs for antibacterial therapy. The results showed that at doses of 40 µg/mL and 16 µg/mL, the Pt-Ru NCs exhibited extraordinary antibacterial activity against E. coli and S. aureus, demonstrating the enormous potential of Pt-Ru NCs as antibacterial agents.


Anti-Bacterial Agents , Escherichia coli , Metal Nanoparticles , Platinum , Ruthenium , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Platinum/chemistry , Platinum/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Peroxidase/metabolism , Hydrogen Peroxide/chemistry , Catalysis , Humans
9.
ACS Nano ; 18(19): 12367-12376, 2024 May 14.
Article En | MEDLINE | ID: mdl-38695521

Bimetallic nanoparticles (NPs) with peroxidase-like (POD-like) activity play a crucial role in biosensing, disease treatment, environmental management, and other fields. However, their development is impeded by a vast range of tunable properties in components and structures, making the establishment of structure-effect relationships and the discovery of active materials challenging. Addressing this, we established robust scaling relationships by meticulously analyzing the catalytic reaction networks of pure metal NPs, which laid the volcano-shaped correlation between the activity and O* adsorption energy. Utilizing these relationships, we introduced an innovative and versatile descriptor of the NPs, which was then integrated into a machine learning-accelerated high-throughput computational workflow, significantly boosting the predictive accuracy for the POD-like activity of bimetallic NPs. Our methodological approach enabled the successful prediction of activities for 1260 bimetallic NPs, leading to the identification of several highly effective catalysts. Furthermore, we distilled several strategies for designing efficient bimetallic NPs based on our screening results.


Machine Learning , Metal Nanoparticles , Metal Nanoparticles/chemistry , Catalysis , Peroxidase/chemistry , Peroxidase/metabolism , High-Throughput Screening Assays/methods
10.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2336-2344, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812134

This study aims to optimize the conditions for the formation of neutrophil extracellular traps(NETs) in vitro, so as to establish a relatively stable experimental research platform. Different conditions were compared, including commonly used laboratory animals(rats and mice) and a variety of cell sources(bone marrow neutrophils and peripheral blood neutrophils separated by percoll density gradient centrifugation). Different inducers like lipopolysaccharide(LPS) and phorbol 12-myristate 13-acetate(PMA) were used for induction in vitro. Myeloperoxidase(MPO)/citrullinated histone H3(CitH3)/DAPI immunofluorescence and cell free DNA(cf-DNA) content determination were used for comprehensive evaluation to screen the optimal conditions for the formation of NETs induced in vitro. Furthermore, the stability of the selected conditions for inducing the formation of NETs in vitro was evaluated by tetramethylpyrazine(TMP), an active component in Chinese herbal medicines. The results showed that coated poly-D-lysine(PDL) induced the formation of NETs in bone marrow neutrophils of mice to a certain extent. Both LPS and PMA significantly up-regulated the protein levels of MPO and CitH3 in mouse bone marrow neutrophils and elevated the cfDNA level in the supernatant of rat peripheral blood neutrophils. The cfDNA level in the PMA-induced group increased more significantly than that in the LPS-induced group(P<0.05). The results of immunofluorescence staining showed that the expression of MPO and CitH3 in mouse bone marrow neutrophils, rat bone marrow neutrophils, and rat peripheral blood neutrophils were significantly increased after PMA induction, especially in rat peripheral blood neutrophils. TMP significantly down-regulated the protein levels of MPO, CitH3, and neutrophil elastase(NE) in rat peripheral blood neutrophils induced by PMA. In conclusion, treating the peripheral blood neutrophils of rats with PMA is the optimal condition for inducing the formation of NETs in vitro. This study provides an optimal platform for in vitro studies based on NETs and a basis for studying the effects of traditional Chinese medicines targeting NETs.


Extracellular Traps , Neutrophils , Peroxidase , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Animals , Neutrophils/drug effects , Neutrophils/cytology , Mice , Rats , Peroxidase/metabolism , Peroxidase/genetics , Tetradecanoylphorbol Acetate/pharmacology , Male , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley , Histones/metabolism , Histones/genetics , Humans
11.
Cir Cir ; 92(2): 165-173, 2024.
Article En | MEDLINE | ID: mdl-38782389

OBJECTIVE: The current study aimed to explore the potential protective effect of Passiflora Incarnata L., (PI) in treating IR injury after testicular torsion in rats. MATERIALS AND METHODS: This research investigated the impact of PI on IR damage in male Wistar albino rats. Animals were divided to three groups: group 1 (sham), group 2 (IR), and group 3 (IR+PI). RESULTS: The malondialdehyde (MDA), myeloperoxidase (MPO) and glutathione (GSH) levels did not significantly differ across the groups (p = 0.830, p = 0.153 and p=0.140, respectively). However, Group 3 demonstrated a superior total antioxidant status (TAS) value compared to Group 2 (p = 0.020). Concurrently, Group 3 presented a significantly diminished mean total oxidant status (TOS) relative to Group 2 (p = 0.009). Furthermore, Group 3 showed a markedly improved Johnsen score relative to Group 2 (p < 0.01). IR caused cell degeneration, apoptosis, and fibrosis in testicular tissues. PI treatment, however, mitigated these effects, preserved seminiferous tubule integrity and promoted regular spermatogenesis. Furthermore, it reduced expression of tumor necrosis factor-alpha (TNF-α), Bax, and Annexin V, signifying diminished inflammation and apoptosis, thereby supporting cell survival (p < 0.01, p < 0.01, p < 0.01, respectively). CONCLUSIONS: This study revealed that PI significantly reduces oxidative stress and testicular damage, potentially benefiting therapies for IR injuries.


OBJETIVO: Explorar el posible efecto protector de Passiflora incarnata L. (PI) en el tratamiento de la lesión por isquemia-reperfusión (IR) después de una torsión testicular en ratas. MÉTODO: Se estudió el impacto de Passiflora incarnata en el daño por IR en ratas Wistar albinas machos. Los animales se dividieron tres grupos: 1 (simulado), 2 (IR) y 3 (IR+PI). RESULTADOS: Los niveles de malondialdehyde (MDA), myeloperoxidase (MPO) y glutathione (GSH) no difirieron significativamente entre los grupos (p = 0.830, p = 0.153 y p = 0.140, respectivamente). Sin embargo, el grupo 3 tuvo un valor de estado antioxidante total (TAS) superior en comparación con el grupo 2 (p = 0.020). Al mismo tiempo, el grupo 3 presentó un estado oxidante total (TOS) medio significativamente disminuido en comparación con el grupo 2 (p = 0.009). El grupo 3 mostró una mejora notable en la puntuación de Johnsen en comparación con el grupo 2 (p < 0.01). La IR causó degeneración celular, apoptosis y fibrosis en los tejidos testiculares. El tratamiento con PI mitigó estos efectos, preservó la integridad de los túbulos seminíferos y promovió la espermatogénesis regular. Además, redujo la expresión de factor de necrosis tumoral alfa, Bax y anexina V, lo que significa una disminución de la inflamación y de la apoptosis, respaldando así la supervivencia celular (p < 0.01, p < 0.01 y p < 0.01, respectivamente). CONCLUSIONES: Este estudio reveló que PI reduce significativamente el estrés oxidativo y el daño testicular, beneficiando potencialmente las terapias para lesiones por IR.


Disease Models, Animal , Passiflora , Rats, Wistar , Reperfusion Injury , Spermatic Cord Torsion , Animals , Male , Spermatic Cord Torsion/complications , Spermatic Cord Torsion/drug therapy , Reperfusion Injury/prevention & control , Rats , Passiflora/chemistry , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Phytotherapy , Malondialdehyde/analysis , Malondialdehyde/metabolism , Testis/drug effects , Oxidative Stress/drug effects , Glutathione/metabolism , Peroxidase/metabolism , Peroxidase/analysis , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/metabolism , Spermatogenesis/drug effects
12.
Arch Biochem Biophys ; 756: 110023, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705227

Myeloperoxidase is a critical component of the antibacterial arsenal of neutrophils, whereby it consumes H2O2 as an oxidant to convert halogen and pseudohalogen anions into cytotoxic hypohalous acids. Following phagocytosis by neutrophils, the human pathogen Staphylococcus aureus secretes a potent myeloperoxidase inhibitory protein, called SPIN, as part of its immune evasion repertoire. The matured S. aureus SPIN polypeptide consists of only 73 residues yet contains two functional domains: whereas the 60 residue C-terminal helical bundle domain is responsible for MPO binding, the 13 residue N-terminal domain is required to inhibit MPO. Previous studies have informed understanding of the SPIN N-terminal domain, but comparatively little is known about the helical domain insofar as the contribution of individual residues is concerned. To address this limitation, we carried out a residue-level structure/function investigation on the helical bundle domain of S. aureus SPIN. Using sequence conservation and existing structures of SPIN bound to human MPO as a guide, we selected residues L49, E50, H51, E52, Y55, and Y75 for interrogation by site-directed mutagenesis. We found that loss of L49 or E52 reduced SPIN activity by roughly an order of magnitude, but that loss of Y55 or H51 caused progressively greater loss of inhibitory potency. Direct binding studies by SPR showed that loss of inhibitory potency in these SPIN mutants resulted from a diminished initial interaction between the inhibitor and MPO. Together, our studies provide new insights into the structure/function relationships of SPIN and identify positions Y55 and H51 as critical determinants of SPIN function.


Peroxidase , Staphylococcus aureus , Staphylococcus aureus/enzymology , Humans , Peroxidase/chemistry , Peroxidase/metabolism , Peroxidase/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Domains , Amino Acid Sequence , Mutagenesis, Site-Directed , Models, Molecular , Protein Conformation, alpha-Helical
13.
Anal Methods ; 16(22): 3562-3576, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38780406

In this study, we proposed a colorimetric probe as S, N-carbon dot-decorated Ce-MOF (S, N-CD@Ce-MOF) for the dual detection of mercury and thiophanate methyl (TM), which are simultaneously present pollutants in the environment and foodstuffs. These pollutants cause serious threats to human health, such as carcinogenicity and neurovirulence. Herein, we synthesized S, N-CD@Ce-MOF using the hydrothermal method and applied it to a "turn-off-on" probe to detect mercury and TM using the colorimetric method in water and food samples. S, N-CD@Ce-MOF shows excellent peroxidase activity by catalyzing the chromogenic substrate of 3,3',5,5'-tetramethylbenzidine (TMB), resulting in deep blue-colored oxidized TMB product (ox TMB) in the presence of H2O2 with a UV absorption wavelength at 654 nm. However, the addition of Hg(II) ions prohibits the oxidation of TMB by an electron transfer effect and easily binds with -S, -N-containing sites on the surface of carbon dots, obstructing the catalytic active sites and decreasing catalytic efficiency with weak UV absorption at 654 nm as a "turn-off". Subsequently, the addition of TM to the above sensing solution as a "turn-on" was triggered by the TM-Hg complex formation and permitted TMB oxidation with a strong absorption peak at 654 nm. Furthermore, this proposed sensor demonstrates a superior linear response to mercury ions and TM in the ranges from 0 to 15 µM and 0 to 14 µM, respectively. The developed colorimetric assay exhibits good sensitivity and selectivity against various possible interferences. Furthermore, we found that the limits of detection for Hg2+ and TM were as low as 0.01 µM and 0.03 µM, respectively. The developed sensor provides various benefits, such as cost-effectiveness, simplicity without a complex detection process, and naked-eye detection. Consequently, our proposed colorimetric technique worked well for the detection of Hg2+ in real water samples and TM in real apple and tomato juice.


Carbon , Cerium , Colorimetry , Mercury , Quantum Dots , Colorimetry/methods , Mercury/analysis , Mercury/chemistry , Carbon/chemistry , Cerium/chemistry , Quantum Dots/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Peroxidase/chemistry , Peroxidase/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Oxidation-Reduction
14.
J Phys Chem Lett ; 15(22): 5804-5813, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38781458

Nanozymes are unique materials with many valuable properties for applications in biomedicine, biosensing, environmental monitoring, and beyond. In this work, we developed a machine learning (ML) approach to search for new nanozymes and deployed a web platform, DiZyme, featuring a state-of-the-art database of nanozymes containing 1210 experimental samples, catalytic activity prediction, and DiZyme Assistant interface powered by a large language model (LLM). For the first time, we enable the prediction of multiple catalytic activities of nanozymes by training an ensemble learning algorithm achieving R2 = 0.75 for the Michaelis-Menten constant and R2 = 0.77 for the maximum velocity on unseen test data. We envision an accurate prediction of multiple catalytic activities (peroxidase, oxidase, and catalase) promoting novel applications for a wide range of surface-modified inorganic nanozymes. The DiZyme Assistant based on the ChatGPT model provides users with supporting information on experimental samples, such as synthesis procedures, measurement protocols, etc. DiZyme (dizyme.aicidlab.itmo.ru) is now openly available worldwide.


Machine Learning , Catalysis , Catalase/chemistry , Catalase/metabolism , Nanostructures/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Peroxidase/chemistry , Peroxidase/metabolism , Algorithms
15.
Cells ; 13(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38786103

Cigarette smoke is one of the main factors in Chronic Obstructive Pulmonary Disease (COPD), a respiratory syndrome marked by persistent respiratory symptoms and increasing airway obstruction. Perturbed NAD+/NADH levels may play a role in various diseases, including lung disorders like COPD. In our study, we investigated the preventive effect of NADH supplementation in an experimental model of COPD induced by cigarette smoke extract (CSE). N = 64 mice randomly distributed in eight groups were injected with NADH (two doses of 100 mg/kg or 200 mg/kg) or dexamethasone (2 mg/kg) before being exposed to CSE for up to 9 weeks. Additionally, NADH supplementation preserved lung antioxidant defenses by preventing the functional loss of key enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase, and the expression levels of glutathione (GSH) (n = 4, p < 0.001). It also reduced oxidative damage markers, such as malondialdehyde (MDA) and nitrites (n = 4, p < 0.001). A marked increase in tissue myeloperoxidase activity was assessed (MPO), confirming neutrophils implication in the inflammatory process. The latter was significantly ameliorated in the NADH-treated groups (p < 0.001). Finally, NADH prevented the CSE-induced secretion of cytokines such as Tumor Necrosis Factor alpha (TNF-α), IL-17, and IFN-y (n = 4, p < 0.001). Our study shows, for the first time, the clinical potential of NADH supplementation in preventing key features of COPD via its unique anti-inflammatory and antioxidant properties.


Disease Models, Animal , Mice, Inbred BALB C , NAD , Pneumonia , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/prevention & control , Pulmonary Disease, Chronic Obstructive/etiology , NAD/metabolism , Mice , Pneumonia/prevention & control , Pneumonia/metabolism , Pneumonia/pathology , Injections, Intraperitoneal , Smoke/adverse effects , Oxidative Stress/drug effects , Male , Antioxidants/metabolism , Antioxidants/pharmacology , Cytokines/metabolism , Lung/pathology , Lung/metabolism , Lung/drug effects , Peroxidase/metabolism
16.
Plant Physiol Biochem ; 211: 108672, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718531

Luminescent materials can adjust the spectrum of light energy utilization by plants. However, current research on the effects of luminescent materials on aquatic plants and periphytic biofilms is limited. This study investigated the effects of the luminescent materials 4-(di-p-tolylamino) benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino) benzaldehyde-M (DTB-M) on the submerged macrophyte Vallisneria natans (V. natans) and periphytic biofilm. Result demonstrated that low concentrations of DTB (0.1 µM) significantly promoted the growth and photosynthetic rate of V. natans. In terms of enzyme activity, exposure to a higher concentration of DTB (10 µM) increased the activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT). A combination of DTB-A and DTB-M treatment significantly changed the V. natans morphology and physiological characteristics, reducing the thickness of the cell wall and subsequently, promoting protein accumulation in leaves. There was no difference in the removal of ammonia or phosphate by V. natans at the 0.1 µM concentration, and the removal of ammonia and phosphate by V. natans decreased significantly as the concentration of luminescent material increased. A total of 3563 OTUs were identified in the biofilm community. The microbial community was dominated by Pseudomonas and Fusobacteria. Furthermore, results showed that an obvious decrease in diversity in the DTB-A and DTB-M mixed treatment group. In addition, the migratory aggregation of DTB molecules in plants was observed by fluorescence imaging. Overall, these findings extend our understanding of the mechanism of effect of luminescent materials on submerged macrophytes and their periphytic microorganisms.


Biofilms , Hydrocharitaceae , Biofilms/drug effects , Biofilms/growth & development , Hydrocharitaceae/metabolism , Hydrocharitaceae/microbiology , Benzaldehydes/metabolism , Benzaldehydes/pharmacology , Photosynthesis/drug effects , Luminescence , Catalase/metabolism , Peroxidase/metabolism , Plant Leaves/metabolism , Superoxide Dismutase/metabolism , Luminescent Agents/metabolism
17.
Plant Physiol Biochem ; 211: 108716, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744087

In the context of global climate change, recurrent freeze-thaw cycles (FTC) and concurrent exposure to polystyrene nanoplastics (PSNPs) directly impact crop growth and indirectly affect resilience to abiotic stress. In January 2023, experiments at the Environmental Biology Laboratory, Jilin University, Changchun, China, exposed rye seedlings to 100 nm PSNPs at concentrations of 0, 10, 50, and 100 mg/L for seven days, followed by three FTC. Scanning electron microscopy (SEM) demonstrated that PSNPs migrated from the roots to the leaves, with FTC significantly exacerbating their accumulation within plant tissues. Transmission electron microscopy (TEM) observations showed that FTC disrupted normal cell division, and combined stress from NPs damaged plant organs, particularly chloroplasts, thereby substantially inhibiting photosynthesis. FTC delayed plant phenological stages. Under combined stress, malondialdehyde (MDA) accumulation in plant tissues increased by 15.6%, while hydrogen peroxide (H2O2) content decreased. Simultaneously, the activities of peroxidase (POD) and catalase (CAT) increased by 34.2% and 38.6%, respectively. Molecular docking unveiled that PSNPs could bind to the active center of POD/CAT through hydrogen bonding or hydrophobic interactions. The Integrated Biomarker Response (IBR) index highlighted FTC as a crucial determinant for pronounced effects. Moreover, an apparent dose-dependent effect was observed, with antioxidant enzyme activities in rye seedlings induced by low pollutant concentrations and inhibited by high concentrations. These results indicate that FTC and PSNPs can disrupt plant membrane systems and cause severe oxidative damage. Overall, this study provides compelling scientific evidence of the risks associated with NPs exposure in plants subjected to abiotic stress.


Freezing , Polystyrenes , Secale , Seedlings , Seedlings/drug effects , Seedlings/metabolism , Polystyrenes/toxicity , Secale/drug effects , Secale/metabolism , Peroxidase/metabolism , Catalase/metabolism , Nanoparticles/toxicity , Molecular Docking Simulation , Malondialdehyde/metabolism
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124446, 2024 Sep 05.
Article En | MEDLINE | ID: mdl-38759396

Developing the efficient nanozymes for reactive oxygen species (ROS)-mediated highly potent tumor catalytic therapy has become a great challenge. In this study, we prepared the DNA-Fe, -FeAg, and -FeCuAg nanocluster (NCs) using the G-/C-rich single-stranded DNA (ssDNA) templates. The steady-state kinetic and the catalytic performances and mechanisms of DNA-metal NCs were first systematically investigated. The results indicated that c-kit-TBA-Fe, c-kit-TBA-FeAg, and c-kit-TBA-FeCuAg NCs exhibited the high peroxidase-like activity. All of three types of NCs presented the higher affinity to the substrate TMB and better storage stability at 4 °C than horseradish peroxidase (HRP). Moreover, c-kit-TBA-FeAg and c-kit-TBA-FeCuAg NCs presented the 6.7- and 4.7-fold stronger affinity to TMB than c-kit-TBA-Fe, respectively. However, the maximum reaction rate (Vmax) of c-kit-TBA-FeCuAg NCs with H2O2 was the largest, which promoted the generation of much more •OH in the reaction system. More importantly, c-kit-TBA-FeCuAg NCs were able to deplete largely the intracellular GSH and thus generate lots of endogenous ROS in HeLa cells, thereby exhibiting the significant and specific in vitro cancer cells toxicity. Therefore, c-kit-TBA-FeCuAg NCs, with peroxidase-like activity and glutathione (GSH) consumption ability, hold the ROS-based promising therapeutic effects for cancer.


Glutathione , Humans , Glutathione/metabolism , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , DNA/metabolism , DNA/chemistry , Gold/chemistry , Iron/chemistry , Iron/metabolism , Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Kinetics , HeLa Cells , Hydrogen Peroxide/pharmacology , Cell Line, Tumor
19.
Bull Exp Biol Med ; 176(5): 607-611, 2024 Mar.
Article En | MEDLINE | ID: mdl-38730105

The study presents the killer functions of circulating neutrophils: myeloperoxidase activity, the ability to generate ROS, phagocytic activity, receptor status, NETosis, as well as the level of cytokines IL-2, IL-4, IL-6, IL-17A, and IL-18, granulocyte CSF, monocyte chemotactic protein 1, and neutrophil elastase in the serum of patients with uterine myoma and endometrial cancer (FIGO stages I-III). The phagocytic ability of neutrophils in uterine myoma was influenced by serum levels of granulocyte CSF and IL-2 in 54% of the total variance. The degranulation ability of neutrophils in endometrial cancer was determined by circulating IL-18 in 50% of the total variance. In uterine myoma, 66% of the total variance in neutrophil myeloperoxidase activity was explained by a model dependent on blood levels of IL-17A, IL-6, and IL-4. The risk of endometrial cancer increases when elevated levels of monocyte chemotactic protein 1 in circulating neutrophils are associated with reduced ability to capture particles via extracellular traps (96% probability).


Chemokine CCL2 , Endometrial Neoplasms , Interleukin-17 , Interleukin-6 , Neutrophils , Humans , Female , Neutrophils/metabolism , Neutrophils/immunology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/blood , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Interleukin-6/blood , Chemokine CCL2/blood , Interleukin-17/blood , Middle Aged , Interleukin-4/blood , Peroxidase/blood , Peroxidase/metabolism , Interleukin-18/blood , Uterine Neoplasms/blood , Uterine Neoplasms/immunology , Uterine Neoplasms/pathology , Granulocyte Colony-Stimulating Factor/blood , Granulocyte Colony-Stimulating Factor/metabolism , Phagocytosis , Leiomyoma/blood , Leiomyoma/immunology , Leiomyoma/pathology , Leiomyoma/metabolism , Cytokines/blood , Cytokines/metabolism , Leukocyte Elastase/blood , Leukocyte Elastase/metabolism , Adult , Extracellular Traps/metabolism , Extracellular Traps/immunology , Reactive Oxygen Species/metabolism , Aged , Interleukin-2
20.
Int J Biol Macromol ; 269(Pt 2): 132115, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719015

Bacterial infections pose a serious threat to human health and socioeconomics worldwide. In the post-antibiotic era, the development of novel antimicrobial agents remains a challenge. Polyphenols are natural compounds with a variety of biological activities such as intrinsic antimicrobial activity and antioxidant properties. Metal-polyphenol obtained by chelation of polyphenol ligands with metal ions not only possesses efficient antimicrobial activity but also excellent biocompatibility, which has great potential for application in biomedical and food packaging fields. Herein, we developed metal-polyphenol coordination nanosheets named copper oxidized tannic acid quinone (CuTAQ) possessing efficient antibacterial and anti-biofilm effects, which was synthesized by a facile one-pot method. The synthesis was achieved by chelation of partially oxidized tannic acid (TA) with Cu2+ under mild conditions, which supports low-cost and large-scale production. It was demonstrated that CuTAQ exhibited high antibacterial activity via disrupting the integrity of bacterial cell membranes, inducing oxidative stress, and interfering with metabolism. In addition, CuTAQ exhibits excellent peroxidase catalytic activity and photothermal conversion properties, which play a significant role in enhancing its bactericidal and biofilm scavenging abilities. This study provides insights for rational design of innovative metal-polyphenol nanomaterials with efficient antimicrobial properties.


Anti-Bacterial Agents , Nanostructures , Polyphenols , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Nanostructures/chemistry , Tannins/chemistry , Tannins/pharmacology , Biofilms/drug effects , Copper/chemistry , Copper/pharmacology , Peroxidase/metabolism , Microbial Sensitivity Tests , Humans
...