Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.126
1.
BMC Infect Dis ; 24(1): 476, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714948

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (Dabie bandavirus), which has become a substantial risk to public health. No specific treatment is available now, that calls for an effective vaccine. Given this, we aimed to develop a multi-epitope DNA vaccine through the help of bioinformatics. The final DNA vaccine was inserted into a special plasmid vector pVAX1, consisting of CD8+ T cell epitopes, CD4+ T cell epitopes and B cell epitopes (six epitopes each) screened from four genome-encoded proteins--nuclear protein (NP), glycoprotein (GP), RNA-dependent RNA polymerase (RdRp), as well as nonstructural protein (NSs). To ascertain if the predicted structure would be stable and successful in preventing infection, an immunological simulation was run on it. In conclusion, we designed a multi-epitope DNA vaccine that is expected to be effective against Dabie bandavirus, but in vivo trials are needed to verify this claim.


Epitopes, T-Lymphocyte , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Vaccines, DNA , Viral Vaccines , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Phlebovirus/immunology , Phlebovirus/genetics , Severe Fever with Thrombocytopenia Syndrome/prevention & control , Severe Fever with Thrombocytopenia Syndrome/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics , Humans , Computer-Aided Design , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Animals , Computational Biology
2.
BMC Vet Res ; 20(1): 190, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734647

Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture. While these animals are managed in a wild-like manner, their ages are ascertainable due to individual identification. In the present study, we conducted a seroepidemiological survey of SFTSV in Misaki horses between 2015 and 2023. This study aimed to understand SFTSV infection in horses and its transmission to wildlife. A total of 707 samples from 180 feral horses were used to determine the seroprevalence of SFTSV using enzyme-linked immunosorbent assay (ELISA). Neutralization testing was performed on 118 samples. In addition, SFTS viral RNA was detected in ticks from Cape Toi and feral horses. The overall seroprevalence between 2015 and 2023 was 78.5% (555/707). The lowest seroprevalence was 55% (44/80) in 2016 and the highest was 92% (76/83) in 2018. Seroprevalence was significantly affected by age, with 11% (8/71) in those less than one year of age and 96.7% (435/450) in those four years of age and older (p < 0.0001). The concordance between ELISA and neutralization test results was 88.9% (105/118). SFTS viral RNA was not detected in ticks (n = 516) or feral horses. This study demonstrated that horses can be infected with SFTSV and that age is a significant factor in seroprevalence in wildlife. This study provides insights into SFTSV infection not only in horses but also in wildlife in SFTS-endemic areas.


Horse Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Horses , Seroepidemiologic Studies , Japan/epidemiology , Horse Diseases/epidemiology , Horse Diseases/virology , Horse Diseases/blood , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Severe Fever with Thrombocytopenia Syndrome/virology , Female , Male , Antibodies, Viral/blood , Ticks/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Animals, Wild/virology
3.
BMC Neurol ; 24(1): 158, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730325

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is a natural focal disease transmitted mainly by tick bites, and the causative agent is SFTS virus (SFTSV). SFTS can rapidly progress to severe disease, with multiple-organ failure (MOF) manifestations such as shock, respiratory failure, disseminated intravascular coagulation (DIC) and death, but cases of SFTS patients with central nervous system (CNS) symptoms onset and marked persistent involuntary shaking of the perioral area and limbs have rarely been reported. CASE PRESENTATION: A 69-year-old woman with fever and persistent involuntary shaking of the perioral area and limbs was diagnosed with SFTS with CNS symptom onset after metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) and peripheral blood identified SFTSV. The patient developed a cytokine storm and MOF during the course of the disease, and after aggressive antiviral, glucocorticoid, and gamma globulin treatments, her clinical symptoms improved, her laboratory indices returned to normal, and she had a good prognosis. CONCLUSION: This case gives us great insight that when patients with CNS symptoms similar to those of viral encephalitis combined with thrombocytopenia and leukopenia are encountered in the clinic, it is necessary to consider the possibility of SFTS involving the CNS. Testing for SFTSV nucleic acid in CSF and blood (mNGS or polymerase chain reaction (PCR)) should be carried out, especially in critically ill patients, and treatment should be given accordingly.


Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Female , Aged , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Phlebovirus/genetics , Phlebovirus/isolation & purification , Multiple Organ Failure/virology , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology
4.
Virol J ; 21(1): 113, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760812

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease. SFTS virus (SFTSV) is transmitted by tick bites and contact with the blood or body fluids of SFTS patients. Animal-to-human transmission of SFTS has been reported in Japan, but not in China. In this study, the possible transmission route of two patients who fed and cared for farm-raised fur animals in a mink farm was explored. METHOD: An epidemiological investigation and a genetic analysis of patients, animals and working environment were carried out. RESULTS: It was found that two patients had not been bitten by ticks and had no contact with patients infected with SFTS virus, but both of them had skinned the dying animals. 54.55% (12/22) of the farm workers were positive for SFTS virus antibody. By analyzing the large, medium and small segments sequences, the viral sequences from the two patients, animals and environments showed 99.9% homology. CONCLUSION: It is suspected that the two patients may be directly infected by farm-raised animals, and that the virus may have been transmitted by aerosols when skinning dying animals. Transmission by direct blood contacts or animal bites cannot be ignored.


Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/classification , China/epidemiology , Severe Fever with Thrombocytopenia Syndrome/transmission , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Humans , Male , Antibodies, Viral/blood , Phylogeny , Female , Middle Aged , Mink/virology , Farms , Adult , Farmers , RNA, Viral/genetics
5.
Emerg Infect Dis ; 30(6): 1299-1301, 2024 Jun.
Article En | MEDLINE | ID: mdl-38781980

We isolated severe fever with thrombocytopenia syndrome virus (SFTSV) from farmed minks in China, providing evidence of natural SFTSV infection in farmed minks. Our findings support the potential role of farmed minks in maintaining SFTSV and are helpful for the development of public health interventions to reduce human infection.


Disease Outbreaks , Mink , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/classification , China/epidemiology , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/virology , Animals , Mink/virology , Phylogeny , Humans , Farms
6.
Viruses ; 16(5)2024 04 29.
Article En | MEDLINE | ID: mdl-38793582

BACKGROUND: This study aimed to analyze the correlation between the cycle threshold (Ct) values of severe fever with thrombocytopenia syndrome (SFTS) virus small (S) and middle (M) segments and the SFTS viral load, aiming to estimate the initial viral load and predict prognosis in the early clinical course. METHOD: A retrospective study was conducted with confirmed SFTS patients at Jeju National University Hospital (2016-2022). Patients were categorized into non-fatal and fatal groups. RESULTS: This study included 49 patients with confirmed SFTS (non-fatal group, n = 42; fatal group, n = 7). A significant negative correlation (-0.783) was observed between the log SFTS viral load and Ct values (p < 0.001). This negative correlation was notably stronger in the fatal group (correlation coefficient -0.940) than in the non-fatal group (correlation coefficient -0.345). CONCLUSION: In this study, we established a correlation between SFTS viral load and Ct values for estimating the initial viral load and early predicting prognosis. These results are expected to offer valuable insights for SFTS patient treatment and prognosis prediction.


Phlebovirus , Real-Time Polymerase Chain Reaction , Severe Fever with Thrombocytopenia Syndrome , Viral Load , Humans , Phlebovirus/genetics , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Severe Fever with Thrombocytopenia Syndrome/virology , Male , Female , Prognosis , Retrospective Studies , Aged , Middle Aged , Real-Time Polymerase Chain Reaction/methods , Aged, 80 and over , Adult , RNA, Viral/genetics
7.
Sci Rep ; 14(1): 12336, 2024 05 29.
Article En | MEDLINE | ID: mdl-38811622

Hard ticks are known vectors of various pathogens, including the severe fever with thrombocytopenia syndrome virus, Rickettsia spp., Coxiella burnetii, Borrelia spp., Anaplasma phagocytophilum, and Ehrlichia spp. This study aims to investigate the distribution and prevalence of tick-borne pathogens in southwestern Korea from 2019 to 2022. A total of 13,280 ticks were collected during the study period, with H. longicornis accounting for 86.1% of the collected ticks. H. flava, I. nipponensis and A. testudinarium comprised 9.4%, 3.6%, and 0.8% of the ticks, respectively. Among 983 pools tested, Rickettsia spp. (216 pools, 1.6% MIR) were the most prevalent pathogens across all tick species, with R. japonica and R. monacensis frequently detected in I. nipponensis and Haemaphysalis spp., respectively. Borrelia spp. (28 pools, 0.2% MIR) were predominantly detected in I. nipponensis (27 pools, 13.8% MIR, P < 0.001). Co-infections, mainly involving Rickettsia monacensis and Borrelia afzelii, were detected in I. nipponensis. Notably, this study identified R. monacensis for the first time in A. testudinarium in South Korea. These findings offer valuable insights into the tick population and associated pathogens in the region, underscoring the importance of tick-borne disease surveillance and prevention measures.


Rickettsia , Animals , Republic of Korea/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Ticks/microbiology , Ticks/virology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Prevalence , Borrelia/isolation & purification , Borrelia/genetics , Anaplasma phagocytophilum/isolation & purification , Ehrlichia/isolation & purification , Ehrlichia/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Phlebovirus/isolation & purification , Phlebovirus/genetics
8.
Appl Microbiol Biotechnol ; 108(1): 303, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639795

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes the highly fatal disease in humans. To facilitate diagnosis, the native form of subunit glycoprotein (Gn), a prime target for potential vaccines and therapies, was produced in Nicotiana benthamiana using a Bamboo mosaic virus-based vector system. By fusion with secretory signal tags, SSExt, derived from the extension protein, and the (SP)10 motif, the yield of the recombinant Gn (rGn) was remarkably increased to approximately 7 mg/kg infiltrated leaves. Ultimately, an rGn-based ELISA was successfully established for the detection of SFTSV-specific antibodies in serum samples from naturally infected monkeys. As validated with the reference method, the specificity and sensitivity of rGn-ELISA were 94% and 96%, respectively. In conclusion, utilizing well-suited fusion tags facilitates rGn production and purification in substantial quantities while preserving its antigenic properties. The rGn-ELISA, characterized by its commendable sensitivity and specificity could serve as a viable alternative diagnostic method for assessing SFTSV seroprevalence. KEY POINTS: • SFTSV Gn, fused with secretory signal tags, was expressed by the BaMV-based vector. • The plant fusion tags increased expression levels and eased the purification of rGn. • The rGn-ELISA was established and validated; its specificity and sensitivity > 94%.


Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Phlebovirus/genetics , Phlebovirus/metabolism , Seroepidemiologic Studies , Glycoproteins/metabolism , Antibodies
9.
Front Immunol ; 15: 1348836, 2024.
Article En | MEDLINE | ID: mdl-38646523

Dabie Banda virus (DBV), a tick-borne pathogen, was first identified in China in 2009 and causes profound symptoms including fever, leukopenia, thrombocytopenia and multi-organ dysfunction, which is known as severe fever with thrombocytopenia syndrome (SFTS). In the last decade, global incidence and mortality of SFTS increased significantly, especially in East Asia. Though previous studies provide understandings of clinical and immunological characteristics of SFTS development, comprehensive insight of antiviral immunity response is still lacking. Here, we intensively discuss the antiviral immune response after DBV infection by integrating previous ex- and in-vivo studies, including innate and adaptive immune responses, anti-viral immune responses and long-term immune characters. A comprehensive overview of potential immune targets for clinical trials is provided as well. However, development of novel strategies for improving the prognosis of the disease remains on challenge. The current review may shed light on the establishment of immunological interventions for the critical disease SFTS.


Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Humans , Adaptive Immunity , Immunity, Innate , Phlebovirus/immunology , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/therapy
10.
PLoS Negl Trop Dis ; 18(4): e0012068, 2024 Apr.
Article En | MEDLINE | ID: mdl-38626222

OBJECTIVES: Severe fever with thrombocytopenia syndrome (SFTS) is an epidemic emerging infectious disease with high mortality rate. We investigated the association between liver injury and clinical outcomes in patients with SFTS. METHODS: A total of 291 hospitalized SFTS patients were retrospectively included. Cox proportional hazards model was adopted to identify risk factors of fatal outcome and Kaplan-Meier curves were used to estimate cumulative risks. RESULTS: 60.1% of patients had liver injury at admission, and the median alanine transaminase, aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin (TBil) levels were 76.4 U/L, 152.3 U/L, 69.8 U/L and 9.9 µmol/L, respectively. Compared to survivors, non-survivors had higher levels of AST (253.0 U/L vs. 131.1 U/L, P < 0.001) and ALP (86.2 U/L vs. 67.9 U/L, P = 0.006), higher proportion of elevated ALP (20.0% vs. 4.4%, P < 0.001) and liver injury (78.5% vs. 54.9%, P = 0.001) at admission. The presence of liver injury (HR 2.049, P = 0.033) at admission was an independent risk factor of fatal outcome. CONCLUSIONS: Liver injury was a common complication and was strongly associated with poor prognosis in SFTS patients. Liver function indicators should be closely monitored for SFTS patients.


Severe Fever with Thrombocytopenia Syndrome , Humans , Male , Female , Middle Aged , Prognosis , Severe Fever with Thrombocytopenia Syndrome/mortality , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Retrospective Studies , Aged , Liver/pathology , Alkaline Phosphatase/blood , Risk Factors , Liver Function Tests , Aspartate Aminotransferases/blood , Adult , Phlebovirus , Alanine Transaminase/blood , Aged, 80 and over , Proportional Hazards Models , Bilirubin/blood
11.
Microbiol Spectr ; 12(4): e0342823, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38456695

Sandfly-borne phleboviruses (SBPs), which cause sandfly fever, aseptic meningitis, encephalitis, and meningoencephalitis, are emerging pathogens of major public health concern. Virus nucleic acid testing is essential for SBP diagnosis, especially in the early stages of infection, and for the discovery of novel SBPs. The efficacy of utilizing generic primers that target conserved nucleotide sequences for the detection of both known and novel SBPs has not been extensively evaluated. We aimed to compare and evaluate the performance of five generic primer sets, widely used to detect S- and L-segments of arthropod-borne phleboviruses and designed as singleplex (n = 3) and nested (n = 2) formats, including both well-known and recently characterized 15 Old World virus strains. Furthermore, we performed in silico analysis to assess the detection capabilities of these generic primer sets. The initial evaluation of previously published generic primer sets for SBP detection yielded two singleplex primer sets with the potential to be adapted for use in real-time or high-throughput detection settings. Studies are ongoing to develop and further optimize a preliminary assay and test various hosts and vectors to assess their capacity to detect known and novel viruses. IMPORTANCE: Virus nucleic acid testing is the primary diagnostic method, particularly in the early stages of illness. Virus-specific or syndromic tests are widely used for this purpose. The use of generic primers has had a considerable impact on the discovery, identification, and detection of Old World sandfly-borne phleboviruses (OWSBP). The study is significant because it is the first to carry out a comparative evaluation of all published OWSBP generic primer sets.


Nucleic Acids , Phlebovirus , Psychodidae , Animals , Phlebovirus/genetics , Nucleic Acid Amplification Techniques , Phylogeny
12.
Br J Haematol ; 204(5): 1999-2006, 2024 May.
Article En | MEDLINE | ID: mdl-38438264

Prolonged coagulation times, such as activated partial thromboplastin time (APTT) and thrombin time (TT), are common in patients infected with severe fever with thrombocytopenia syndrome virus (SFTSV) and have been confirmed to be related to patient's poor outcome by previous studies. To find out the reason for prolonged coagulation time in patients with SFTSV infection, and whether it predicts haemorrhagic risk or not. Seventy-eight consecutive patients with confirmed SFTSV infection were enrolled in this prospective, single-centre, observational study. Several global and specific coagulation parameters of these patients on admission were detected, and the haemorrhagic events during hospitalization and their outcomes were recorded. Most of the enrolled patients had prolonged APTT (82.1%) and TT (80.8%), normal prothrombin time (83.3%) and intrinsic coagulation factors above haemostatic levels (97.4%). The heparin-like effect was confirmed by a protamine neutralization test and anti-Xa activity detection in most patients. Interestingly, the APTT and TT results were significantly positively correlated with the levels of endothelial markers and viral load, respectively. The APTT was independently associated with the haemorrhage of patients. The prolonged APTT and TT of SFTS patients may mainly be attributed to endogenous heparinoids and are associated with increased haemorrhagic risk.


Hemorrhage , Severe Fever with Thrombocytopenia Syndrome , Humans , Male , Female , Middle Aged , Aged , Partial Thromboplastin Time , Hemorrhage/blood , Hemorrhage/etiology , Prospective Studies , Severe Fever with Thrombocytopenia Syndrome/blood , Heparin/therapeutic use , Adult , Thrombin Time , Phlebovirus , Blood Coagulation , Risk Factors , Aged, 80 and over
13.
Viruses ; 16(3)2024 03 05.
Article En | MEDLINE | ID: mdl-38543766

Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne zoonotic disease, is caused by infection with SFTS virus (SFTSV). A previous study reported that human-to-human direct transmission of SFTSV can occur. However, potential animal-to-animal transmission of SFTSV without ticks has not been fully clarified. Thus, the objective of this study was to investigate potential mice-to-mice transmission of SFTSV by co-housing three groups of mice [i.e., wild-type mice (WT), mice injected with an anti-type I interferon-α receptor-blocking antibody (IFNAR Ab), and mice with knockout of type I interferon-α receptor (IFNAR KO)] as spreaders or recipients with different immune competence. As a result, co-housed IFNAR Ab and IFNAR KO mice showed body weight loss with SFTS viral antigens detected in their sera, extracorporeal secretions, and various organs. Based on histopathology, white pulp atrophy in the spleen was observed in all co-housed mice except WT mice. These results obviously show that IFNAR Ab and IFNAR KO mice, as spreaders, exhibited higher transmissibility to co-housed mice than WT mice. Moreover, IFNAR KO mice, as recipients, were more susceptible to SFTSV infection than WT mice. These findings suggest that type I interferon signaling is a pivotal factor in mice intraspecies transmissibility of SFTSV in the absence of vectors such as ticks.


Bunyaviridae Infections , Interferon Type I , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Tick-Borne Diseases , Humans , Animals , Mice
14.
J Med Virol ; 96(3): e29491, 2024 Mar.
Article En | MEDLINE | ID: mdl-38402626

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne hemorrhagic fever disease with high fatality rate of 10%-20%. Vaccines or specific therapeutic measures remain lacking. Human interferon inducible transmembrane protein 3 (hIFITM3) is a broad-spectrum antiviral factor targeting viral entry. However, the antiviral activity of hIFITM3 against SFTS virus (SFTSV) and the functional mechanism of IFITM3 remains unclear. Here we demonstrate that endogenous IFITM3 provides protection against SFTSV infection and participates in the anti-SFTSV effect of type Ⅰ and Ⅲ interferons (IFNs). IFITM3 overexpression exhibits anti-SFTSV function by blocking Gn/Gc-mediated viral entry and fusion. Further studies showed that IFITM3 binds SFTSV Gc directly and its intramembrane domain (IMD) is responsible for this interaction and restriction of SFTSV entry. Mutation of two neighboring cysteines on IMD weakens IFITM3-Gc interaction and attenuates the antiviral activity of IFITM3, suggesting that IFITM3-Gc interaction may partly mediate the inhibition of SFTSV entry. Overall, our data demonstrate for the first time that hIFITM3 plays a critical role in the IFNs-mediated anti-SFTSV response, and uncover a novel mechanism of IFITM3 restriction of SFTSV infection, highlighting the potential of clinical intervention on SFTS disease.


Antiviral Restriction Factors , Bunyaviridae Infections , Severe Fever with Thrombocytopenia Syndrome , Humans , Bunyaviridae Infections/immunology , Membrane Proteins/immunology , Phlebovirus , RNA-Binding Proteins/immunology , Severe Fever with Thrombocytopenia Syndrome/immunology , Viral Proteins/metabolism , Virus Internalization , Antiviral Restriction Factors/immunology
15.
Arch Virol ; 169(3): 40, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38308735

Severe fever with thrombocytopenia syndrome (SFTS) is a hemorrhagic fever caused by SFTS virus (SFTSV), which is primarily found in East Asian countries. Despite its high mortality rate and increasing incidence, no vaccines or therapeutics have yet been approved for use against SFTS. Antibody drugs have shown promise in treating lethal infectious diseases that currently have no established treatments. In the case of SFTS, however, only a limited amount of research has been done on SFTSV-neutralizing antibodies targeting the transmembrane proteins Gn and Gc, which play critical roles in viral infection. This study focuses on the production and characterization of antibodies targeting the SFTSV Gc protein. Monoclonal antibodies against Gc were generated through immunization of mice, and their antiviral activity was evaluated. Three out of four anti-Gc antibody clones from this study demonstrated dose-dependent SFTSV neutralization activity, two of which exhibited a synergistic effect on the neutralization activity of the anti-Gn antibody clone Mab4-5. Further studies are necessary to identify key sites on the SFTSV glycoprotein and to develop novel agents as well as antibodies with diverse mechanisms of action against SFTSV.


Bunyaviridae Infections , Hemorrhagic Fevers, Viral , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Mice , Glycoproteins
16.
EMBO Mol Med ; 16(3): 575-595, 2024 Mar.
Article En | MEDLINE | ID: mdl-38366162

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.


Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Humans , Mice , Bunyaviridae Infections/drug therapy , Phlebovirus/physiology , B7-H1 Antigen , Leukocytes, Mononuclear , Programmed Cell Death 1 Receptor
17.
Microbiome ; 12(1): 35, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38378577

BACKGROUND: Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS: We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS: These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.


Ixodidae , Phlebovirus , Ticks , Animals , Humans , Ixodidae/genetics , Haemaphysalis longicornis , Virome/genetics , Phylogeny , Phlebovirus/genetics
18.
BMC Infect Dis ; 24(1): 240, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38389047

OBJECTIVE: This study aimed to investigate the clinical characteristics of severe fever with thrombocytopenia syndrome complicated by viral myocarditis (SFTS-VM) and analyze relevant influencing factors. METHODS: Retrospective analysis was conducted on clinical data from 79 SFTS-VM patients, categorized into common (SFTS-CVM, n = 40) and severe groups (SFTS-SVM, n = 39). Clinical manifestations, laboratory results, cardiac ultrasonography, and electrocardiogram features were analyzed. Univariate and multivariate analyses identified significant indicators, which were further assessed using ROC curves to predict SFTS-SVM. RESULTS: SFTS-SVM group exhibited higher rates of hypotension, shock, abdominal pain, cough with sputum, and consciousness disorders compared to SFTS-CVM group. Laboratory findings showed elevated platelet count, ALT, AST, amylase, lipase, LDH, D-dimer, procalcitonin, TNI, and NT-proBNP in SFTS-SVM. Abnormal electrocardiograms, especially atrial fibrillation, were more prevalent in SFTS-SVM (P < 0.05). Multivariate analysis identified elevated LDH upon admission (OR = 1.004, 95% CI: 1-1.008, P = 0.050), elevated NT-proBNP (OR = 1.005, 95% CI: 1.001-1.008, P = 0.007), and consciousness disorders (OR = 112.852, 95% CI: 3.676 ~ 3464.292, P = 0.007) as independent risk factors for SFTS-SVM. LDH and NT-proBNP had AUCs of 0.728 and 0.744, respectively, in predicting SFTS-SVM. Critical values of LDH (> 978.5U/L) and NT-proBNP (> 857.5pg/ml)) indicated increased likelihood of SFTS progression into SVM. CONCLUSION: Elevated LDH, NT-proBNP, and consciousness disorders independently correlate with SFTS-SVM. LDH and NT-proBNP can aid in early identification of SFTS-SVM development when above specified thresholds.


Myocarditis , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , Virus Diseases , Humans , Retrospective Studies , Thrombocytopenia/complications , Thrombocytopenia/diagnosis , Myocarditis/complications , Myocarditis/diagnosis , Consciousness Disorders/complications , Fever/complications
19.
Ticks Tick Borne Dis ; 15(2): 102307, 2024 03.
Article En | MEDLINE | ID: mdl-38194758

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS, with a case fatality rate of up to 30 %. The innate immune system plays a crucial role in the defense against SFTSV; however, the impact of viral propagation of STFSV on the innate immune system remains unclear. Although proteomics analysis revealed that the expression of the downregulator of transcription 1 (DR1) increased after SFTSV infection, the specific change trend and the functional role of DR1 during viral infection remain unelucidated. In this study, we demonstrate that DR1 was highly expressed in response to SFTSV infection in HEK 293T cells using qRT-PCR and Western blot analysis. Furthermore, viral replication significantly increased the expression of various TLRs, especially TLR9. Our data indicated that DR1 positively regulated the expression of TLRs in HEK 293T cells, DR1 overexpression highly increased the expression of numerous TLRs, whereas RNAi-mediated DR1 silencing decreased TLR expression. Additionally, the myeloid differentiation primary response gene 88 (MyD88)-dependent or TIR-domain-containing adaptor inducing interferon-ß (TRIF)-dependent signaling pathways were highly up- and downregulated by the overexpression and silencing of DR1, respectively. Finally, we report that DR1 stimulates the expression of TLR7, TLR8, and TLR9, thereby upregulating the TRIF-dependent and MyD88-dependent signaling pathways during the SFTSV infection, attenuating viral replication, and enhancing the production of type I interferon and various inflammatory factors, including IL-1ß, IL-6, and IL-8. These results imply that DR1 defends against SFTSV replication by inducing the expression of TLR7, TLR8, and TLR9. Collectively, our findings revealed a novel role and mechanism of DR1 in mediating antiviral responses and innate immunity.


Bunyaviridae Infections , Phlebovirus , Phosphoproteins , Signal Transduction , Transcription Factors , Animals , Humans , Adaptor Proteins, Vesicular Transport/metabolism , Down-Regulation , HEK293 Cells , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phosphoproteins/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 9/metabolism , Transcription Factors/metabolism , Phlebovirus/physiology , Bunyaviridae Infections/immunology , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology
...