Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 6915, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134530

ABSTRACT

Protein post-translational modifications (PTMs) are crucial for cancer cells to adapt to hypoxia; however, the functional significance of lysine crotonylation (Kcr) in hypoxia remains unclear. Herein we report a quantitative proteomics analysis of global crotonylome under normoxia and hypoxia, and demonstrate 128 Kcr site alterations across 101 proteins in MDA-MB231 cells. Specifically, we observe a significant decrease in K131cr, K156cr and K220cr of phosphoglycerate kinase 1 (PGK1) upon hypoxia. Enoyl-CoA hydratase 1 (ECHS1) is upregulated and interacts with PGK1, leading to the downregulation of PGK1 Kcr under hypoxia. Abolishment of PGK1 Kcr promotes glycolysis and suppresses mitochondrial pyruvate metabolism by activating pyruvate dehydrogenase kinase 1 (PDHK1). A low PGK1 K131cr level is correlated with malignancy and poor prognosis of breast cancer. Our findings show that PGK1 Kcr is a signal in coordinating glycolysis and the tricarboxylic acid (TCA) cycle and may serve as a diagnostic indicator for breast cancer.


Subject(s)
Breast Neoplasms , Citric Acid Cycle , Glycolysis , Phosphoglycerate Kinase , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Humans , Glycolysis/genetics , Cell Line, Tumor , Female , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Lysine/metabolism , Protein Processing, Post-Translational , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Down-Regulation , Mice , Proteomics/methods , Mice, Nude , Gene Expression Regulation, Neoplastic , Mitochondria/metabolism , Cell Hypoxia , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
2.
Sci Adv ; 10(34): eadn6016, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39167658

ABSTRACT

Although certain drivers of familial Parkinson's disease (PD) compromise mitochondrial integrity, whether metabolic deficits underly other idiopathic or genetic origins of PD is unclear. Here, we demonstrate that phosphoglycerate kinase 1 (PGK1), a gene in the PARK12 susceptibility locus, is rate limiting in neuronal glycolysis and that modestly increasing PGK1 expression boosts neuronal adenosine 5'-triphosphate production kinetics that is sufficient to suppress PARK20-driven synaptic dysfunction. We found that this activity enhancement depends on the molecular chaperone PARK7/DJ-1, whose loss of function significantly disrupts axonal bioenergetics. In vivo, viral expression of PGK1 confers protection of striatal dopamine axons against metabolic lesions. These data support the notion that bioenergetic deficits may underpin PD-associated pathologies and point to improving neuronal adenosine 5'-triphosphate production kinetics as a promising path forward in PD therapeutics.


Subject(s)
Neurons , Parkinson Disease , Phosphoglycerate Kinase , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Animals , Neurons/metabolism , Mice , Humans , Glycolysis , Adenosine Triphosphate/metabolism , Energy Metabolism
3.
Biochem Pharmacol ; 227: 116440, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029631

ABSTRACT

Gastric ulcer is a highly prevalent digestive tract disease across the world, which is recurrent and hard to cure, sometimes transforming into gastric cancer if left untreated, posing great threat to human health. To develop new medicines for gastric ulcer, we ran a series of screens with ethanol stress model in GES-1 cells, and we uncovered that lamivudine rescued cells from ethanol toxicity. Then, we confirmed this discovery using the well-established ethanol-induced gastric ulcer model in mice and our findings suggest that lamivudine can directly activate phosphoglycerate kinase 1 (PGK1, EC 2.7.2.3), which binds and stimulates superoxide dismutase 1 (SOD1, EC 1.15.1.1) to inhibit ferroptosis and ultimately improve gastric ulcer. Moreover, AAV-PGK1 exhibited comparable gastroprotective effects to lamivudine. The findings are expected to offer novel therapeutic strategies for gastric ulcer, encompassing both lamivudine and AAV-PGK1.


Subject(s)
Ferroptosis , Lamivudine , Mice, Inbred C57BL , Phosphoglycerate Kinase , Stomach Ulcer , Animals , Stomach Ulcer/prevention & control , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Mice , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Ferroptosis/drug effects , Ferroptosis/physiology , Humans , Lamivudine/pharmacology , Male , Ethanol , Cell Line , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics
4.
Int J Biol Sci ; 20(9): 3656-3674, 2024.
Article in English | MEDLINE | ID: mdl-38993561

ABSTRACT

Ubiquitination plays a pivotal regulatory role in tumor progression. Among the components of the ubiquitin-proteasome system (UPS), ubiquitin-protein ligase E3 has emerged as a key molecule. Nevertheless, the biological functions of E3 ubiquitin ligases and their potential mechanisms orchestrating glycolysis in gastric cancer (GC) remain to be elucidated. In this study, we conducted a comprehensive transcriptomic analysis to identify the core E3 ubiquitin ligases in GC, followed by extensive validation of the expression patterns and clinical significance of Tripartite motif-containing 50 (TRIM50) both in vitro and in vivo. Remarkably, we found that TRIM50 was downregulated in GC tissues, associated with malignant progression and poor patient survival. Functionally, overexpression of TRIM50 suppressed GC cell proliferation and indirectly mitigated the invasion and migration of GC cells by inhibiting the M2 polarization of tumor-associated macrophages (TAMs). Mechanistically, TRIM50 inhibited the glycolytic pathway by ubiquitinating Phosphoglycerate Kinase 1 (PGK1), thereby directly suppressing GC cell proliferation. Simultaneously, the reduction in lactate led to diminished M2 polarization of TAMs, indirectly inhibiting the invasion and migration of GC cells. Notably, the downregulation of TRIM50 in GC was mediated by the METTL3/YTHDF2 axis in an m6A-dependent manner. In our study, we definitively identified TRIM50 as a tumor suppressor gene (TSG) that effectively inhibits glycolysis and the malignant progression of GC by ubiquitinating PGK1, thus offering novel insights and promising targets for the diagnosis and treatment of GC.


Subject(s)
Glycolysis , Phosphoglycerate Kinase , Stomach Neoplasms , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Humans , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Cell Line, Tumor , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Cell Proliferation/genetics , Animals , Mice , Mice, Nude , Disease Progression , Cell Movement/genetics , Mice, Inbred BALB C , Gene Expression Regulation, Neoplastic , Methyltransferases/metabolism , Methyltransferases/genetics
5.
Cell Commun Signal ; 22(1): 383, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075489

ABSTRACT

BACKGROUND: Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury. METHODS: We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression. RESULTS: The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones. CONCLUSION: These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.


Subject(s)
Brain Injuries , Phosphoglycerate Kinase , Animals , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Mice , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries/pathology , Male , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/metabolism , Hypoxia/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Mice, Inbred C57BL , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism
6.
Respir Res ; 25(1): 291, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080660

ABSTRACT

Acute lung injury (ALI) is characterized by an unregulated inflammatory reaction, often leading to severe morbidity and ultimately death. Excessive inflammation caused by M1 macrophage polarization and pyroptosis has been revealed to have a critical role in ALI. Recent study suggests that glycolytic reprogramming is important in the regulation of macrophage polarization and pyroptosis. However, the particular processes underlying ALI have yet to be identified. In this study, we established a Lipopolysaccharide(LPS)-induced ALI model and demonstrated that blocking glycolysis by using 2-Deoxy-D-glucose(2-DG) significantly downregulated the expression of M1 macrophage markers and pyroptosis-related genes, which was consistent with the in vitro results. Furthermore, our research has revealed that Phosphoglycerate Kinase 1(PGK1), an essential enzyme in the glycolysis pathway, interacts with NOD-, LRR- and pyrin domain-containing protein 3(NLRP3). We discovered that LPS stimulation improves the combination of PGK1 and NLRP3 both in vivo and in vitro. Interestingly, the absence of PGK1 reduces the phosphorylation level of NLRP3. Based on in vitro studies with mice bone marrow-derived macrophages (BMDMs), we further confirmed that siPGK1 plays a protective role by inhibiting macrophage pyroptosis and M1 macrophage polarization. The PGK1 inhibitor NG52 suppresses the occurrence of excessive inflammation in ALI. In general, it is plausible to consider a therapeutic strategy that focuses on modulating the relationship between PGK1 and NLRP3 as a means to mitigate the activation of inflammatory macrophages in ALI.


Subject(s)
Acute Lung Injury , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphoglycerate Kinase , Pyroptosis , Pyroptosis/physiology , Pyroptosis/drug effects , Animals , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/enzymology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Macrophages/metabolism , Macrophages/drug effects , Macrophages/enzymology , Glycolysis/physiology , Glycolysis/drug effects , Male , Lipopolysaccharides/toxicity , Mice, Knockout , Cells, Cultured
7.
Brain Res ; 1841: 149069, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38852658

ABSTRACT

Etomidate (ETO), a hypnotic agent used for anesthesia induction, has been shown to induce long-lasting cognitive deficits. In the present study, we investigated whether ETO could activate the HIF1A/PGK1 pathway to antagonize oxidative damage in mice with postoperative cognitive dysfunction (POCD). A mouse model of ETO-mediated POCD was established, and pathological changes, apoptosis, and inflammatory factors in mouse hippocampal tissues were analyzed by HE staining, TUNEL assay, and ELISA. ETO was revealed to cause cognitive dysfunction in mice. Integrated database mining was conducted to screen out transcription factors that are both related to ETO and POCD. Hypoxia-inducible factor 1-alpha (HIF1A) was overexpressed in mice with POCD, and downregulation of HIF1A alleviated cognitive dysfunction in mice. HIF1A downregulation inhibited the transcription of phosphoglycerate kinase 1 (PGK1). Overexpression of PGK1 abated the alleviating effects of HIF1A knockdown on oxidative stress in mice with POCD. In addition, HIF1A activation of PGK1 induced oxidative stress and apoptosis in HT-22 cells while inhibiting cell viability. Taken together, we demonstrated that HIF1A activation of PGK1 induced oxidative stress in ETO-mediated POCD.


Subject(s)
Etomidate , Hypoxia-Inducible Factor 1, alpha Subunit , Oxidative Stress , Phosphoglycerate Kinase , Postoperative Cognitive Complications , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , Phosphoglycerate Kinase/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Postoperative Cognitive Complications/metabolism , Etomidate/pharmacology , Male , Hippocampus/metabolism , Hippocampus/drug effects , Apoptosis/drug effects , Mice, Inbred C57BL , Cognitive Dysfunction/metabolism , Disease Models, Animal
8.
Int Immunopharmacol ; 137: 112439, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38870884

ABSTRACT

Ischemic stroke is acknowledged as one of the most frequent causes of death and disability, in which neuroinflammation plays a critical role. Emerging evidence supports that the PGK1/Nrf2/HO-1 signaling can modulate inflammation and oxidative injury. Albiflorin (ALB), a main component of Radix paeoniae Alba, possesses anti-inflammatory and antioxidative properties. However, how it exerts a protective role still needs further exploration. In our study, the middle cerebral artery occlusion (MCAO) model was established, and the Longa score was applied to investigate the degree of neurological impairment. Dihydroethidium (DHE) staining and Malondialdehyde (MDA) assay were used to detect the level of lipid peroxidation. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining was used to measure the infarct area. Evans blue staining was employed to observe the integrality of the blood-brain barrier (BBB). The injury of brain tissue in each group was observed via HE staining. Immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and western blot assay were used for the measurement of inflammatory factors and protein levels. We finally observed that ALB relieved cerebral infarction symptoms, attenuated oxidative damage in brain tissues, and reduced neuroinflammation and cell injury in MCAO rats. The overexpression of PGK1 abrogated the protective effect of ALB after experimental cerebral infarction. ALB promoted PGK1 degradation and induced Nrf2 signaling cascade activation for subsequent anti-inflammatory and antioxidant damage. Generally speaking, ALB exerted a protective role in treating cerebral ischemia, and it might target at PGK1/Nrf2/HO-1 signaling. Thus, ALB might be a potential therapeutic agent to alleviate neuroinflammation and protect brain cells after cerebral infarction.


Subject(s)
Anti-Inflammatory Agents , Infarction, Middle Cerebral Artery , NF-E2-Related Factor 2 , Phosphoglycerate Kinase , Rats, Sprague-Dawley , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Male , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Phosphoglycerate Kinase/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroinflammatory Diseases/drug therapy , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Oxidative Stress/drug effects , Disease Models, Animal , Brain/drug effects , Brain/pathology , Brain/metabolism , Humans , Heme Oxygenase (Decyclizing)/metabolism , Bridged-Ring Compounds
9.
Mol Cell Biochem ; 479(7): 1707-1720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38822192

ABSTRACT

HOXC6 (Homeobox C6) and methyltransferase-like 3 (METTL3) have been shown to be involved in the progression of prostate cancer (PCa). However, whether HOXC6 performs oncogenic effects in PCa via METTL3-mediated N6-methyladenosine (m6A) modification is not yet reported. The Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, scratch, sphere formation assays were applied for cell growth, invasion, migration and stemness analyses. Glycolysis was evaluated by measuring glucose consumption, lactate generation and ATP/ADP ratio. The N6-methyladenine (m6A) modification profile was determined by RNA immunoprecipitation (Me-RIP) assay. The proteins that interact with PGK1 (phosphoglycerate kinase 1) were confirmed by Co-immunoprecipitation assay. Tumor formation experiments in mice were conducted for in vivo assay. PCa tissues and cells showed highly expressed HOXC6 and METTL3. Functionally, the silencing of HOXC6 or METTL3 suppresses PCa cell proliferation, invasion, migration, stemness, and glycolysis. Moreover, METTL3-induced HOXC6 m6A modification to stabilize its expression. In addition, the m6A reader IGF2BP2 directly recognized and bound to HOXC6 mRNA, and maintained its stability, and was involved in the regulation of HOXC6 expression by METTL3. Furthermore, IGF2BP2 knockdown impaired PCa cell proliferation, invasion, migration, stemness, and glycolysis by regulating HOXC6. Besides that HOXC6 interacted with the glycoytic enzyme PGK1 in PCa cells. In vivo assays further showed that METTL3 silencing reduced the expression of HOXC6 and PGK1, and impeded PCa growth. METTL3 promoted PCa progression by maintaining HOXC6 expression in an m6A-IGF2BP2-dependent mechanism.


Subject(s)
Adenosine , Homeodomain Proteins , Methyltransferases , Prostatic Neoplasms , RNA-Binding Proteins , Methyltransferases/metabolism , Methyltransferases/genetics , Male , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Animals , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Disease Progression , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Cell Line, Tumor , Glycolysis , Cell Movement , Mice, Nude
10.
Front Biosci (Landmark Ed) ; 29(3): 92, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38538272

ABSTRACT

Phosphoglycerate kinase 1 (PGK1) serves as a pivotal enzyme in the cellular glycolysis pathway, facilitating adenosine-triphosphate (ATP) production in tumor cells and driving the Warburg effect. PGK1 generates ATP through the reversible phosphorylation reaction of 1,3-bisphosphoglycerate (1,3-BPG) to Mg-adenosine-5'-diphosphate (Mg-ADP). In addition to its role in regulating cellular metabolism, PGK1 plays a pivotal role in autophagy induction, regulation of the tricarboxylic acid cycle (TCA), and various mechanisms including tumor cell drug resistance, and so on. Given its multifaceted functions within cells, the involvement of PGK1 in many types of cancer, including breast cancer, astrocytoma, metastatic colon cancer, and pancreatic ductal adenocarcinoma, is intricate. Notably, PGK1 can function as an intracellular protein kinase to coordinate tumor growth, migration, and invasion via posttranslational modifications (PTMs). Furthermore, elevated expression levels of PGK1 have been observed in cancer tissues, indicating its association with unfavorable treatment outcomes and prognosis. This review provides a comprehensive summary of PGK1's expression pattern, structural features, functional properties, involvement in PTMs, and interaction with tumors. Additionally highlighted are the prospects for developing and applying related inhibitors that confirm the indispensable value of PGK1 in tumor progression.


Subject(s)
Colonic Neoplasms , Phosphoglycerate Kinase , Humans , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , Phosphorylation
11.
Free Radic Biol Med ; 218: 41-56, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556067

ABSTRACT

Neuronal energy metabolism dysregulation is involved in various pathologies of Ischemia-reperfusion (I/R), yet the role of RGMA in neuronal metabolic reprogramming has not been reported. In this study, we found that RGMA expression significantly increased after I/R, and compared to control mice, mice with MCAO/R showed an increase in glycolytic metabolic products and the expression of glycolytic pathway proteins. Furthermore, RGMA levels are closely related to neuronal energy metabolism. We discovered that knockdown of RGMA can shift neuronal energy metabolism towards oxidative phosphorylation and the pentose phosphate pathway, thereby protecting mice from ischemic reperfusion injury. Mechanistically, knockdown of RGMA can downregulate PGK1 expression, reducing the increase in glycolytic flux following ischemia reperfusion. Moreover, we found that knockdown of RGMA can reduce the interaction between USP10 and PGK1, thus affecting the ubiquitination degradation of PGK1. In summary, our data suggest that RGMA may regulate neuronal energy metabolism by inhibiting the USP10-mediated deubiquitination of PGK1, thus protecting it from I/R injury. This study provides new ideas for clarifying the intrinsic mechanism of neuronal damage after I/R.


Subject(s)
Energy Metabolism , Ischemic Stroke , Neurons , Phosphoglycerate Kinase , Reperfusion Injury , Animals , Humans , Male , Mice , Disease Models, Animal , Energy Metabolism/genetics , Gene Knockdown Techniques , Glycolysis/genetics , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/pathology , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/pathology , Oxidative Phosphorylation , Pentose Phosphate Pathway/genetics , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination
12.
Neuro Oncol ; 26(8): 1405-1420, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38441561

ABSTRACT

BACKGROUND: Hypoxia is a pathological hallmark in most cancers, including glioblastoma (GBM). Hypoxic signaling activation and post-translational modification (PTM) of oncogenic proteins are well-studied in cancers. Accumulating studies indicate glycolytic enzyme PGK1 plays a crucial role in tumorigenesis, yet the underlying mechanisms remain unknown. METHODS: We first used ChIP assays to uncover the crosstalk between HIF1α and ATF3 and their roles in P4HA1 regulation. Protein degradation analysis, LC-MS/MS, and in vitro succinate production assays were performed to examine the effect of protein succinylation on GBM pathology. Seahorse assay measured the effects of PGK1 succinylation at K191/K192 or its mutants on glucose metabolism. We utilized an in vivo intracranial mouse model for biochemical studies to elucidate the impact of ATF3 and P4HA1 on aerobic glycolysis and the tumor immune microenvironment. RESULTS: We demonstrated that HIF1α and ATF3 positively and negatively regulate the transcription of P4HA1, respectively, leading to an increased succinate production and increased activation of HIF1α signaling. P4HA1 expression elevated the succinate concentration, resulting in the enhanced succinylation of PGK1 at the K191 and K192 sites. Inhibition of proteasomal degradation of PGK1 by succinylation significantly increased aerobic glycolysis to generate lactate. Furthermore, ATF3 overexpression and P4HA1 knockdown reduced succinate and lactate levels in GBM cells, inhibiting immune responses and tumor growth. CONCLUSIONS: Together, our study demonstrates that HIF1α/ATF3 participated in P4HA1/succinate signaling, which is the major regulator of succinate biosynthesis and PGK1 succinylation at K191 and K192 sites in GBM. The P4HA1/succinate pathway might be a novel and promising target for aerobic glycolysis in GBM.


Subject(s)
Activating Transcription Factor 3 , Brain Neoplasms , Glioblastoma , Hypoxia-Inducible Factor 1, alpha Subunit , Phosphoglycerate Kinase , Signal Transduction , Succinic Acid , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Animals , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Mice , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Succinic Acid/metabolism , Gene Expression Regulation, Neoplastic , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Cell Proliferation
13.
Cell Death Dis ; 15(2): 170, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402202

ABSTRACT

Many types of cancer cells, including colorectal cancer cells (CRC), can simultaneously enhance glycolysis and repress the mitochondrial tricarboxylic acid (TCA) cycle, which is called the Warburg effect. However, the detailed mechanisms of abnormal activation of the glycolysis pathway in colorectal cancer are largely unknown. In this study, we reveal that the protein arginine methyltransferase 1 (PRMT1) promotes glycolysis, proliferation, and tumorigenesis in CRC cells. Mechanistically, PRMT1-mediated arginine asymmetric dimethylation modification of phosphoglycerate kinase 1 (PGK1, the first ATP-producing enzyme in glycolysis) at R206 (meR206-PGK1) enhances the phosphorylation level of PGK1 at S203 (pS203-PGK1), which inhibits mitochondrial function and promotes glycolysis. We found that PRMT1 and meR206-PGK1 expression were positively correlated with pS203-PGK1 expression in tissues from colorectal cancer patients. Furthermore, we also confirmed that meR206-PGK1 expression is positively correlated with the poor survival of patients with colorectal cancer. Our findings show that PRMT1 and meR206-PGK1 may become promising predictive biomarkers for the prognosis of patients with CRC and that arginine methyltransferase inhibitors have great potential in colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms , Phosphoglycerate Kinase , Humans , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , Arginine/metabolism , Cell Line, Tumor , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Methylation , Colorectal Neoplasms/genetics , Glycolysis/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
14.
Proc Natl Acad Sci U S A ; 121(9): e2318956121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377207

ABSTRACT

The drug terazosin (TZ) binds to and can enhance the activity of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) and can increase ATP levels. That finding prompted studies of TZ in Parkinson's disease (PD) in which decreased neuronal energy metabolism is a hallmark feature. TZ was neuroprotective in cell-based and animal PD models and in large epidemiological studies of humans. However, how TZ might increase PGK1 activity has remained a perplexing question because structural data revealed that the site of TZ binding to PGK1 overlaps with the site of substrate binding, predicting that TZ would competitively inhibit activity. Functional data also indicate that TZ is a competitive inhibitor. To explore the paradoxical observation of a competitive inhibitor increasing enzyme activity under some conditions, we developed a mass action model of TZ and PGK1 interactions using published data on PGK1 kinetics and the effect of varying TZ concentrations. The model indicated that TZ-binding introduces a bypass pathway that accelerates product release. At low concentrations, TZ binding circumvents slow product release and increases the rate of enzymatic phosphotransfer. However, at high concentrations, TZ inhibits PGK1 activity. The model explains stimulation of enzyme activity by a competitive inhibitor and the biphasic dose-response relationship for TZ and PGK1 activity. By providing a plausible mechanism for interactions between TZ and PGK1, these findings may aid development of TZ or other agents as potential therapeutics for neurodegenerative diseases. The results may also have implications for agents that interact with the active site of other enzymes.


Subject(s)
Parkinson Disease , Phosphoglycerate Kinase , Prazosin/analogs & derivatives , Humans , Animals , Phosphoglycerate Kinase/metabolism , Prazosin/pharmacology , Parkinson Disease/drug therapy , Glycolysis
15.
Eur J Med Chem ; 267: 116209, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38354523

ABSTRACT

Our previous research has revealed phosphoglycerate kinase 1 (PGK1) enhances tumorigenesis and sorafenib resistance of kidney renal clear cell carcinoma (KIRC) by regulating glycolysis, so that PGK1 is a promising drug target. Herein we performed structure-based virtual screening and series of anticancer pharmaceutical experiments in vitro and in vivo to identify novel small-molecule PGK1-targeted compounds. As results, the compounds CHR-6494 and Z57346765 were screened and confirmed to specifically bind to PGK1 and significantly reduced the metabolic enzyme activity of PGK1 in glycolysis, which inhibited KIRC cell proliferation in a dose-dependent manner. While CHR-6494 showed greater anti-KIRC efficacy and fewer side effects than Z57346765 on nude mouse xenograft model. Mechanistically, CHR-9464 impeded glycolysis by decreasing the metabolic enzyme activity of PGK1 and suppressed histone H3T3 phosphorylation to inhibit KIRC cell proliferation. Z57346765 induced expression changes of genes related to cell metabolism, DNA replication and cell cycle. Overall, we screened two novel PGK1 inhibitors, CHR-6494 and Z57346765, for the first time and discovered their potent anti-KIRC effects by suppressing PGK1 metabolic enzyme activity in glycolysis.


Subject(s)
Carcinoma , Phosphoglycerate Kinase , Mice , Animals , Humans , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , Phosphorylation , Glycolysis , Kidney/metabolism , Cell Line, Tumor
16.
Nat Commun ; 15(1): 1021, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310114

ABSTRACT

The epidermal growth factor receptor (EGFR) plays important roles in multiple cellular events, including growth, differentiation, and motility. A major mechanism of downregulating EGFR function involves its endocytic transport to the lysosome. Sorting of proteins into intracellular pathways involves cargo adaptors recognizing sorting signals on cargo proteins. A dileucine-based sorting signal has been identified previously for the sorting of endosomal EGFR to the lysosome, but a cargo adaptor that recognizes this signal remains unknown. Here, we find that phosphoglycerate kinase 1 (PGK1) is recruited to endosomal membrane upon its phosphorylation, where it binds to the dileucine sorting signal in EGFR to promote the lysosomal transport of this receptor. We also elucidate two mechanisms that act in concert to promote PGK1 recruitment to endosomal membrane, a lipid-based mechanism that involves phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and a protein-based mechanism that involves hepatocyte growth factor receptor substrate (Hrs). These findings reveal an unexpected function for a metabolic enzyme and advance the mechanistic understanding of how EGFR is transported to the lysosome.


Subject(s)
ErbB Receptors , Phosphoglycerate Kinase , Phosphoglycerate Kinase/metabolism , ErbB Receptors/metabolism , Endosomes/metabolism , Proteins/metabolism , Lysosomes/metabolism , Protein Transport/physiology , Endosomal Sorting Complexes Required for Transport/metabolism
17.
Toxicol Mech Methods ; 34(5): 507-516, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38221767

ABSTRACT

This study aimed to examine the expression and biological functions of ACTL6A in glioma cells (U251), the effects of sulforaphane on the growth of U251 cells and the involvement of the ACTL6A/PGK1 pathway in those effects. The U251 cell line was transfected with ACTL6A over-expression plasmids to upregulate the protein, or with ACTL6A inhibitor to underexpress it, then treated with different concentrations of sulforaphane. Cell viability, proliferation, and apoptosis were assessed using standard assays, and levels of mRNAs encoding ACTL6A, PGK1, cyclin D1, Myc, Bax or Bcl-2 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). ACTL6A and PGK1 were expressed at higher levels in glioma cell lines than in normal HEB cells. ACTL6A overexpression upregulated PGK1, whereas ACTL6A inhibition had the opposite effect. ACTL6A overexpression induced proliferation, whereas its inhibition repressed proliferation, enhanced apoptosis, and halted the cell cycle. Moreover, sulforaphane suppressed the growth of U251 cells by inactivating the ACTL6A/PGK1 axis. ACTL6A acts via PGK1 to play a critical role in glioma cell survival and proliferation, and sulforaphane targets it to inhibit glioma.


Subject(s)
Anticarcinogenic Agents , Apoptosis , Cell Proliferation , Glioma , Isothiocyanates , Phosphoglycerate Kinase , Sulfoxides , Humans , Apoptosis/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioma/pathology , Glioma/metabolism , Glioma/drug therapy , Glioma/genetics , Isothiocyanates/pharmacology , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , Signal Transduction/drug effects , Anticarcinogenic Agents/pharmacology
18.
Biol Direct ; 19(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38163864

ABSTRACT

BACKGROUND: Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that participates in various biological and pathological processes. Dysregulated PGK1 has been observed in numerous malignancies. However, whether and how PGK1 affects non-small cell lung cancer (NSCLC) is not yet fully elucidated. METHODS: Herein, the non-metabolic function of PGK1 in NSCLC was explored by integrating bioinformatics analyses, cellular experiments, and nude mouse xenograft models. The upstream regulators and downstream targets of PGK1 were examined using multiple techniques such as RNA sequencing, a dual-luciferase reporter assay, Co-immunoprecipitation, and Western blotting. RESULTS: We confirmed that PGK1 was upregulated in NSCLC and this upregulation was associated with poor prognosis. Further in vitro and in vivo experiments demonstrated the promoting effects of PGK1 on NSCLC cell growth and metastasis. Additionally, we discovered that PGK1 interacted with and could be O-GlcNAcylated by OGT. The inhibition of PGK1 O-GlcNAcylation through OGT silencing or mutation at the T255 O-GlcNAcylation site could weaken PGK1-mediated NSCLC cell proliferation, colony formation, migration, and invasion. We also found that a low miR-24-3p level led to an increase in OGT expression. Additionally, PGK1 exerted its oncogenic properties by augmenting ERK phosphorylation and MCM4 expression. CONCLUSIONS: PGK1 acted as a crucial mediator in controlling NSCLC progression. The miR-24-3p/OGT axis was responsible for PGK1 O-GlcNAcylation, and ERK/MCM4 were the downstream effectors of PGK1. It appears that PGK1 might be an attractive therapeutic target for the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , Cell Proliferation/genetics , Up-Regulation , Cell Line, Tumor , Cell Movement/genetics , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism
19.
Brain Res ; 1825: 148724, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38110073

ABSTRACT

Phosphoglycerate kinase 1 (PGK1) is extensively located in the cytosol and mitochondria. The role of PGK1 in ischemic neuronal injury remains elusive. In the in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R), we showed that PGK1 expression was increased in cortical neurons. Knockdown of PGK1 led to a reduction of OGD/R-induced neuronal death. The expression of cytosolic PGK1 was reduced, but the levels of mitochondrial PGK1 were increased in OGD/R-insulted neurons. Inhibiting the activity of mitochondrial PGK1 alleviated the neuronal injury after OGD/R insult. We further showed that the protein levels of TBC domain family member 15 (TBC1D15) were decreased in OGD/R-insulted neurons. Knockdown of TBC1D15 led to increased levels of mitochondrial PGK1 after OGD/R insult in cortical neurons. Moreover, increased reactive oxygen species (ROS) resulted in a reduction of TBC1D15 in OGD/R-insulted neurons. These results suggest that the upregulation of mitochondrial PGK1 by ROS-TBC1D15 signaling pathway promotes neuronal death after OGD/R injury. Mitochondrial PGK1 may act as a regulator of neuronal survival and interventions in the PGK1-dependent pathway may be a potential therapeutic strategy.


Subject(s)
Oxygen , Reperfusion Injury , Humans , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation , Glucose/metabolism , Mitochondria/metabolism , Apoptosis , Reperfusion Injury/metabolism , GTPase-Activating Proteins/metabolism , Phosphoglycerate Kinase/metabolism
20.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140964, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37726028

ABSTRACT

Magnesium is an important divalent cation for the regulation of catalytic activity. Recently, we have described that the Mg2+ binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from Leishmania major (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg2+ ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg2+ binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg2+ binding. Mg2+ ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg2+ binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg2+ dependent repressed state of the catalytic PGK domain at neutral pH.


Subject(s)
Leishmania major , Phosphoglycerate Kinase , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , Leishmania major/genetics , Leishmania major/metabolism , Aspartic Acid , Calorimetry , Catalytic Domain
SELECTION OF CITATIONS
SEARCH DETAIL