Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
Trop Anim Health Prod ; 56(7): 239, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133441

ABSTRACT

Genetic improvement of local rabbit breeds using modern approaches such as marker-assisted selection requires accurate and precise information about marker‒trait associations in animals with different genetic backgrounds. Therefore, this study was designed to estimate the association between two mutations located in the Neuropeptide Y (NPY, g.1778G > C) and Phosphoglycerate Mutase 2 (PGAM2, c.195 C > T) genes in New Zealand White (NZW), Baladi (BR), and V-line rabbits. The first mutation was genotyped using high-resolution melting, and the second mutation was genotyped using the PCR-RFLP method. The results revealed significant associations between the NPY mutation and body weight at 10 (V-line) and 12 weeks of age (NZW, BR, and V-line), body weight gain (BWG) from 10 to 12 weeks of age (BR), BWG from 6 to 12 weeks of age (NZW, BR, and V-line), average daily gain (NZW, BR, and V-line, and BR), growth rate (GR) from 8 to10 weeks (V-line), 10 to 12 weeks (BR), and GR from 6 to 12 weeks of age (BR, and V-line). The PGAM2 mutation was associated with body weight at 10 (V-line) and 12 (NZW, and V-line) weeks of age, with significant positive additive effects at 12 weeks of age in all breeds, and was associated with BWG from 8 to 10 and 10 to 12 in BR, and BWG from 6 to 12 weeks of age (NZW, and BR), and average daily gain (NZW, and BR), and was associated with GR form 8 to 10 weeks (BR), from10 to 12 weeks (BR, and V-line) and from 6 to 12 weeks (BR). The results highlighted the importance of the two mutations in growth development, and the possibility of considering them as candidate genes for late growth in rabbits.


Subject(s)
Neuropeptide Y , Phosphoglycerate Mutase , Polymorphism, Single Nucleotide , Animals , Rabbits/growth & development , Rabbits/genetics , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Male , Female , Genotype , Body Weight/genetics , Polymorphism, Restriction Fragment Length , Weight Gain/genetics
2.
mSystems ; 9(7): e0071724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38940523

ABSTRACT

Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence reflects an adaptive response or a lack thereof. To understand this, transcriptomics data were collected for CTL grown under nutrient-replete and nutrient-starved conditions. Applying K-means clustering on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions in the absence of any canonical global stress regulator. This is consistent with previous data that suggested that CTL's stress response is due to a lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence state. Our data indicate that pgm has the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm in the presence or absence of tryptophan revealed the importance of this gene in modulating persistence. Hence, this work, for the first time, introduces thermodynamics and enzyme cost as tools to gain a deeper understanding on CTL persistence. IMPORTANCE: This study uses a metabolic model to investigate factors that contribute to the persistence of Chlamydia trachomatis serovar L2 (CTL) under tryptophan and iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the model was used to assess two prevailing hypotheses on persistence-that the chlamydial response to nutrient starvation represents a passive response due to the lack of regulators or that it is an active response by the bacterium. K-means clustering of stress-induced transcriptomics data revealed striking evidence in favor of the lack of adaptive (i.e., a passive) response. To find the metabolic signature of this, metabolic modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic driving force, enzyme cost, and CRISPRi knockdown of pgm supported this finding. Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi can unravel complex bacterial phenomena.


Subject(s)
Chlamydia trachomatis , Phosphoglycerate Mutase , Chlamydia trachomatis/genetics , Phosphoglycerate Mutase/metabolism , Phosphoglycerate Mutase/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Models, Biological , Gene Expression Regulation, Bacterial , Humans
3.
Cancer Gene Ther ; 31(7): 1018-1033, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750301

ABSTRACT

Immunosuppressive tumor microenvironment (TME) contributes to tumor progression and causes major obstacles for cancer therapy. Phosphoglycerate mutase 1 (PGAM1) is a key enzyme involved in cancer metabolism while its role in remodeling TME remains unclear. In this study, we reported that PGAM1 suppression in breast cancer (BC) cells led to a decrease in M2 polarization, migration, and interleukin-10 (IL-10) production of macrophages. PGAM1 regulation on CCL2 expression was essential to macrophage recruitment, which further mediated by activating JAK-STAT pathway. Additionally, the CCL2/CCR2 axis was observed to participate in PGAM1-mediated immunosuppression via regulating PD-1 expression in macrophages. Combined targeting of PGAM1 and the CCL2/CCR2 axis led to a reduction in tumor growth in vivo. Furthermore, clinical validation in BC tissues indicated a positive correlation between PGAM1, CCL2 and macrophage infiltration. Our study provides novel insights into the induction of immunosuppressive TME by PGAM1 and propose a new strategy for combination therapies targeting PGAM1 and macrophages in BC.


Subject(s)
Breast Neoplasms , Macrophages , Phosphoglycerate Mutase , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Humans , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Female , Mice , Macrophages/immunology , Macrophages/metabolism , Animals , Disease Progression , Tumor Microenvironment/immunology , Cell Line, Tumor
4.
EMBO J ; 43(12): 2368-2396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750259

ABSTRACT

Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.


Subject(s)
Glycolysis , Phosphoglycerate Mutase , Thyroid Hormones , Humans , Phosphoglycerate Mutase/metabolism , Phosphoglycerate Mutase/genetics , Phosphorylation , Animals , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Mice , Thyroid Hormone-Binding Proteins , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Carrier Proteins/metabolism , Carrier Proteins/genetics
5.
Int J Biol Macromol ; 268(Pt 2): 131547, 2024 May.
Article in English | MEDLINE | ID: mdl-38641281

ABSTRACT

Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.


Subject(s)
Eicosapentaenoic Acid , Muscle, Skeletal , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Male , Mice , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Eicosapentaenoic Acid/pharmacology , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Muscle Development/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoglycerate Mutase/metabolism , Phosphoglycerate Mutase/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Swine
6.
Sci Rep ; 14(1): 8535, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609411

ABSTRACT

Although the death of hepatocytes is a crucial trigger of liver ischemia-reperfusion (I/R) injury, the regulation of liver I/R-induced hepatocyte death is still poorly understood. Phosphoglycerate mutase 5 (PGAM5), a mitochondrial Serine/Threonine protein phosphatase, regulates mitochondrial dynamics and is involved in the process of both apoptosis and necrotic. However, it is still unclear what role PGAM5 plays in the death of hepatocytes induced by I/R. Using a PGAM5-silence mice model, we investigated the role of PGAM5 in liver I/R injury and its relevant molecular mechanisms. Our data showed that PGAM5 was highly expressed in mice with liver I/R injury. Silence of PGAM5 could decrease I/R-induced hepatocyte death in mice. In subcellular levels, the silence of PGAM5 could restore mitochondrial membrane potential, increase mitochondrial DNA copy number and transcription levels, inhibit ROS generation, and prevent I/R-induced opening of abnormal mPTP. As for the molecular mechanisms, we indicated that the silence of PGAM5 could inhibit Drp1(S616) phosphorylation, leading to a partial reduction of mitochondrial fission. In addition, Mdivi-1 could inhibit mitochondrial fission, decrease hepatocyte death, and attenuate liver I/R injury in mice. In conclusion, our data reveal the molecular mechanism of PGAM5 in driving hepatocyte death through activating mitochondrial fission in liver I/R injury.


Subject(s)
Phosphoglycerate Mutase , Reperfusion Injury , Animals , Mice , Hepatocytes , Liver , Mitochondrial Dynamics , Phosphoglycerate Mutase/genetics , Reperfusion Injury/genetics
7.
Int J Med Sci ; 21(4): 755-764, 2024.
Article in English | MEDLINE | ID: mdl-38464835

ABSTRACT

Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.


Subject(s)
Liver Diseases, Alcoholic , Mitochondrial Diseases , Animals , Humans , Mice , Ethanol/toxicity , Ethanol/metabolism , Liver Diseases, Alcoholic/genetics , Mitochondria/genetics , Mitochondria/metabolism , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
8.
Clin Transl Med ; 13(12): e1511, 2023 12.
Article in English | MEDLINE | ID: mdl-38093528

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) cells undergo reprogramming of glucose metabolism to support uncontrolled proliferation, of which the intrinsic mechanism still merits further investigation. Although regulatory factor X6 (RFX6) is aberrantly expressed in different cancers, its precise role in cancer development remains ambiguous. METHODS: Microarrays of HCC tissues were employed to investigate the expression of RFX6 in tumour and adjacent non-neoplastic tissues. Functional assays were employed to explore the role of RFX6 in HCC development. Chromatin immunoprecipitation, untargeted metabolome profiling and sequencing were performed to identify potential downstream genes and pathways regulated by RFX6. Metabolic assays were employed to investigate the effect of RFX6 on glycolysis in HCC cells. Bioinformatics databases were used to validate the above findings. RESULTS: HCC tissues exhibited elevated expression of RFX6. High RFX6 expression represented as an independent hazard factor correlated to poor prognosis in patients with HCC. RFX6 deficiency inhibited HCC development in vitro and in vivo, while its overexpression exerted opposite functions. Mechanistically, RFX6 bound to the promoter area of phosphoglycerate mutase 1 (PGAM1) and upregulated its expression. The increased PGAM1 protein levels enhanced glycolysis and further promoted the development of HCC. CONCLUSIONS: RFX6 acted as a novel driver for HCC development by promoting aerobic glycolysis, disclosing the potential of the RFX6-PGAM1 axis for therapeutic targeting.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/genetics , Glycolysis/genetics , Liver Neoplasms/metabolism , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1370-1379, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37580952

ABSTRACT

Tumor metabolic reprogramming and epigenetic modification work together to promote tumorigenesis and development. Protein lysine acetylation, which affects a variety of biological functions of proteins, plays an important role under physiological and pathological conditions. Here, through immunoprecipitation and mass spectrum data, we show that phosphoglycerate mutase 5 (PGAM5) deacetylation enhances malic enzyme 1 (ME1) metabolic enzyme activity to promote lipid synthesis and proliferation of liver cancer cells. Mechanistically, we demonstrate that the deacetylase SIRT2 mediates PGAM5 deacetylation to activate ME1 activity, leading to ME1 dephosphorylation, subsequent lipid accumulation and the proliferation of liver cancer cells. Taken together, our study establishes an important role for the SIRT2-PGAM5-ME1 axis in the proliferation of liver cancer cells, suggesting a potential innovative cancer therapy.


Subject(s)
Liver Neoplasms , Sirtuin 2 , Humans , Sirtuin 2/genetics , Sirtuin 2/metabolism , Lipid Metabolism , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Cell Proliferation , Lipids , Acetylation , Phosphoprotein Phosphatases/metabolism , Mitochondrial Proteins/metabolism
10.
Cell Death Dis ; 14(8): 502, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542027

ABSTRACT

Tumor-derived exosomes and their contents promote cancer metastasis. Phosphoglycerate mutase 1 (PGAM1) is involved in various cancer-related processes. Nevertheless, the underlying mechanism of exosomal PGAM1 in prostate cancer (PCa) metastasis remains unclear. In this study, we performed in vitro and in vivo to determine the functions of exosomal PGAM1 in the angiogenesis of patients with metastatic PCa. We performed Glutathione-S-transferase pulldown, co-immunoprecipitation, western blotting and gelatin degradation assays to determine the pathway mediating the effect of exosomal PGAM1 in PCa. Our results revealed a significant increase in exosomal PGAM1 levels in the plasma of patients with metastatic PCa compared to patients with non-metastatic PCa. Furthermore, PGAM1 was a key factor initiating PCa cell metastasis by promoting invadopodia formation and could be conveyed by exosomes from PCa cells to human umbilical vein endothelial cells (HUVECs). In addition, exosomal PGAM1 could bind to γ-actin (ACTG1), which promotes podosome formation and neovascular sprouting in HUVECs. In vivo results revealed exosomal PGAM1 enhanced lung metastasis in nude mice injected with PCa cells via the tail vein. In summary, exosomal PGAM1 promotes angiogenesis and could be used as a liquid biopsy marker for PCa metastasis.


Subject(s)
Exosomes , MicroRNAs , Prostatic Neoplasms , Animals , Humans , Male , Mice , Actins/metabolism , Cell Line, Tumor , Cell Proliferation , Endothelial Cells/metabolism , Exosomes/metabolism , Mice, Nude , MicroRNAs/metabolism , Neoplasm Metastasis/pathology , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Prostatic Neoplasms/pathology
11.
J Biochem Mol Toxicol ; 37(9): e23406, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392398

ABSTRACT

Lung adenocarcinoma (LUAD) is usually found at the metastatic stage. Circular RNA dihydrouridine synthase 2-like (DUS2L) (circDUS2L) has been discovered to be upregulated in LUAD. Nevertheless, the function of circDUS2L in LUAD has not been verified. Levels of circDUS2L, microRNA-590-5p (miR-590-5p), and phosphoglycerate mutase 1 (PGAM1) mRNA were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, metastasis, and invasion were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, 5-ethynyl-2'-deoxyuridine (Edu), flow cytometry, and transwell assays. Protein levels were detected by western blotting. Cell glycolysis was analyzed by measuring cell glucose consumption, lactate production, and extracellular acidification rate (ECAR). The regulatory mechanism of circDUS2L in LUAD cells was analyzed by bioinformatics analysis, dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the function of circDUS2L in vivo. CircDUS2L was highly expressed in LUAD tissues and cells. CircDUS2L silencing constrained xenograft tumor growth in vivo. CircDUS2L knockdown induced apoptosis, repressed viability, colony formation, proliferation, metastasis, invasion, and glycolysis of LUAD cells in vitro by releasing miR-590-5p via functioning as a miR-590-5p sponge. MiR-590-5p was lowly expressed in LUAD tissues and cells, and miR-590-5p mimic curbed malignant behaviors and glycolysis of LUAD cells by targeting PGAM1. PGAM1 was overexpressed in LUAD tissues and cells, and circDUS2L sponged miR-590-5p to regulate PGAM1 expression. CircDUS2L elevated PGAM1 expression through functioning as a miR-590-5p sponge, thus driving malignant behaviors and glycolysis of LUAD cells.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , MicroRNAs , Humans , Phosphoglycerate Mutase/genetics , Adenocarcinoma of Lung/genetics , RNA, Circular/genetics , Cell Proliferation , Lung Neoplasms/genetics , MicroRNAs/genetics , Cell Line, Tumor
12.
Arch Microbiol ; 205(7): 263, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316743

ABSTRACT

Candida albicans colonizes oral tissues and causes infectious diseases. Colonization of C. albicans on the oral mucosa and tooth enamel surfaces is established via the interaction between C. albicans adhesins and salivary proteins, forming a film on the oral tissues. Deleted in malignant brain tumors 1 (DMBT1), also known as salivary agglutinin or gp-340, belongs to the scavenger receptor cysteine-rich (SRCR) superfamily. In the oral cavity, immobilized DMBT1 on oral tissues causes microbial adherence. Recently, we demonstrated that C. albicans binds to DMBT1 and isolated a 25-kDa C. albicans adhesin involved in the interaction with the binding domain of DMBT1, namely, SRCRP2. In the present study, we searched for additional DMBT1-binding adhesins in C. albicans. The component isolated here had a molecular mass of 29 kDa and was found to be phosphoglycerate mutase (Gpm1). Isolated Gpm1 inhibited C. albicans binding to SRCRP2 and directly bound to SRCRP2 in a dose-dependent manner. Gpm1 localization on the C. albicans cell wall surface was confirmed by immunostaining. These results suggest that surface-expressed Gpm1 functions as an adhesin for the establishment of C. albicans cells on the oral mucosa and tooth enamel by binding to DMBT1.


Subject(s)
Candida albicans , Phosphoglycerate Mutase , Phosphoglycerate Mutase/genetics , Adhesins, Bacterial , Cell Membrane , Cell Wall
13.
PeerJ ; 11: e14936, 2023.
Article in English | MEDLINE | ID: mdl-37051414

ABSTRACT

PGAM1 plays a critical role in cancer cell metabolism through glycolysis and different biosynthesis pathways to promote cancer. It is generally known as a crucial target for treating pancreatic ductal adenocarcinoma, the deadliest known malignancy worldwide. In recent years different studies have been reported that strived to find inhibitory agents to target PGAM1, however, no validated inhibitor has been reported so far, and only a small number of different inhibitors have been reported with limited potency at the molecular level. Our in silico studies aimed to identify potential new PGAM1 inhibitors that could bind at the allosteric sites. At first, shape and feature-based models were generated and optimized by performing receiver operating characteristic (ROC) based enrichment studies. The best query model was then employed for performing shape, color, and electrostatics complementarity-based virtual screening of the ChemDiv database. The top two hundred and thirteen hits with greater than 1.2 TanimotoCombo score were selected and then subjected to structure-based molecular docking studies. The hits yielded better docking scores than reported compounds, were selected for subsequent structural similarity-based clustering analysis to select the best hits from each cluster. Molecular dynamics simulations and binding free energy calculations were performed to validate their plausible binding modes and their binding affinities with the PGAM1 enzyme. The results showed that these compounds were binding in the reported allosteric site of the enzyme and can serve as a good starting point to design better active selective scaffolds against PGAM1enzyme.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Molecular Docking Simulation , Phosphoglycerate Mutase/genetics , Molecular Dynamics Simulation
14.
Cancer Sci ; 114(6): 2345-2359, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36880587

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant neoplasm of the bone. Recent studies have indicated that the inhibitory effects of microRNA (miR)-324-3p could affect the development of numerous cancers. However, its biological roles and underlying mechanisms in OS progression remain unexplored. In this study, miR-324-3p expression was markedly reduced in OS cell lines and tissues. Functionally, miR-324-3p overexpression suppressed OS progression and was involved in the Warburg effect. Mechanistically, miR-324-3p negatively regulated phosphoglycerate mutase 1 (PGAM1) expression by targeting its 3'-UTR. Moreover, high expression of PGAM1 promoted OS progression and aerobic glycolysis, which were associated with inferior overall survival in patients with OS. Notably, the tumor suppressor functions of miR-324-3p were partially recovered by PGAM1 overexpression. In summary, the miR-324-3p/PGAM1 axis plays an important role in regulating OS progression by controlling the Warburg effect. Our results provide mechanistic insights into the function of miR-324-3p in glucose metabolism and subsequently on the progression of OS. Targeting the miR-324-3p/PGAM1 axis could be a promising molecular strategy for the treatment of OS.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , MicroRNAs/metabolism , Osteosarcoma/pathology , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism
15.
Int Immunopharmacol ; 116: 109773, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36773566

ABSTRACT

Spinal cord injury (SCI) is a high incidence worldwide that causes a heavy physical and psychological burden to patients. It is urgent to further reveal the pathological mechanism and effective treatment of SCI. Mitochondrial dysfunction plays an important role in the disease progression of SCI. As a mitochondrial membrane protein, phosphoglycerate mutase 5 (PGAM5) is mainly involved in mitochondrial function and mitosis to modulate cellular physiological functions, but the roles of PGAM5 in spinal tissues remain to be unreported after SCI. The purpose of this study was to evaluate the role of PGAM5 in SCI mice and its relationship with neuroinflammation. The results showed that the mitochondrial membrane protein PGAM5 was involved in microglia activation after SCI, and PGAM5 deletion could improve mitochondrial dysfunction (including abnormal mtDNA, ATP synthases, and ATP levels, Cyt C expression, and ROS and rGSH levels) in spinal cord tissue after SCI, Arg1/iNOS mRNA level, iNOS expression, and pro-inflammatory cytokines TNF-α, IL-1ß, and IL-18 levels. In vitro, H2O2 increased TNF-α, IL-1ß, and IL-18 levels in BV2 cells, and PGAM5-sh and Nrf2 activators significantly reversed H2O2-induced iNOS expression and proinflammatory cytokine production. Furthermore, IP/Western blotting results revealed that PGAM5-sh treatment significantly reduced the interaction of PGAM5 with Nrf2 and enhanced the nuclear translocation of Nrf2 in BV2 cells. The data suggested that PGAM5 was involved in the cascade of oxidative stress and inflammatory response in microglia via facilitating the expression level of Nrf2 in the nucleus after SCI. It provided a reference for clarifying the pathological mechanism and therapeutic target of SCI.


Subject(s)
Mitochondria , Neuroinflammatory Diseases , Phosphoglycerate Mutase , Spinal Cord Injuries , Animals , Mice , Adenosine Triphosphate/metabolism , Hydrogen Peroxide/metabolism , Interleukin-18/metabolism , Mitochondria/metabolism , Mitochondria/pathology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/drug therapy , Tumor Necrosis Factor-alpha/metabolism
16.
Kidney Int ; 103(1): 115-133, 2023 01.
Article in English | MEDLINE | ID: mdl-36089186

ABSTRACT

Acute kidney injury (AKI) is a worldwide public health problem characterized by excessive inflammation with no specific therapy in clinic. Inflammation is not only a feature of AKI but also an essential promoter for kidney deterioration. Phosphoglycerate mutase 5 (PGAM5) was up-regulated and positively correlated with kidney dysfunction in human biopsy samples and mouse kidneys with AKI. PGAM5 knockout in mice significantly alleviated ischemia/reperfusion-induced kidney injury, mitochondrial abnormality and production of inflammatory cytokines. Elevated PGAM5 was found to be mainly located in kidney tubular epithelial cells and was also related to inflammatory response. Knockdown of PGAM5 inhibited the hypoxia/reoxygenation-induced cytosolic release of mitochondrial DNA (mtDNA) and binding of mtDNA with the cellular DNA receptor cGAS in cultured cells. cGAS deficiency also attenuated the inflammation and kidney injury in AKI. Mechanistically, as a protein phosphatase, PGAM5 was able to dephosphorylate the pro-apoptotic protein Bax and facilitate its translocation to mitochondrial membranes, and then initiate increased mitochondrial membrane permeability and release of mtDNA. Leaked mtDNA recognized by cGAS then initiated its downstream-coupled STING pathway, a component of the innate immune system that functions to detect the presence of cytosolic DNA. Thus, our results demonstrated mtDNA release induced by PGAM5-mediated Bax dephosphorylation and the activation of cGAS-STING pathway as critical determinants of inflammation and kidney injury. Hence, targeting this axis may be useful for treating AKI.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Humans , Mice , Animals , DNA, Mitochondrial/genetics , Apoptosis Regulatory Proteins , Phosphoglycerate Mutase/genetics , bcl-2-Associated X Protein , Acute Kidney Injury/pathology , Inflammation , Reperfusion Injury/pathology , Nucleotidyltransferases/metabolism
17.
Cell Biol Int ; 47(1): 41-51, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36335636

ABSTRACT

Triple-negative breast cancer (TNBC) is a malignancy with high metastasis rate and poor prognosis. Limited drugs are effective for the treatment of TNBC patients. Ubiquitin specific proteases (USPs) are important posttranscription modulators that promote protein stability by reducing the ubiquitination of the proteins. Aberrant expression of USPs is involved in the development of numerous cancers. However, it remains poorly understood on the role of USP46 in TNBC growth and metastasis. In this study, we explored the clinical relevance, function and molecular mechanisms of USP46 in TNBC. USP46 expression was increased in breast cancer tissues. High expression of USP46 was associated with the poorer prognosis of the patients. Overexpression and knockdown experiments demonstrated that USP46 was critical for TNBC cell growth, migration, and tumorigenesis. Mechanistically, USP46 enhanced the protein stability of phosphoglycerate mutase 1 (PGAM1) via direct interaction. Importantly, USP46 stimulated the glycolysis and promoted the malignant growth of TNBC cells through upregulation of PGAM1. Our study reveals that USP46/PGAM1 axis contributes to TNBC progression and is a potential target for the treatment of TNBC patients.


Subject(s)
Triple Negative Breast Neoplasms , Ubiquitin-Specific Proteases , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
18.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36361985

ABSTRACT

Phosphoglycerate mutase (PGAM) is a glycolytic enzyme converting 3-phosphoglycerate to 2-phosphoglycerate, which in mammalian cells is expressed in two isoforms: brain (PGAM1) and muscle (PGAM2). Recently, it was shown that besides its enzymatic function, PGAM2 can be imported to the cell nucleus where it co-localizes with the nucleoli. It was suggested that it functions there to stabilize the nucleolar structure, maintain mRNA expression, and assist in the assembly of new pre-ribosomal subunits. However, the precise mechanism by which the protein translocates to the nucleus is unknown. In this study, we present the first crystal structure of PGAM2, identify the residues involved in the nuclear localization of the protein and propose that PGAM contains a "quaternary nuclear localization sequence (NLS)", i.e., one that consists of residues from different protein chains. Additionally, we identify potential interaction partners for PGAM2 in the nucleoli and demonstrate that 14-3-3ζ/δ is indeed an interaction partner of PGAM2 in the nucleus. We also present evidence that the insulin/IGF1-PI3K-Akt-mTOR signaling pathway is responsible for the nuclear localization of PGAM2.


Subject(s)
Phosphatidylinositol 3-Kinases , Phosphoglycerate Mutase , Animals , Phosphoglycerate Mutase/genetics , Active Transport, Cell Nucleus , Phosphatidylinositol 3-Kinases/metabolism , 14-3-3 Proteins/metabolism , Muscles/metabolism , Mammals/metabolism
19.
J Clin Lab Anal ; 36(11): e24718, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36181311

ABSTRACT

BACKGROUND: To identify a novel marker for gastric cancer, we examined the usefulness of phosphoglycerate mutase 1 (PGAM1) as a potential diagnostic marker using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics and evaluated its clinical significance. METHODS: Proteins from a discovery group of four paired gastric cancer tissues and adjacent gastric tissues were labeled with iTRAQ reagents and then identified and quantified using LC-MS/MS. The expression of PGAM1 was further validated in 139 gastric cancer patients using immunohistochemistry. Furthermore, the correlation of PGAM1 expression with clinical parameters was analyzed. Gene set enrichment analysis (GSEA) was performed to identify gene sets that were activated in PGAM1-overexpressing patients with gastric cancer. RESULTS: PGAM1 was significantly overexpressed in most cancers but particularly so in gastric cancer, with a sensitivity of 82.01% (95% confidence interval [CI]: 75.5%-88.5%) and specificity of 79.13% (95% CI: 72.3%-86%). Its expression was significantly associated with histological grade II and III tumors (p = 0.033), lymph node metastasis (p = 0.031), and TNM III-IV staging (p = 0.025). The area under the receiver operating characteristic (ROC) curve for the detection of PGAM1 overexpression in gastric cancer was 0.718 (p < 0.01). Furthermore, GSEA revealed that several important pathways such as glycolysis pathway and immune pathways were significantly enriched in patients with gastric cancer with PGAM1 overexpression. CONCLUSIONS: This study provided a sensitive method for detecting PGAM1, which may serve as a novel indicator for poor prognosis of gastric cancer, as well as a potent drug target for gastric cancer.


Subject(s)
Phosphoglycerate Mutase , Stomach Neoplasms , Humans , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Stomach Neoplasms/diagnosis , Stomach Neoplasms/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Glycolysis , Neoplasm Staging
20.
Front Biosci (Landmark Ed) ; 27(9): 262, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36224008

ABSTRACT

BACKGROUND: Enhanced glycolysis occurs in most human cancer cells and is related to chemoresistance. However, detailed mechanisms remain vague. METHODS: Using proteinomics analysis, we found that the glycolytic enzyme Phosphoglycerate mutase 1 (PGAM1) was highly expressed in the paclitaxel-resistant ovarian cancer cell line SKOV3-TR30, as compared to its parental cell line SKOV3. Cell Counting Kit-8 proliferation experiment, plasmids and siRNA transfection, pyruvic acid and lactic acid production detection, immunofluorescence staining of functional mitochondria and oxygen consumption rate and extracellular acidification rate measurement were uesd to assess the glycolytic metabolism and paclitaxel resistance in ovarian cancer cells. The expression and prognostic effect of PGAM1 in 180 ovarian cancer patients were analyzed. RESULTS: SKOV3-TR30 cells display higher glycolytic flux and lower mitochondrial function than SKOV3 cells. Down-regulation of PGAM1 in SKOV3-TR30 cells resulted in decreased paclitaxel resistance. Up-regulation of PGAM1 in SKOV3 cells led to enhanced paclitaxel resistance. Analysis of the glycolytic flux revealed that PGAM1-mediated pyruvic acid or lactic acid production could modulate the capabilities of ovarian cancer cell resistance to paclitaxel. Our data also show high expression of PGAM1 as significantly correlated with reduced overall survival and reduced progression free survival in ovarian cancer patients. CONCLUSIONS: PGAM1 acts to promote paclitaxel resistance via pyruvic acid and/or lactate production in ovarian cancer cells. Inhibiting PGAM1 may provide a new approach to favorably alter paclitaxel resistance in ovarian cancer.


Subject(s)
Ovarian Neoplasms , Paclitaxel , Phosphoglycerate Mutase/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Glycolysis , Humans , Lactic Acid , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Paclitaxel/pharmacology , Phosphoglycerate Mutase/genetics , Pyruvic Acid , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL