Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.896
Filter
1.
Environ Toxicol Chem ; 43(7): 1627-1637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837458

ABSTRACT

Shipping activities are increasing with sea ice receding in the Arctic, leading to higher risks of accidents and oil spills. Because Arctic toxicity data are limited, oil spill risk assessments for the Arctic are challenging to conduct. In the present study, we tested if acute oil toxicity metrics obtained at temperate conditions reflect those at Arctic conditions. The effects of temperature (4 °C, 12 °C, and 20 °C) on the median lethal concentration (LC50) and the critical body residue (CBR) of the temperate invertebrate Gammarus locusta exposed to water accommodated fractions of a fuel oil were determined. Both toxicity metrics decreased with increasing temperature. In addition, data for the temperate G. locusta were compared to data obtained for Arctic Gammarus species at 4 °C. The LC50 for the Arctic Gammarus sp. was a factor of 3 higher than that for the temperate G. locusta at 4 °C, but its CBR was similar, although both the exposure time and concentration were extended to reach lethality. Probably, this was a result of the larger size and higher weight and total lipid content of Arctic gammarids compared to the temperate gammarids. Taken together, the present data support the use of temperate acute oil toxicity data as a basis for assessing risks in the Arctic region, provided that the effects of temperature on oil fate and functional traits (e.g., body size and lipid content) of test species are considered. As such, using the CBR as a toxicity metric is beneficial because it is independent of functional traits, despite its temperature dependency. To the best of our knowledge, the present study is the first to report CBRs for oil. Environ Toxicol Chem 2024;43:1627-1637. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Amphipoda , Petroleum Pollution , Temperature , Water Pollutants, Chemical , Animals , Arctic Regions , Amphipoda/drug effects , Water Pollutants, Chemical/toxicity , Petroleum/toxicity , Lethal Dose 50
2.
Arch Microbiol ; 206(7): 296, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856816

ABSTRACT

Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.


Subject(s)
Bacillus subtilis , Biodegradation, Environmental , Petroleum , Wastewater , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Wastewater/microbiology , Wastewater/chemistry , Petroleum/metabolism , Petroleum/toxicity , Phenanthrenes/metabolism , Phenanthrenes/analysis , Phenanthrenes/toxicity , Naphthalenes/metabolism , Naphthalenes/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Sewage/microbiology , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Metals, Heavy/analysis
3.
Mar Pollut Bull ; 203: 116491, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754321

ABSTRACT

Endosymbionts (Symbiodiniaceae) play a vital role in the health of corals. Seawater pollution can harm these endosymbionts and dispersants used during oil spill cleanup can be extremely toxic to these organisms. Here, we examined the impact of oil and a specific dispersant, Corexit-9500, on two representative endosymbionts - Symbiodinium and Cladocopium - from the Southwestern endemic coral Mussismilia braziliensis. The survival and photosynthetic potential of the endosymbionts decreased dramatically after exposure to the dispersant and oil by ~25 % after 2 h and ~50 % after 7 days. Low concentrations of dispersant (0.005 ml/l) and dispersed oil (Polycyclic Aromatic Hydrocarbons, 1132 µg/l; Total Petroleum Hydrocarbons, 595 µg/l) proved highly toxic to both Symbiodinium and Cladocopium. These levels triggered a reduction in growth rate, cell size, and cell wall thickness. After a few hours of exposure, cellular organelles were damaged or destroyed. These acute toxic effects underline the fragile nature of coral endosymbionts.


Subject(s)
Anthozoa , Dinoflagellida , Petroleum Pollution , Petroleum , Symbiosis , Water Pollutants, Chemical , Anthozoa/drug effects , Anthozoa/physiology , Animals , Petroleum/toxicity , Dinoflagellida/physiology , Dinoflagellida/drug effects , Water Pollutants, Chemical/toxicity , Lipids , Surface-Active Agents/toxicity
4.
Mar Pollut Bull ; 203: 116402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701601

ABSTRACT

The progressive establishment of gas platforms and increasing petroleum accidents pose a threat to zooplankton communities and thus to pelagic ecosystems. This study is the first to compare the impacts of gas-condensate and crude oil on copepod assemblages. We conducted microcosm experiments simulating slick scenarios at five different concentrations of gas-condensate and crude oil to determine and compare their lethal effects and the bioconcentration of low molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs) in eastern Mediterranean coastal copepod assemblages. We found that gas-condensate had a two-times higher toxic effect than crude oil, significantly reducing copepod survival with increased exposure levels. The LMW-PAHs bioconcentration factor was 1-2 orders of magnitude higher in copepods exposed to gas-condensate than in those exposed to crude oil. The median lethal concentration (LC50) was significantly lower in calanoids vs. cyclopoid copepods, suggesting that calanoids are more susceptible to gas-condensate and crude oil pollution, with potential trophic implications.


Subject(s)
Copepoda , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Copepoda/drug effects , Copepoda/physiology , Animals , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Petroleum Pollution , Environmental Monitoring , Ecosystem
5.
Ecotoxicol Environ Saf ; 277: 116325, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38653019

ABSTRACT

The water accommodated fraction (WAF) of crude oil exerts considerable impacts on marine fish during embryonic stage. Clarifying changes in epigenetic modifications is helpful for understanding the molecular mechanism underlying the toxicity of embryonic WAF exposure. The aim of this study was to explore genome-wide DNA methylation changes in Oryzias melastigma embryos after exposure to the nominal total petroleum hydrocarbon concentration of 500 µg/L in WAF for 7 days. Whole-genome bisulfite sequencing revealed that 8.47 % and 8.46 % of all the genomic C sites were methylated in the control and WAF-exposed groups, respectively. Among the three sequence contexts, methylated CG site had the largest number in both the two groups. The sequence preferences of nearby methylated cytosines were consistent between the two groups. A total of 4798 differentially methylated regions (DMRs) were identified in the promoter region. Furthermore, Gene Ontology analysis revealed that DMR-related genes were enriched mainly for functions related to development and nervous system. Additionally, the Kyoto Encyclopedia of Genes and Genomes pathways enriched in DMR-related genes were related to nervous system and endocrine system. These novel findings provide comprehensive insights into the genome-wide DNA methylation landscape of O. melastigma following embryonic WAF exposure, shedding light on the epigenetic regulatory mechanisms underlying WAF-induced toxicity.


Subject(s)
DNA Methylation , Embryo, Nonmammalian , Petroleum , Water Pollutants, Chemical , DNA Methylation/drug effects , Animals , Water Pollutants, Chemical/toxicity , Petroleum/toxicity , Embryo, Nonmammalian/drug effects , Epigenesis, Genetic/drug effects
6.
Mar Pollut Bull ; 201: 116235, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508122

ABSTRACT

Marine oil pollution is one of the major global environmental pollution problems. Marine microalgae are the foundation of the marine food chain, providing the main primary productivity of the ocean. They not only maintain the energy flow and material cycle of the entire marine ecosystem, but also play an important role in regulating global climate change. Exploring the impact of petroleum pollutants on marine microalgae is extremely important for studying marine environmental pollution. This review first introduced the sources, compositions, and forms of petroleum pollutants and their migration and transformation processes in the ocean. Then, the toxic effects of petroleum pollutants on marine microalgae were summarized. The growth of marine microalgae showed low-concentration promotion and high-concentration inhibition. The population growth and interspecific relationships of marine microalga was changed and the photosynthesis of marine microalgae was influenced. Finally, potential research directions and suggestions for marine microalgae in the future were proposed.


Subject(s)
Environmental Pollutants , Microalgae , Petroleum , Water Pollutants, Chemical , Petroleum/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity
7.
Mar Pollut Bull ; 201: 116280, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518574

ABSTRACT

The utilization of chemical dispersants as a way of mitigating of oil spills in marine eco-system has been extensively documented worldwide. Hence, in this research we have successfully synthesized two amphiphilic asymmetric Dicaionic Ionic Liquids (DILs). The efficacy of these synthesized DILs as dispersants was assessed using the baffled flask test (BFT). The results indicated a dispersant effectiveness ranging from 47.98 % to 79.76 % for the dispersion of heavy crude oil across various temperature ranges (10-30 °C). These dispersant-to-oil ratios (DOR) were maintained at 3: 100 (V%), showcasing promising dispersant capabilities for mitigating heavy crude oil spills. Additionally, acute toxicity tests conducted on Nile tilapia and Oreochromis niloticus have demonstrated the relatively low toxicity of the IL-dispersants, with Lethal Concentration 50 (LC50) values exceeding 100 ppm after 96 h. This suggests a practically slight toxic effect on the tested fish. In summary, the newly developed IL-dispersants are considered to be conducive to environmentally benign oil spill remediation.


Subject(s)
Anthracenes , Ionic Liquids , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Ionic Liquids/toxicity , Surface-Active Agents/toxicity , Petroleum Pollution/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Petroleum/toxicity
8.
Mar Pollut Bull ; 202: 116285, 2024 May.
Article in English | MEDLINE | ID: mdl-38555802

ABSTRACT

Oil spilled into an aquatic environment produces oil droplet and dissolved component concentrations and compositions that are highly variable in space and time. Toxic effects on aquatic biota vary with sensitivity of the organism, concentration, composition, environmental conditions, and frequency and duration of exposure to the mixture of oil-derived dissolved compounds. For a range of spill (surface, subsea, blowout) and oil types under different environmental conditions, modeling of oil transport, fate, and organism behavior was used to quantify expected exposures over time for planktonic, motile, and stationary organisms. Different toxicity models were applied to these exposure time histories to characterize the influential roles of composition, concentration, and duration of exposure on aquatic toxicity. Misrepresenting these roles and exposures can affect results by orders of magnitude. Well-characterized laboratory studies for <24-hour exposures are needed to improve toxicity predictions of the typically short-term exposures that characterize spills.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Petroleum/toxicity , Aquatic Organisms/drug effects , Animals , Environmental Monitoring
9.
Toxicol Mech Methods ; 34(3): 245-255, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38375852

ABSTRACT

Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum Pollution/analysis , Water Pollutants, Chemical/toxicity , Oils , Petroleum/toxicity , Petroleum/analysis , Water , Polycyclic Aromatic Hydrocarbons/toxicity
10.
Article in English | MEDLINE | ID: mdl-38378123

ABSTRACT

A 14-day exposure study in which sub-adult red drum (Sciaenops ocellatus) were fed a petroleum crude oil-treated pellet feed was conducted to assess the potential effects of ingesting an oil-contaminated food source. Though food consumption decreased, significant polycyclic aromatic hydrocarbons accumulated in the body and liver, which did not affect the body and liver's fatty acid composition. In the red drum given the crude oil-treated feed, a significant decrease in the RNA:DNA growth rate index was noted, while only subtle changes in body and liver lipid composition were seen. Differentially expressed gene analysis in the liver demonstrated a significant down-regulation of leptin and up-regulation of the aryl hydrocarbon receptor nuclear translocator-like protein 1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated enrichment of terms and pathways associated with cholesterol biosynthesis and oxidative stress. Ingenuity Pathway Analysis further predicted activation of seven pathways associated with cholesterol biosynthesis. Measured oxidative stress biomarkers in the blood indicated decreased systemic antioxidants with increased lipid peroxidation. The results of this study suggest that dietary oil exposure alters the signaling of biological pathways critical in cholesterol biosynthesis and disruptions in systemic oxidative homeostasis.


Subject(s)
Perciformes , Petroleum , Animals , Dietary Exposure/adverse effects , Petroleum/toxicity , Perciformes/physiology , Fatty Acids , Cholesterol
11.
J Hazard Mater ; 468: 133833, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401215

ABSTRACT

Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.


Subject(s)
Diatoms , Microalgae , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum/toxicity , Petroleum/analysis , Water , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Carbon
12.
Toxicol Mech Methods ; 34(5): 596-605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38375806

ABSTRACT

Target lipid model (TLM) and toxic unit (TU) approaches were applied to ecotoxicity and chemistry data from low-energy WAFs (LE-WAFs) of source and weathered crude oils originating from the Deepwater Horizon oil spill. The weathered oils included artificially weathered oils and naturally weathered samples collected in the Gulf of Mexico after the spill. Oil weathering greatly reduced the concentrations of identified LE-WAF components, however, the mass of uncharacterized polar material (UPC) in the LE-WAFs remained largely unchanged during the weathering process. While the TLM-derived calculations displayed a significant decrease in toxicity (TUs) for the heavily weathered oils, copepod toxicity, expressed as LC10-based TUs, were comparable between LE-WAFs of fresh and weathered oils. The discrepancy between observed and predicted toxicity for the LE-WAFs of artificially weathered oils may be related to limitations by the chemical analyses or increased toxicity due to generation of new unknown compounds during the weathering process.


Subject(s)
Copepoda , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Petroleum Pollution/analysis , Petroleum/toxicity , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Copepoda/drug effects , Gulf of Mexico , Weather , Lethal Dose 50
13.
J Hazard Mater ; 468: 133814, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38412802

ABSTRACT

The oil industry's expansion and increased operational activity at older installations, along with their demolition, contribute to rising cumulative pollution and a heightened risk of accidental oil spills. The lesser sandeel (Ammodytes marinus) is a keystone prey species in the North Sea and coastal systems. Their eggs adhere to the seabed substrate making them particularly vulnerable to oil exposure during embryonic development. We evaluated the sensitivity of sandeel embryos to crude oil in a laboratory by exposing them to dispersed oil at concentrations of 0, 15, 50, and 150 µg/L oil between 2 and 16 days post-fertilization. We assessed water and tissue concentrations of THC and tPAH, cyp1a expression, lipid distribution in the eyes, head and trunk, and morphological and functional deformities. Oil droplets accumulated on the eggshell in all oil treatment groups, to which the embryo responded by a dose-dependent rise in cyp1a expression. The oil exposure led to only minor sublethal deformities in the upper jaw and otic vesicle. The findings suggest that lesser sandeel embryos are resilient to crude oil exposure. The lowest observed effect level documented in this study was 36 µg THC/L and 3 µg tPAH/L. The inclusion of these species-specific data in risk assessment models will enhance the precision of risk evaluations for the North Atlantic ecosystems.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Egg Shell , Ecosystem , Water , Water Pollutants, Chemical/toxicity
14.
Sci Rep ; 14(1): 3591, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351213

ABSTRACT

Anthropogenic activities have been shown to significantly affect marine life. Water pollution and oil spills are particularly deleterious to the fish population, especially during their larval stage. In this study, Sobaity-sea bream Sparidentex hasta (Valenciennes, 1830) larvae were exposed to serial dilutions of water-accommodated fraction of Kuwait crude oil (KCO-WAF) for varying durations (3, 6, 24, 48, 72 or 96 h) in acute exposure regime. Gene expression was assessed using RNA sequencing and validated through RT-qPCR. The RNA sequencing data were aligned to the sequenced genome, and differentially expressed genes were identified in response to treatment with or without KCO-WAF at various exposure times. The highest number of differentially expressed genes was observed at the early time point of 6 h of post-exposure to KCO-WAF. The lowest number of differentially expressed genes were noticed at 96 h of treatment indicating early response of the larvae to KCO-WAF contaminant. The acquired information on the differentially expressed genes was then used for functional and pathway analysis. More than 90% of the differentially expressed genes had a significant BLAST match, with the two most common matching species being Acanthopagrus latus and Sparus aurata. Approximately 65% of the differentially expressed genes had Gene Ontology annotations, whereas > 35% of the genes had KEGG pathway annotations. The differentially expressed genes were found to be enriched for various signaling pathways (e.g., MAPK, cAMP, PI3K-Akt) and nervous system-related pathways (e.g., neurodegeneration, axon guidance, glutamatergic synapse, GABAergic synapse). Early exposure modulated the signaling pathways, while KCO-WAF exposure of larvae for a longer duration affected the neurodegenerative/nervous system-related pathways. RT-qPCR analysis confirmed the differential expression of genes at each time point. These findings provide insights into the underlying molecular mechanisms of the deleterious effects of acute exposure to oil pollution-on marine fish populations, particularly at the early larval stage of Sparidentex hasta.


Subject(s)
Perciformes , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Petroleum/analysis , Water/analysis , Larva/genetics , Kuwait , Phosphatidylinositol 3-Kinases , Fishes , Gene Expression Profiling , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Petroleum Pollution/adverse effects , Petroleum Pollution/analysis
15.
Sci Total Environ ; 918: 170544, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38309367

ABSTRACT

Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene). While both compounds are cardiotoxic, P0 impacts embryonic cardiac function and development through direct blockade of K+ and Ca2+ currents that regulate cardiomyocyte contractions. In contrast, 1-M,7-IP dysregulates aryl hydrocarbon receptor (AHR) activation in developing ventricular cardiomyocytes. Although no other compounds have been assessed in detail across the larger family of alkylated phenanthrenes, increasing alkylation might be expected to shift phenanthrene family member activity from K+/Ca2+ ion current blockade to AHR activation. Using embryos of two distantly related fish species, zebrafish and Atlantic haddock, we tested 14 alkyl-phenanthrenes in both acute and latent developmental cardiotoxicity assays. All compounds were cardiotoxic, and effects were resolved into impacts on multiple, highly specific aspects of heart development or function. Craniofacial defects were clearly linked to developmental cardiotoxicity. Based on these findings, we suggest a novel framework to delineate the developmental toxicity of petrogenic PAC mixtures in fish, which incorporates multi-mechanistic pathways that produce interactive synergism at the organ level. In addition, relationships among measured embryo tissue concentrations, cytochrome P4501A mRNA induction, and cardiotoxic responses suggest a two-compartment toxicokinetic model that independently predicts high potency of PAC mixtures through classical metabolic synergism. These two modes of synergism, specific to the sub-fraction of phenanthrenes, are sufficient to explain the high embryotoxic potency of crude oils, independent of as-yet unmeasured compounds in these complex environmental mixtures.


Subject(s)
Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Animals , Zebrafish , Cardiotoxicity , Phenanthrenes/toxicity , Structure-Activity Relationship , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity
16.
Chemosphere ; 351: 141174, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218242

ABSTRACT

Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.


Subject(s)
Groundwater , Microbiota , Petroleum , Sodium Compounds , Sulfates , Petroleum/toxicity , Petroleum/metabolism , Bacteria/genetics , Bacteria/metabolism , Groundwater/chemistry
17.
Aquat Toxicol ; 267: 106825, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176169

ABSTRACT

Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods. In this review, we summarize the current knowledge of the toxicity of petroleum on North Atlantic and Arctic Calanus copepods. We also review how recent development of high-quality transcriptomes from RNA-sequencing of copepods have identified genes regulating key biological processes, like molting, diapause and reproduction in Calanus copepods, to suggest linkages between exposure, molecular mechanisms and effects on higher levels of biological organization. We found that the available ecotoxicity threshold data for these copepods provide valuable information about their sensitivity to acute petrogenic exposures; however, there is still insufficient knowledge regarding underlying mechanisms of toxicity and the potential for long-term implications of relevance for copepod ecology and phenology. Copepod transcriptomics has expanded our understanding of how key biological processes are regulated in cold-water copepods. These advances can improve our understanding of how pollutants affect biological processes, and thus provide the basis for new knowledge frameworks spanning the effect continuum from molecular initiating events to adverse effects of regulatory relevance. Such efforts, guided by concepts such as adverse outcome pathways (AOPs), enable standardized and transparent characterization and evaluation of knowledge and identifies research gaps and priorities. This review suggests enhancing mechanistic understanding of exposure-effect relationships to better understand and link biomarker responses to adverse effects to improve risk assessments assessing ecological effects of pollutant mixtures, like crude oil, in Arctic areas.


Subject(s)
Copepoda , Petroleum , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Food Chain , Water/pharmacology , Arctic Regions , Petroleum/toxicity , Petroleum/metabolism
18.
Mar Pollut Bull ; 200: 116063, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278019

ABSTRACT

The most extensive oil spill ever recorded in tropical oceans occurred between August 2019 and March 2020, affecting approximately 3000 km of the Brazilian coast. This study assessed the chemical contamination and toxicity of sediments collected from affected reef areas during two sampling surveys conducted 17 and 24 months after the peak of oil slick inputs. Our results indicated that neither PAH levels nor measured toxicity showed a significant contribution from the spilled oil, with concentrations and biological effects indistinguishable from those in unaffected areas. Similarly, no differences were observed between seasons. Furthermore, there was no discernible relationship between sediment toxicity results and the measured PAH concentrations. Therefore, while biological responses indicated toxicity in most assessed areas, these responses are likely related to other local sources. This evidence suggests a natural oil attenuation process contributing to local environmental recovery. Nonetheless, further investigation is needed for other areas affected by oil spills.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum Pollution/analysis , Geologic Sediments/chemistry , Environmental Monitoring/methods , Brazil , Petroleum/toxicity , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
19.
Environ Pollut ; 344: 123298, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185357

ABSTRACT

With the increasing industrialization and urbanization, the ecological environment is suffering from severe deterioration in Liaohe coastal wetland, and petroleum spill is one of the pollution sources. Suaeda salsa (L.) Pall (S. salsa), one of the predominant plants in Liaohe coastal wetland, is facing the increasing degradation. Terpenes are a class of inherent compounds in plants, and play key role in maintain the growth of plants. However, the environmental stress on the terpene metabolism remained unclear in the plants. In the present study, the influence of petroleum spill on terpene metabolism in S. salsa was systematically investigated by analysis of concentrations, compositions and stable carbon isotope. Under the stress of petroleum spill, terpene concentrations showed the decreasing trend, indicating the inhibition effect of petroleum spill on terpene synthesis in S. salsa. The proportions of Sabinene and A-humulene showed the obviously increased with the influence of petroleum spill, implying that these congeners were more sensitive to petroleum spills. The significant changes in stable carbon isotope compositions were observed for Borneol, Dl-menthol, A-humulene and (-) -@-bisabolol, with the enrichment in heavier isotopes in residual fractions. This result indicated that the heavier 13C was preferentially fixed on terpene by S. salsa under the petroleum stress. The similar change trends along the incubation time was observed for A-humulene and (-) - trans caryophyllene, which might imply that A-humulene was one of the products of (-) - trans caryophyllene in S. salsa. Overall, the findings of present study verified the influence of petroleum spill on terpene metabolism in S. salsa, and were meaningful for protecting the plants in the petroleum-pollution wetlands.


Subject(s)
Chenopodiaceae , Petroleum , Polycyclic Sesquiterpenes , Wetlands , Petroleum/toxicity , Monocyclic Sesquiterpenes , Carbon Isotopes , Carbon
20.
Sci Total Environ ; 918: 170496, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38296090

ABSTRACT

Most of the polycyclic aromatic hydrocarbons (PAHs) in petroleum are alkylated (alkyl PAHs), still the metabolism of these alkyl PAHs to the expected acid products (polycyclic aromatic acids; PAAs) has yet to be demonstrated in oil-exposed fish. Should these compounds be discovered in fish as they have in ragworm, rodents, and humans, they could present an indicative biomarker for assessing oil pollution. In this study, the ability to biotransform alkyl PAHs to PAAs was examined on Atlantic haddock (Melanogrammus aeglefinus). Exposure to phenanthrene, 1-methyphenanthrene or 1,4-dimethylphenanthrene was performed via intraperitoneal injection. An Ion Mobility Quadrupole Time-Of-Flight Mass Spectrometer (IMS-Q-TOF MS) was used in exploratory analysis of extracted bile samples. Acquisition of four-dimensional information by coupling liquid chromatography with the IMS-Q-TOF MS and in-silico prediction for feature prioritization in the data processing workflow allowed several tentative identifications with high degree of confidence. This work presents the first detection of PAAs in fish and suggests the importance of investigating alkyl PAHs in ecotoxicological studies of oil-polluted fish environments.


Subject(s)
Gadiformes , Petroleum Pollution , Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Animals , Humans , Fishes/metabolism , Gadiformes/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Petroleum/toxicity , Petroleum/analysis , Petroleum Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...