Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Bioorg Chem ; 151: 107714, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39167867

ABSTRACT

Aberrant activation or mutation of the EGFR-PI3K-Akt-mTOR signaling pathway has been implicated in a wide range of human cancers, especially non-small-cell lung cancer (NSCLC). Thus, dual inhibition of EGFR and PI3K has been investigated as a promising strategy to address acquired drug resistance resulting from the use of tyrosine kinase inhibitors. A series of dual EGFR/PI3Kα inhibitors was synthesized using pharmacophore hybridization of the third-generation EGFR inhibitor olmutinib and the PI3Kα selective inhibitor TAK-117. The optimal compound 30k showed potent kinase inhibitory activities with IC50 values of 3.6 and 30.0 nM against EGFRL858R/T790M and PI3Kα, respectively. Compound 30k exhibited a significant antiproliferative effect in NCI-H1975 cells with a higher selectivity profile than olmutinib. The potential antitumor mechanism, molecular binding modes, and in vitro metabolic stability of compound 30k were also clarified.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Cell Line, Tumor , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation
2.
J Med Chem ; 67(13): 10530-10547, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988222

ABSTRACT

The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase , Drug Design , Phosphoinositide-3 Kinase Inhibitors , Humans , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Class Ib Phosphatidylinositol 3-Kinase/chemistry , Structure-Activity Relationship , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Molecular Structure
3.
Cell Chem Biol ; 31(7): 1244-1246, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029455
4.
Luminescence ; 39(7): e4838, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39051537

ABSTRACT

YM201636 is the potent PIKfyve inhibitor that is being actively investigated for liver cancer efficacy. In this study, computer simulations and experiments were conducted to investigate the interaction mechanism between YM201636 and the transport protein HSA. Results indicated that YM201636 is stably bound between the subdomains IIA and IIIA of HSA, supported by site marker displacement experiments. YM201636 quenched the endogenous fluorescence of HSA by static quenching since a decrease in quenching constants was observed from 7.74 to 2.39 × 104 M-1. UV-vis and time-resolved fluorescence spectroscopy confirmed the YM201636-HSA complex formation and this binding followed a static mechanism. Thermodynamic parameters ΔG, ΔH, and ΔS obtained negative values suggesting the binding was a spontaneous process driven by Van der Waals interactions and hydrogen binding. Binding constants ranged between 5.71 and 0.33 × 104 M-1, which demonstrated a moderately strong affinity of YM201636 to HSA. CD, synchronous, and 3D fluorescence spectroscopy revealed that YM201636 showed a slight change in secondary structure. The increase of Kapp and a decrease of PSH with YM201636 addition showed that YM201636 changed the surface hydrophobicity of HSA. The research provides reasonable models helping us further understand the transportation and distribution of YM201636 when it absorbs into the blood circulatory system.


Subject(s)
Serum Albumin, Human , Spectrometry, Fluorescence , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Thermodynamics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/chemistry , Models, Molecular , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/metabolism , Pyrimidines/chemistry
5.
Future Med Chem ; 16(14): 1465-1484, 2024.
Article in English | MEDLINE | ID: mdl-39016063

ABSTRACT

Lymphoma, a blood tumor, has become the ninth most common cancer in the world in 2020. Targeted inhibition is one of the important treatments for lymphoma. At present, there are many kinds of targeted drugs for the treatment of lymphoma. Studies have shown that Histone deacetylase, Bruton's tyrosine kinase and phosphoinositide 3-kinase all play an important role in the occurrence and development of tumors and become important and promising inhibitory targets. This article mainly expounds the important role of these target protein in tumors, and introduces the mechanism of action, structure-activity relationship and clinical research of listed small molecule inhibitors of these targets, hoping to provide new ideas for the treatment of lymphoma.


[Box: see text].


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Antineoplastic Agents , Lymphoma , Small Molecule Libraries , Humans , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Histone Deacetylases/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Structure-Activity Relationship , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Molecular Targeted Therapy
6.
Chem Biol Interact ; 398: 111073, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38823538

ABSTRACT

Cancer is a complex and multifaceted group of diseases with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. Dysregulation of normal signalling pathways in cancer contributes to the different hallmarks of this disease. The signalling pathway of which phosphatidylinositol 3-kinase (PI3K) is a part is not an exception. In fact, dysregulated activation of PI3K signalling pathways can result in unbridled cellular proliferation and enhanced cell survival, thereby fostering the onset and advancement of cancer. Therefore, there is substantial interest in developing targeted therapies specifically aimed at inhibiting the PI3K enzyme and its associated pathways. Also, the therapeutic interest on pyrazoles and indazoles has been growing due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as PI3K inhibitors, and they showed promising results. There are already some PI3K inhibitors approved by Food and Drug Administration (FDA), such as Idelalisib (Zydelig®) and Alpelisib (Piqray®). In this context, this review aims to address the importance of PI3K in cellular processes and its role in cancer. Additionally, it aims to report a comprehensive literature review of PI3K inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PI3K inhibitors.


Subject(s)
Antineoplastic Agents , Indazoles , Neoplasms , Phosphoinositide-3 Kinase Inhibitors , Pyrazoles , Humans , Indazoles/chemistry , Indazoles/pharmacology , Indazoles/therapeutic use , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Animals , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinase/metabolism , Signal Transduction/drug effects
7.
J Med Chem ; 67(13): 11103-11124, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38907711

ABSTRACT

A hit-to-lead campaign pursuing the identification of novel inhalant small-molecule phosphatidylinositol 3-kinase (PI3K) inhibitors for the treatment of inflammatory respiratory diseases is disclosed. A synthetically versatile pyridazin-3(2H)-one scaffold was designed, and three exit vectors on the core moiety were used to explore chemical diversity and optimize pharmacological and absorption, distribution, metabolism, and excretion (ADME) properties. Desired modulation of PI3Kδ selectivity and cellular potency as well as ADME properties in view of administration by inhalation was achieved. Intratracheal administration of lead compound 26 resulted in a promising pharmacokinetic profile, thus demonstrating that the optimization strategy of in vitro profiles successfully translated to an in vivo setting.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Pyridazines , Animals , Humans , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Administration, Inhalation , Pyridazines/chemistry , Pyridazines/pharmacology , Pyridazines/pharmacokinetics , Pyridazines/chemical synthesis , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Structure-Activity Relationship , Drug Discovery , Rats , Mice , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/administration & dosage
8.
Bioorg Chem ; 150: 107563, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38885547

ABSTRACT

In this study, seven isoniazid-hydrazone derivatives (3a-g) were synthesized and their structures elucidated by chromatographic techniques, and then the antiproliferative effects of these compounds on various cancer cells were tested. The advanced anticancer mechanism of the most potent compound was then investigated. Antiproliferative activities of the synthesized compounds were evaluated on human breast cancer MCF-7, lung cancer A-549, colon cancer HT-29, and non-cancerous mouse fibroblast 3T3-L1 cell lines by XTT assay. Flow cytometry analysis were carried out to determine cell cycle distribution, apoptosis, mitochondrial membrane potential, multi-caspase activity, and expression of PI3K/AKT signaling pathway. The XTT results showed that all the title molecules displayed cytotoxic activity at varying strengths in different dose ranges, and among them, the strongest cytotoxic effect and high selectivity were exerted by 3d against MCF-7 cells with the IC50 value of 11.35 µM and selectivity index of 8.65. Flow cytometry results revealed that compound 3d induced apoptosis through mitochondrial membrane disruption and multi-caspase activation in MCF-7 cells. It also inhibited the cell proliferation via inhibition of expression of PI3K/AKT and arrested the cell cycle at G0/G1 phase. In conclusion, all these data disclosed that among the synthesized compounds, 3d is notable for in vivo anticancer studies.


Subject(s)
Antineoplastic Agents , Apoptosis , Caspases , Cell Cycle Checkpoints , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hydrazones , Isoniazid , Mitochondria , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Apoptosis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Cycle Checkpoints/drug effects , Structure-Activity Relationship , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Caspases/metabolism , Isoniazid/pharmacology , Isoniazid/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Mice , Animals
9.
J Med Chem ; 67(11): 9628-9644, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38754045

ABSTRACT

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system and the unmet need for MS treatment demands new therapeutic development. Particularly, PI3Kδ is a high-value target for autoimmune disease, while the investigation of PI3Kδ inhibitors for MS therapy is relatively scarce. Herein, we report a novel class of azaindoles as PI3Kδ inhibitors for MS treatment. Compound 31, designed via nitrogen bioisosterism, displayed excellent PI3Kδ inhibitory activity and selectivity. In vitro assay showed that 31 exhibited superior activity on T lymphocytes to inhibit the proliferation of CD4+, CD8+, and CD3+ T cells. In the experimental autoimmune encephalomyelitis (EAE) model, 31 showed a comparable therapeutical efficacy with Dexamethasone to significantly ameliorate EAE symptoms. Mechanistic studies showed that compound 31 could significantly inhibit the PI3K/AKT/mTOR signaling pathway and inhibited T-cell proliferation and differentiation. Overall, this work provides a new structural PI3Kδ inhibitor and a new vision for MS therapy.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Encephalomyelitis, Autoimmune, Experimental , Indoles , Multiple Sclerosis , Phosphoinositide-3 Kinase Inhibitors , Animals , Multiple Sclerosis/drug therapy , Humans , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Indoles/therapeutic use , Mice , Cell Proliferation/drug effects , Aza Compounds/chemistry , Aza Compounds/pharmacology , Aza Compounds/chemical synthesis , Structure-Activity Relationship , T-Lymphocytes/drug effects , Drug Discovery , Mice, Inbred C57BL , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use
10.
Structure ; 32(7): 907-917.e7, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38582077

ABSTRACT

PI3Kα is a lipid kinase that phosphorylates PIP2 and generates PIP3. The hyperactive PI3Kα mutation, H1047R, accounts for about 14% of breast cancer, making it a highly attractive target for drug discovery. Here, we report the cryo-EM structures of PI3KαH1047R bound to two different allosteric inhibitors QR-7909 and QR-8557 at a global resolution of 2.7 Å and 3.0 Å, respectively. The structures reveal two distinct binding pockets on the opposite sides of the activation loop. Structural and MD simulation analyses show that the allosteric binding of QR-7909 and QR-8557 inhibit PI3KαH1047R hyper-activity by reducing the fluctuation and mobility of the activation loop. Our work provides a strong rational basis for a further optimization and development of highly selective drug candidates to treat PI3KαH1047R-driven cancers.


Subject(s)
Cryoelectron Microscopy , Molecular Dynamics Simulation , Humans , Allosteric Regulation , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Protein Binding , Binding Sites , Allosteric Site , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemistry
11.
Bioorg Chem ; 147: 107323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583254

ABSTRACT

Phosphatidylinositide-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) have recently been identified as potential cancer targets. In our work, a new family of quinoline analogues was designed, developed, and evaluated as dual inhibitors of PI3Kδ/mTOR. The preliminary biological activity analysis led to the discovery of the lead compounds 5h and 5e. Compounds 5h and 5e exhibited excellent anti-tumor potency with IC50 of 0.26 µM and 0.34 µM against Ramos cells, respectively. Importantly, based on the enzymatic activity assay results, compounds 5h and 5e were identified as dual inhibitors of PI3Kδ and mTOR, with IC50 values of 0.042 µM and 0.056 µM for PI3Kδ and 0.059 µM and 0.073 µM for mTOR, respectively. Furthermore, these compounds showed superior selectivity for blocking PI3Kδ compared to other PI3K isoforms (α, ß, and γ), supporting the concept of developing inhibitors that specifically target PI3Kδ/mTOR. The most effective compound 5h was chosen for additional biological testing. At a low dose of 0.5 µM, a western blot investigation confirmed the anticancer effects by inhibiting the PAM cascade, which in turn reduced downstream biomarkers pAkt (Ser473), pAkt (Thr308), and pRPS6 (Ser235/236). Furthermore, it increased apoptosis at the early (10.03 times) and late (17.95 times) stages in the Annexin-V assay as compared to the standard. In addition, the expression of p53, caspase-3, caspase-9, and the Bax/BCl-2 ratio were all significantly increased by compound 5h in the ELISA assay. Based on these results, it appears that 5h may activate the intrinsic apoptosis pathway, which in turn triggers cell death. Furthermore, the anticancer effects could be attributed to the inhibition of PI3Kδ/mTOR, as shown by docking interactions. Lastly, it demonstrated improved in vitro metabolic stability and passed the in silico ADMET/drug-likeness test. This profile recommends 5h for future in vivo PK-PD and efficacy investigations in animal cancer models.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Phosphoinositide-3 Kinase Inhibitors , Quinolines , TOR Serine-Threonine Kinases , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Structure-Activity Relationship , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemical synthesis , MTOR Inhibitors/chemistry , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism
12.
J Med Chem ; 67(8): 6638-6657, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38577724

ABSTRACT

PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Class I Phosphatidylinositol 3-Kinases , Leukemia, Myeloid, Acute , Phosphoinositide-3 Kinase Inhibitors , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Animals , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Structure-Activity Relationship , Apoptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Xenograft Model Antitumor Assays , Drug Discovery , Mice, Nude , Molecular Docking Simulation , Male
13.
Acta Pharmacol Sin ; 45(2): 238-247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803138

ABSTRACT

The γ isoform of Class I PI3Ks (PI3Kγ) is primarily found in leukocytes and is essential for the function of myeloid cells, as it regulates the migration, differentiation, and activation of myeloid-lineage immune cells. Thus, PI3Kγ has been identified as a promising drug target for the treatment of inflammation, autoimmune disease, and immuno-oncology. Due to the high incidence of serious adverse events (AEs) associated with PI3K inhibitors, in the development of PI3Kγ inhibitors, isoform selectivity was deemed crucial. In this review, an overview of the development of PI3Kγ selective inhibitors in the past years is provided. The isoform selectivity of related drugs was achieved by different strategies, including inducing a specificity pocket by a propeller-shape structure, targeting steric differences in the solvent channel, and modulating the conformation of the Asp-Phe-Gly DFG motif, which have been demonstrated feasible by several successful cases. The insights in this manuscript may provide a potential direction for rational drug design and accelerate the discovery of PI3Kγ selective inhibitors.


Subject(s)
Autoimmune Diseases , Phosphatidylinositol 3-Kinases , Humans , Phosphoinositide-3 Kinase Inhibitors/chemistry , Autoimmune Diseases/drug therapy , Protein Isoforms , Inflammation/drug therapy
14.
Bioorg Med Chem Lett ; 94: 129462, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37652098

ABSTRACT

Recently, PI3K and HDAC have been considered as promising targets for the cancer therapy. A couple of pan-PI3K/HDAC dual inhibitors have been developed as a new class of anticancer agents. Herein, we discovered a new series of (S)-N1-(thiazol-2-yl) pyrrolidine-1,2-dicarboxamide derivatives targeting PI3Kα/HDAC6. All the derivatives exerted dual-target inhibitory activities. Particularly, in the enzymatic selectivity assay, compound 21j was identified as a subtype-selective PI3Kα/HDAC6 dual inhibitor (IC50 = 2.9 and 26 nM against PI3Kα and HDAC6, respectively), which displayed high potency against L-363 cell line with IC50 value of 0.17 µM. In addition, 21j significantly inhibited phosphorylation of pAkt(Ser473) and induced accumulation of acetylated α-tubulin while having a negligible effect on the levels of acetylated Histone H3 and H4 at nanomolar level. Attributed to its favorable in vitro performance, 21j has the potential to alleviate the adverse effects resulted from pan-PI3K inhibition and pan-HDAC inhibition. It is valuable for further functional investigation as an anti-cancer agent.


Subject(s)
Neoplasms , Humans , Enzyme Assays , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Histones , Neoplasms/drug therapy , Pyrrolidines , Phosphatidylinositol 3-Kinase , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology
15.
Assay Drug Dev Technol ; 20(7): 317-337, 2022 10.
Article in English | MEDLINE | ID: mdl-36269231

ABSTRACT

One of the most sought-after therapeutic targets for treating human cancers is the phosphoinositide 3-kinase; PI3k is an integral part of the PI3K/protein kinase B signaling arcade. This pathway is frequently activated in malignancies. Drug resistance and dose-limiting adverse effects are currently associated challenges with the existing anticancer chemotherapy. Therefore, in this research, a series of pyrimidine derivatives were designed and evaluated against human PI3K by using molecular docking analysis. The docking results were further verified by molecular dynamic simulation, which analyzed the strength of the macromolecular complex with respect to time. Compounds IV and XIV were found to be the most potent inhibitors of the human PI3K receptor with a high degree of stability within the active site of the target receptor for a timeframe of 50 ns. Thus, both of these compounds could be important drug candidates for the development of PI3K inhibitors as a prospective anticancer agent.


Subject(s)
Antineoplastic Agents , Drug Design , Phosphoinositide-3 Kinase Inhibitors , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Prospective Studies , Proto-Oncogene Proteins c-akt , Pyrimidines/chemistry , Pyrimidines/pharmacology
16.
J Nat Prod ; 85(9): 2192-2198, 2022 09 23.
Article in English | MEDLINE | ID: mdl-35983865

ABSTRACT

Previously, we isolated 2R,3S,15R-calofolic acids (CAs) from Calophyllum scriblitifolium bark, which showed vasorelaxant activity on phenylephrine (PE)-precontracted rat aortic rings. Although the effect was suggested to be induced via an extracellular Ca2+-independent manner and mainly acts on vascular smooth muscle, the exact mechanism of action of CAs remained unclear. Thus, this study investigated the detailed mechanism of calofolic acid-A (CA-A) induced vasorelaxation in an aortic ring specimen using rat vascular smooth muscle cells (VSMCs). The levels of PE-induced phosphorylation on MLC Ser19 decreased in VSMCs pretreated with CA-A. CA-A also decreased the phosphorylation of MYPT1 Thr696 and MYPT1 Thr853. On the other hand, CA-A increased the PE-induced phosphorylation of MYPT1 Ser695 and MYPT1 Ser668, which are reported to be phosphorylated by a cAMP-dependent protein kinase (PKA). CA-A slightly increased PKA substrate phosphorylation in a concentration-dependent manner. Furthermore, CA-A enhanced isoproterenol (ISO)-induced cAMP accumulation and PKA substrate phosphorylation. Treatment with PI-3 kinase (PI3K) inhibitor, LY294002, enhanced ISO-induced cAMP accumulation and PKA substrate phosphorylation in the same manner as CA-A treatment. Furthermore, CA-A was found to directly inhibit PI3K enzyme activity in a dose-dependent manner. Taken together, the present study indicated that CA-A induces vasorelaxation through an indirectly activated PKA-MYPT1 pathway caused by inhibition of PI3K activity.


Subject(s)
Calophyllum , Cyclic AMP-Dependent Protein Kinases , Muscle, Smooth, Vascular , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Vasodilation , Vasodilator Agents , Animals , Calcium/metabolism , Calophyllum/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Isoproterenol/pharmacology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Phenylephrine/metabolism , Phenylephrine/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphorylation , Plant Bark/chemistry , Rats , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacology
17.
Eur J Med Chem ; 228: 114039, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34894440

ABSTRACT

Aberrant activation of the phosphoinositide 3-kinase (PI3K) signaling network is a key event in many human cancers and therefore enormous efforts have been made in the development of PI3K inhibitors. However, due to intrinsic and acquired resistance as well as poor drug tolerance, limited therapeutic efficacy has been achieved with these agents. In view of the fact that PI3K inhibitors can show synergistic antitumor effects with other cancer agents, namely mammalian target of rapamycin (mTOR) inhibitors, histone deacetylase (HDAC) inhibitors and mitogen-activated protein kinase (MEK) inhibitors, dual inhibition of both targets by a single-molecule is regarded as a promising complementary or alternative therapeutic strategy to overcome the drawbacks of just PI3K monotherapy. In this review, we discuss the theoretical foundation for designing PI3K-based dual-target inhibitors and summarize the structure-activity relationships and clinical progress of these dual-binding agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Humans , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry
18.
J Enzyme Inhib Med Chem ; 37(1): 315-332, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34955086

ABSTRACT

Cancer is one of the most aggressive diseases characterised by abnormal growth and uncontrolled cell division. PI3K is a lipid kinase involved in cancer progression which makes it fruitful target for cancer control. 28 new morpholine based thieno[2,3-d] pyrimidine derivatives were designed and synthesised as anti-PI3K agents maintaining the common pharmacophoric features of several potent PI3K inhibitors. Their antiproliferative activity on NCI 60 cell lines as well as their enzymatic activity against PI3K isoforms were evaluated. Three compounds revealed good cytotoxic activities against breast cancer cell lines, especially T-47D. Compound VIb exhibited the best enzymatic inhibitory activity (72% & 84% on PI3Kß & PI3Kγ), respectively and good activity on most NCI cell lines especially those with over expressed PI3K. Docking was carried out into PI3K active site which showed comparable binding mode to that of the PI-103 inhibitor. Compound VIb could be optimised to serve as a new chemical entity for discovering new anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
19.
Eur J Med Chem ; 229: 113996, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34802837

ABSTRACT

Established roles for PI3K and MAPK signaling pathways in tumorigenesis has prompted extensive research towards the discovery of small-molecule inhibitors as cancer therapeutics. However, significant compensatory regulation exists between these two signaling cascades, leading to redundancy among survival pathways. Consequently, initial clinical trials aimed at either PI3K or MEK inhibition alone have proven ineffective and highlight the need for development of targeted and innovative therapeutic combination strategies. We designed a series of PI3K inhibitor derivatives wherein a single morpholine group of the PI3K inhibitor ZSTK474 was substituted with a variety of 2-aminoethyl functional groups. Analogs with pendant hydroxyl or methoxy groups maintained low nanomolar inhibition towards PI3Kα, PI3Kγ, and PI3Kδ isoforms in contrast to those with pendant amino groups which were significantly less inhibitory. Synthesis of prototype PI3K/MEK bifunctional inhibitors (6r, 6s) was guided by the structure-activity data, where a MEK-targeting inhibitor was tethered directly via a short PEG linker to the triazine core of the PI3K inhibitor analogs. These compounds (6r, 6s) displayed nanomolar inhibition towards PI3Kα, δ, and MEK (IC50 ∼105-350 nM), and low micromolar inhibition for PI3Kß and PI3Kγ (IC50 ∼1.5-3.9 µM) in enzymatic inhibition assays. Cell viability assays demonstrated superior anti-proliferative activity for 6s over 6r in three tumor-derived cell lines (A375, D54, SET-2), which correlated with inhibition of downstream AKT and ERK1/2 phosphorylation. Compounds 6r and 6s also demonstrated in vivo tolerability with therapeutic efficacy through reduction of kinase activation and amelioration of disease phenotypes in the JAK2V617F mutant myelofibrosis mouse cancer model. Taken together, these results support further structure optimization of 6r and 6s as promising leads for combination therapy in human cancer as a new class of PI3K/MEK bifunctional inhibitors.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Morpholines/chemistry , Phosphatidylinositol 3-Kinases/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemistry , Triazines/chemistry , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase Kinases/metabolism , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/metabolism , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Primary Myelofibrosis/drug therapy , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Structure-Activity Relationship , Triazines/metabolism , Triazines/therapeutic use
20.
Acta Pharmacol Sin ; 43(1): 209-219, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33782541

ABSTRACT

PI3Kδ is expressed predominately in leukocytes and overexpressed in B-cell-related malignances. PI3Kδ has been validated as a promising target for cancer therapy, and specific PI3Kδ inhibitors were approved for clinical practice. However, the substantial toxicity and relatively low efficacy as a monotherapy in diffuse large B-cell lymphoma (DLBCL) limit their clinical use. In this study, we described a novel PI3Kδ inhibitor SAF-248, which exhibited high selectivity for PI3Kδ (IC50 = 30.6 nM) over other PI3K isoforms at both molecular and cellular levels, while sparing most of the other human protein kinases in the kinome profiling. SAF-248 exhibited superior antiproliferative activity against 27 human lymphoma and leukemia cell lines compared with the approved PI3Kδ inhibitor idelalisib. In particular, SAF-248 potently inhibited the proliferation of a panel of seven DLBCL cell lines (with GI50 values < 1 µM in 5 DLBCL cell lines). We demonstrated that SAF-248 concentration-dependently blocked PI3K signaling followed by inducing G1 phase arrest and apoptosis in DLBCL KARPAS-422, Pfeiffer and TMD8 cells. Its activity against the DLBCL cells was negatively correlated to the protein level of PI3Kα. Oral administration of SAF-248 dose-dependently inhibited the growth of xenografts derived from Pfeiffer and TMD8 cells. Activation of mTORC1, MYC and JAK/STAT signaling was observed upon prolonged treatment and co-targeting these pathways would potentiate the activity of SAF-248. Taken together, SAF-248 is a promising selective PI3Kδ inhibitor for the treatment of DLBCL and rational drug combination would further improve its efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Lymphoma, Large B-Cell, Diffuse/drug therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Phosphoinositide-3 Kinase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL