Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.797
1.
Opt Lett ; 49(11): 3054-3057, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824326

Photoacoustic imaging (PAI) utilizes the photoacoustic effect to record both vascular and functional characteristics of a biological tissue. Photoacoustic signals have typically low amplitude that cannot be read efficiently by data acquisition systems. This necessitates the use of one or more amplifiers. These amplifiers are somewhat bulky (e.g., the ZFL-500LN+, Mini-Circuits, USA, or 351A-3-50-NI, Analog Modules Inc., USA). Here, we describe the fabrication and development process of a transducer with a built-in low-noise preamplifier that is encased within the transducer housing. This new, to the best of our knowledge, design could be advantageous for applications where a compact transducer + preamplifier is required. We demonstrate the performance of this compact detection unit in a laser scanning photoacoustic microscopy system by imaging a rat ear ex vivo and a rat brain vasculature in vivo.


Equipment Design , Photoacoustic Techniques , Transducers , Photoacoustic Techniques/instrumentation , Photoacoustic Techniques/methods , Animals , Rats , Miniaturization , Brain/diagnostic imaging , Brain/blood supply , Ear/diagnostic imaging , Ear/blood supply , Amplifiers, Electronic
2.
Front Immunol ; 15: 1372996, 2024.
Article En | MEDLINE | ID: mdl-38817606

Tissue microenvironments during physiology and pathology are highly complex, meaning dynamic cellular activities and their interactions cannot be accurately modelled ex vivo or in vitro. In particular, tissue-specific resident cells which may function and behave differently after isolation and the heterogenous vascular beds in various organs highlight the importance of observing such processes in real-time in vivo. This challenge gave rise to intravital microscopy (IVM), which was discovered over two centuries ago. From the very early techniques of low-optical resolution brightfield microscopy, limited to transparent tissues, IVM techniques have significantly evolved in recent years. Combined with improved animal surgical preparations, modern IVM technologies have achieved significantly higher speed of image acquisition and enhanced image resolution which allow for the visualisation of biological activities within a wider variety of tissue beds. These advancements have dramatically expanded our understanding in cell migration and function, especially in organs which are not easily accessible, such as the brain. In this review, we will discuss the application of rodent IVM in neurobiology in health and disease. In particular, we will outline the capability and limitations of emerging technologies, including photoacoustic, two- and three-photon imaging for brain IVM. In addition, we will discuss the use of these technologies in the context of neuroinflammation.


Brain , Intravital Microscopy , Animals , Intravital Microscopy/methods , Humans , Photoacoustic Techniques/methods
3.
Nat Commun ; 15(1): 4228, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762498

Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.


Brain , Ferrets , Imaging, Three-Dimensional , Photoacoustic Techniques , Animals , Brain/diagnostic imaging , Photoacoustic Techniques/methods , Imaging, Three-Dimensional/methods , Mice , Algorithms , Machine Learning , Tomography/methods , Image Processing, Computer-Assisted/methods , Rats , Male
4.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38732775

Photoacoustic imaging (PAI) is a rapidly developing emerging non-invasive biomedical imaging technique that combines the strong contrast from optical absorption imaging and the high resolution from acoustic imaging. Abnormal biological tissues (such as tumors and inflammation) generate different levels of thermal expansion after absorbing optical energy, producing distinct acoustic signals from normal tissues. This technique can detect small tissue lesions in biological tissues and has demonstrated significant potential for applications in tumor research, melanoma detection, and cardiovascular disease diagnosis. During the process of collecting photoacoustic signals in a PAI system, various factors can influence the signals, such as absorption, scattering, and attenuation in biological tissues. A single ultrasound transducer cannot provide sufficient information to reconstruct high-precision photoacoustic images. To obtain more accurate and clear image reconstruction results, PAI systems typically use a large number of ultrasound transducers to collect multi-channel signals from different angles and positions, thereby acquiring more information about the photoacoustic signals. Therefore, to reconstruct high-quality photoacoustic images, PAI systems require a significant number of measurement signals, which can result in substantial hardware and time costs. Compressed sensing is an algorithm that breaks through the Nyquist sampling theorem and can reconstruct the original signal with a small number of measurement signals. PAI based on compressed sensing has made breakthroughs over the past decade, enabling the reconstruction of low artifacts and high-quality images with a small number of photoacoustic measurement signals, improving time efficiency, and reducing hardware costs. This article provides a detailed introduction to PAI based on compressed sensing, such as the physical transmission model-based compressed sensing method, two-stage reconstruction-based compressed sensing method, and single-pixel camera-based compressed sensing method. Challenges and future perspectives of compressed sensing-based PAI are also discussed.


Algorithms , Photoacoustic Techniques , Photoacoustic Techniques/methods , Humans , Image Processing, Computer-Assisted/methods , Diagnostic Imaging/methods , Transducers
5.
Opt Lett ; 49(10): 2637-2640, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748124

Optical-resolution photoacoustic microscopy (OR-PAM) excels in precisely imaging a biological tissue based on absorption contrast. However, existing OR-PAMs are confined by fixed compromises between spatial resolution and field of view (FOV), preventing the integration of large FOV and local high-resolution within one system. Here, we present a non-telecentric OR-PAM (nTC-PAM) that empowers efficient adaptation of FOV and spatial resolution to match the multi-scale requirement of diverse biological imaging. Our method allows for a large-scale transformation in FOV and even surpassing the nominal FOV of the objective with minimal marginal degradation of the lateral resolution. We demonstrate the advantage of nTC-PAM through multi-scale imaging of the leaf phantom, mouse ear, and cortex. The results reveal that nTC-PAM can switch the FOV and spatial resolution to meet the requirements of different biological tissues, such as large-scale imaging of the whole cerebral cortex and high-resolution imaging of microvascular structures in local brain regions.


Microscopy , Photoacoustic Techniques , Photoacoustic Techniques/methods , Animals , Mice , Microscopy/methods , Ear/diagnostic imaging , Ear/blood supply , Phantoms, Imaging
6.
Opt Lett ; 49(9): 2341-2344, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691714

In the fields of biomedicine and microfluidics, the non-contact capture, manipulation, and spin of micro-particles hold great importance. In this study, we propose a programmable non-contact manipulation technique that utilizes photoacoustic effect to spin and transport living shrimp eggs. By directing a modulated pulsed laser toward a liquid-covered stainless-steel membrane, we can excite patterned Lamb waves within the membrane. These Lamb waves occur at the interface between the membrane and the liquid, enabling the manipulation of nearby particles. Experimental results demonstrate the successful capture, spin, and transport of shrimp eggs in diameter of 220 µm over a distance of about 5 mm. Calculations indicate that the acoustic radiation force and torque generated by our photoacoustic manipulation system are more than 299.5 nN and 41.0 nN·mm, respectively. The system surpasses traditional optical tweezers in terms of force and traditional acoustic tweezers in terms of flexibility. Consequently, this non-contact manipulation system significantly expands the possibilities for applications in various fields, including embryo screening, cell manipulation, and microfluidics.


Ovum , Photoacoustic Techniques , Animals , Photoacoustic Techniques/methods , Pressure , Optical Tweezers , Penaeidae
7.
Analyst ; 149(11): 3064-3072, 2024 May 28.
Article En | MEDLINE | ID: mdl-38712864

Ratiometric near-infrared fluorescent pH probes with various pKa values were innovatively designed and synthesized based on cyanine with a diamine moiety. The photochemical properties of these probes were thoroughly evaluated. Among the series, IR-PHA exhibited an optimal pKa value of approximately 6.40, closely matching the pH of cancerous tissues. This feature is particularly valuable for real-time pH monitoring in both living cells and living mice. Moreover, when administered intravenously to tumor-bearing mice, IR-PHA demonstrated rapid and significant enhancement of near-infrared fluorescence and photoacoustic signals within the tumor region. This outcome underscores the probe's exceptional capability for dual-modal cancer imaging utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) modalities. Concurrently, the application of a continuous-wave near-infrared laser efficiently ablated cancer cells in vivo, attributed to the photothermal effect induced by IR-PHA. The results strongly indicate that IR-PHA is well-suited for NIRF/PA dual-modality imaging and photothermal therapy of tumors. This makes it a promising candidate for theranostic applications involving small molecules.


Fluorescent Dyes , Infrared Rays , Photoacoustic Techniques , Photothermal Therapy , Animals , Photoacoustic Techniques/methods , Humans , Mice , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/radiation effects , Photothermal Therapy/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Hydrogen-Ion Concentration , Cell Line, Tumor , Mice, Nude , Optical Imaging/methods , Female
8.
J Environ Manage ; 359: 120954, 2024 May.
Article En | MEDLINE | ID: mdl-38692026

Plastic products' widespread applications and their non-biodegradable nature have resulted in the continuous accumulation of microplastic waste, emerging as a significant component of ecological environmental issues. In the field of microplastic detection, the intricate morphology poses challenges in achieving rapid visual characterization of microplastics. In this study, photoacoustic imaging technology is initially employed to capture high-resolution images of diverse microplastic samples. To address the limited dataset issue, an automated data processing pipeline is designed to obtain sample masks while effectively expanding the dataset size. Additionally, we propose Vqdp2, a generative deep learning model with multiple proxy tasks, for predicting six forms of microplastics data. By simultaneously constraining model parameters through two training modes, outstanding morphological category representations are achieved. The results demonstrate Vqdp2's excellent performance in classification accuracy and feature extraction by leveraging the advantages of multi-task training. This research is expected to be attractive for the detection classification and visual characterization of microplastics.


Deep Learning , Microplastics , Photoacoustic Techniques , Microplastics/analysis , Photoacoustic Techniques/methods , Environmental Monitoring/methods , Plastics
9.
Sci Rep ; 14(1): 10597, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719924

Parotid lumps are a heterogeneous group of mainly benign but also malignant tumors. Preoperative imaging does not allow a differentiation between tumor types. Multispectral optoacoustic tomography (MSOT) may improve the preoperative diagnostics. In this first prospective pilot trial the ability of MSOT to discriminate between the two most frequent benign parotid tumors, pleomorphic adenoma (PA) and Warthin tumor (WT) as well as to normal parotid tissue was explored. Six wavelengths (700, 730, 760, 800, 850, 900 nm) and the parameters deoxygenated (HbR), oxygenated (HbO2), total hemoglobin (HbT), and saturation of hemoglobin (sO2) were analyzed. Ten patients with PA and fourteen with WT were included (12/12 female/male; median age: 51 years). For PA, the mean values for all measured wave lengths as well as for the hemoglobin parameters were different for the tumors compared to the healthy parotid (all p < 0.05). The mean MSOT parameters were all significantly higher (all p < 0.05) in the WT compared to healthy parotid gland except for HbT and sO2. Comparing both tumors directly, the mean values of MSOT parameters were not different between PA and WT (all p > 0.05). Differences were seen for the maximal MSOT parameters. The maximal tumor values for 900 nm, HbR, HbT, and sO2 were lower in PA than in WT (all p < 0.05). This preliminary MSOT parotid tumor imaging study showed clear differences for PA or WT compared to healthy parotid tissue. Some MSOT characteristics of PA and WT were different but needed to be explored in larger studies.


Parotid Neoplasms , Photoacoustic Techniques , Humans , Female , Parotid Neoplasms/diagnostic imaging , Parotid Neoplasms/pathology , Middle Aged , Male , Pilot Projects , Prospective Studies , Photoacoustic Techniques/methods , Adult , Aged , Hemoglobins/analysis , Hemoglobins/metabolism , Adenolymphoma/diagnostic imaging , Adenolymphoma/pathology , Adenoma, Pleomorphic/diagnostic imaging , Adenoma, Pleomorphic/pathology , Tomography/methods , Parotid Gland/diagnostic imaging , Parotid Gland/pathology
10.
Biomacromolecules ; 25(5): 3153-3162, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693895

A photoacoustic (PA) imaging technique using the second near-infrared (NIR-II) window has attracted more and more attention because of its merits of deeper penetration depth and higher signal-to-noise (S/N) ratio than that using the first near-infrared (NIR-I) one. However, the design and development of high-performance PA imaging contrast agents in the NIR-II window is still a challenge. A semiconducting polymer, constructed by asymmetric units, exhibits regiorandom characteristics that effectively increase the distortion of the backbone. This increase in the degree of twist can regulate the twisted intramolecular charge transfer (TICT) effect, resulting in an enhancement of the PA signal. In this paper, an asymmetric structural acceptor strategy is developed to improve the PA signals of the resulting semiconducting polymer (PATQ-MP) in the NIR-II window with improved brightness, higher S/N ratio, and better photothermal conversion efficiency compared to polymers with the same main-chain structure containing a symmetric acceptor. DFT analysis showed that PATQ-MP containing an asymmetric acceptor monomer had a larger dihedral angle, which effectively improved the PA signal intensity by enhancing the TICT effect. The PEG-encapsulated PATQ-MP nanoparticles exhibit promising performance in the PA imaging of mouse tumors in vivo, demonstrating the clear identification of microvessels as small as 100 µm along with rapid metabolism within a span of 5 h. Therefore, this work provides a unique molecular design strategy for improving the signal intensity of PA imaging in the NIR-II window.


Photoacoustic Techniques , Polymers , Semiconductors , Photoacoustic Techniques/methods , Animals , Mice , Polymers/chemistry , Quinoxalines/chemistry , Female , Humans , Thiadiazoles/chemistry , Infrared Rays , Mice, Nude , Mice, Inbred BALB C , Contrast Media/chemistry
11.
ACS Sens ; 9(4): 2166-2175, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38625680

Relying on the strong optical absorption of hemoglobin to pulsed laser energy, photoacoustic microscopy provides morphological and functional information on microvasculature label-freely. Here, we propose speckle variance photoacoustic microscopy (SV-PAM), which harnesses intrinsic imaging contrast from temporal-varied photoacoustic signals of moving red blood cells in blood vessels, for recovering three-dimension hemodynamic images down to capillary-level resolution within the microcirculatory tissue beds in vivo. Calculating the speckle variance of consecutive photoacoustic B-scan frames acquired at the same lateral position enables accurate identification of blood perfusion and occlusion, which provides interpretations of dynamic blood flow in the microvasculature, in addition to the microvascular anatomic structures. We demonstrate high-resolution hemodynamic imaging of vascular occlusion and reperfusion in the microvasculature of mice ears in vivo. The results suggest that our SV-PAM is potentially invaluable for biomedical hemodynamic investigations, for example, imaging ischemic stroke and hemorrhagic stroke.


Microscopy , Photoacoustic Techniques , Photoacoustic Techniques/methods , Animals , Mice , Microscopy/methods , Hemodynamics/physiology , Ear/blood supply , Ear/diagnostic imaging , Microvessels/diagnostic imaging , Erythrocytes , Microcirculation
12.
Colloids Surf B Biointerfaces ; 238: 113910, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640797

This study represents an innovative approach to construct multi-functional nanoplatforms for cancer diagnosis and therapy by combining hyaluronic acid (HA) with iron-platinum nanoparticles (FePt NPs). These HA-coated FePt NPs, referred to as FePt@HA NPs, demonstrated remarkable biocompatibility, high absorption, and excellent light-to-heat conversion properties in the near-infrared (NIR) region, making them ideal candidates for photothermal therapy (PTT). In vitro studies revealed their effective cancer cell eradication under NIR laser irradiation, while in vivo experiments on mice showcased their superior heating capabilities. Moreover, FePt@HA NPs exhibited a distinct and strong photoacoustic (PA) signal, facilitating enhanced and precise intra-tumoral PA imaging. Our results highlight the potential of FePt@HA NPs as promising photothermal agents for future PTT applications. They offer high selectivity, precision, and minimal side effects in cancer treatment, along with their valuable PA imaging application for tumor localization and characterization.


Hyaluronic Acid , Iron , Metal Nanoparticles , Photoacoustic Techniques , Photothermal Therapy , Platinum , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Photoacoustic Techniques/methods , Platinum/chemistry , Platinum/pharmacology , Animals , Mice , Iron/chemistry , Humans , Metal Nanoparticles/chemistry , Cell Survival/drug effects , Mice, Inbred BALB C , Particle Size , Surface Properties , Cell Line, Tumor
13.
Opt Lett ; 49(7): 1725-1728, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38560847

Ultrasound coupling is one of the critical challenges for traditional photoacoustic (or optoacoustic) microscopy (PAM) techniques transferred to the clinical examination of chronic wounds and open tissues. A promising alternative potential solution for breaking the limitation of ultrasound coupling in PAM is photoacoustic remote sensing (PARS), which implements all-optical non-interferometric photoacoustic measurements. Functional imaging of PARS microscopy was demonstrated from the aspects of histopathology and oxygen metabolism, while its performance in hemodynamic quantification remains unexplored. In this Letter, we present an all-optical thermal-tagging flowmetry approach for PARS microscopy and demonstrate it with comprehensive mathematical modeling and ex vivo and in vivo experimental validations. Experimental results demonstrated that the detectable range of the blood flow rate was from 0 to 12 mm/s with a high accuracy (measurement error:±1.2%) at 10-kHz laser pulse repetition rate. The proposed all-optical thermal-tagging flowmetry offers an effective alternative approach for PARS microscopy realizing non-contact dye-free hemodynamic imaging.


Photoacoustic Techniques , Remote Sensing Technology , Photoacoustic Techniques/methods , Rheology/methods , Ultrasonography/methods , Microscopy/methods
14.
J Hazard Mater ; 470: 134275, 2024 May 15.
Article En | MEDLINE | ID: mdl-38613954

Palladium contaminants can pose risks to human health and the natural environment. Once Pd2+ enters the body, it can bind with DNA, proteins, and other macromolecules, disrupting cellular processes and causing serious harm to health. Therefore, it becomes critical to develop simple, highly selective and precise methods for detecting Pd2+in vivo. Here, we have successfully developed the first activated second near-infrared region fluorescence (NIR-II FL) and ratio photoacoustic (PA) probe NYR-1 for dual-modal accurate detection of Pd2+ levels. NYR-1 is capable of rapidly (< 60 s) and sensitively detection of Pd2+ in solution, providing switched on NIR-II FL920 and ratio PA808/PA720 dual-mode signal change. More notably, the probe NYR-1 was successfully used for non-invasive imaging of Pd2+ overload in mouse liver by NIR-II FL/Ratio PA dual-modality imaging technology for the first time. Thus, this work opens up a promising dual-modal detection method for the precise detection of Pd2+ in organisms and in the environment.


Fluorescent Dyes , Liver , Palladium , Photoacoustic Techniques , Palladium/chemistry , Animals , Liver/diagnostic imaging , Liver/metabolism , Photoacoustic Techniques/methods , Fluorescent Dyes/chemistry , Mice , Optical Imaging , Infrared Rays , Mice, Inbred BALB C , Fluorescence
15.
J Biomed Opt ; 29(Suppl 1): S11530, 2024 Jan.
Article En | MEDLINE | ID: mdl-38632983

Significance: In the photoacoustic (PA) technique, the laser irradiation in the time domain (i.e., laser pulse duration) governs the characteristics of PA imaging-it plays a crucial role in the optical-acoustic interaction, the generation of PA signals, and the PA imaging performance. Aim: We aim to provide a comprehensive analysis of the impact of laser pulse duration on various aspects of PA imaging, encompassing the signal-to-noise ratio, the spatial resolution of PA imaging, the acoustic frequency spectrum of the acoustic wave, the initiation of specific physical phenomena, and the photothermal-PA (PT-PA) interaction/conversion. Approach: By surveying and reviewing the state-of-the-art investigations, we discuss the effects of laser pulse duration on the generation of PA signals in the context of biomedical PA imaging with respect to the aforementioned aspects. Results: First, we discuss the impact of laser pulse duration on the PA signal amplitude and its correlation with the lateral resolution of PA imaging. Subsequently, the relationship between the axial resolution of PA imaging and the laser pulse duration is analyzed with consideration of the acoustic frequency spectrum. Furthermore, we examine the manipulation of the pulse duration to trigger physical phenomena and its relevant applications. In addition, we elaborate on the tuning of the pulse duration to manipulate the conversion process and ratio from the PT to PA effect. Conclusions: We contribute to the understanding of the physical mechanisms governing pulse-width-dependent PA techniques. By gaining insight into the mechanism behind the influence of the laser pulse, we can trigger the pulse-with-dependent physical phenomena for specific PA applications, enhance PA imaging performance in biomedical imaging scenarios, and modulate PT-PA conversion by tuning the pulse duration precisely.


Light , Photoacoustic Techniques , Spectrum Analysis , Signal-To-Noise Ratio , Acoustics , Lasers , Photoacoustic Techniques/methods
16.
Lasers Med Sci ; 39(1): 112, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656634

PURPOSE: To measure the dynamic characteristics of the flow field in a complex root canal model activated by two laser-activated irrigation (LAI) modalities at different activation energy outputs: photon-induced photoacoustic streaming (PIPS) and microshort pulse (MSP). METHODS: A phase-locked micro-scale Particle Image Velocimetry (µPIV) system was employed to characterise the temporal variations of LAI-induced velocity fields in the root canal following a single laser pulse. The wall shear stress (WSS) in the lateral root canal was subsequently estimated from the phase-averaged velocity fields. RESULTS: Both PIPS and MSP were able to generate the 'breath mode' of the irrigant current under all tested conditions. The transient irrigation flush in the root canal peaked at speeds close to 6 m/s. However, this intense flushing effect persisted for only about 2000 µs (or 3% of a single laser-pulse activation cycle). For MSP, the maximum WSS magnitude was approximately 3.08 Pa at an activation energy of E = 20 mJ/pulse, rising to 9.01 Pa at E = 50 mJ/pulse. In comparison, PIPS elevated the WSS to 10.63 Pa at E = 20 mJ/pulse. CONCLUSION: Elevating the activation energy can boost the peak flushing velocity and the maximum WSS, thereby enhancing irrigation efficiency. Given the same activation energy, PIPS outperforms MSP. Additionally, increasing the activation frequency may be an effective strategy to improve irrigation performance further.


Rheology , Humans , Dental Pulp Cavity/radiation effects , Therapeutic Irrigation/methods , Therapeutic Irrigation/instrumentation , Lasers , Root Canal Irrigants , Photoacoustic Techniques/methods , Root Canal Preparation/methods , Root Canal Preparation/instrumentation
17.
J Dermatol Sci ; 114(2): 71-78, 2024 May.
Article En | MEDLINE | ID: mdl-38644095

BACKGROUND: Photoacoustic microscopy is expected to have clinical applications as a noninvasive and three-dimensional (3D) method of observing intradermal structures. OBJECTIVE: Investigate the applicability of a photoacoustic microscope equipped with two types of pulsed lasers that can simultaneously recognize hemoglobin and melanin. METHODS: 16 skin lesions including erythema, pigmented lesions, vitiligo and purpura, were analyzed to visualize 3D structure of melanin granule distribution and dermal blood vessels. 13 cases of livedo racemosa in cutaneous polyarteritis nodosa (cPN) were further analyzed to visualize the 3D structure of dermal blood vessels in detail. Vascular structure was also analyzed in the biopsy specimens obtained from tender indurated erythema of cPN by CD34 immunostaining. RESULTS: Hemoglobin-recognition signal clearly visualized the 3D structure of dermal blood vessels and melanin-recognition signal was consistently reduced in vitiligo. In livedo racemosa, the hemoglobin-recognition signal revealed a relatively thick and large reticular structure in the deeper layers that became denser and finer toward the upper layers. The numerical analysis revealed that the number of dermal blood vessels was 1.29-fold higher (p<0.05) in the deeper region of the lesion than that of normal skin. The CD34 immunohistochemical analysis in tender indurated erythema revealed an increased number of dermal vessels compared with normal skin in 88.9% (8/9) of the cases, suggesting that vascular network remodeling had occurred in cPN. CONCLUSION: The photoacoustic system has an advantage in noninvasively detecting dermal blood vessel structures that are difficult to recognize by two-dimensional histopathology specimen examination and is worth evaluating in various skin diseases.


Imaging, Three-Dimensional , Melanins , Photoacoustic Techniques , Polyarteritis Nodosa , Skin , Humans , Photoacoustic Techniques/methods , Male , Middle Aged , Female , Melanins/analysis , Adult , Imaging, Three-Dimensional/methods , Polyarteritis Nodosa/diagnostic imaging , Polyarteritis Nodosa/pathology , Polyarteritis Nodosa/diagnosis , Skin/pathology , Skin/diagnostic imaging , Skin/blood supply , Aged , Blood Vessels/diagnostic imaging , Blood Vessels/pathology , Hemoglobins/analysis , Biopsy , Young Adult , Microscopy/methods , Livedo Reticularis/pathology , Livedo Reticularis/diagnostic imaging , Antigens, CD34/analysis , Antigens, CD34/metabolism
18.
Anal Chem ; 96(19): 7342-7347, 2024 May 14.
Article En | MEDLINE | ID: mdl-38683890

Photoacoustic (PA) tomography has shown many promising aspects in noninvasive and precise imaging of deep-localized biomarkers. However, these traditional single-locked PA probes always face challenges in precise PA imaging with high specificity. Here, we report a novel AND-gate photoacoustic probe, BAE, to improve tumor imaging accuracy via the combination of two tumor-associated biomarkers, cysteine (Cys) and hydrogen sulfide (H2S). Only when Cys and H2S are concurrently introduced into the detection system does the absorption of BAE red-shift from the initial 680 to 810 nm, thereby showing a 5.29-fold enhancement in its PA signal at 810 nm. The good specificity of BAE is proven, since an obvious PA signal could be observed only in the solution containing both Cys and H2S and was not affected by other reactive sulfur species. After being taken up by tumors with the assistance of a nanomicelle, the AND-gate PA probe BAE was applied for dynamic real-time monitoring of Cys and H2S in vivo, achieving precise identification of tumors. This AND-gate PA probe provides a potential technical tool for precise sensing analysis of deep-seated diseases.


Cysteine , Hydrogen Sulfide , Photoacoustic Techniques , Hydrogen Sulfide/analysis , Photoacoustic Techniques/methods , Cysteine/analysis , Cysteine/chemistry , Animals , Humans , Mice , Neoplasms/diagnostic imaging , Mice, Nude , Mice, Inbred BALB C
19.
J Biomed Opt ; 29(Suppl 1): S11529, 2024 Jan.
Article En | MEDLINE | ID: mdl-38650979

Significance: Compressed sensing (CS) uses special measurement designs combined with powerful mathematical algorithms to reduce the amount of data to be collected while maintaining image quality. This is relevant to almost any imaging modality, and in this paper we focus on CS in photoacoustic projection imaging (PAPI) with integrating line detectors (ILDs). Aim: Our previous research involved rather general CS measurements, where each ILD can contribute to any measurement. In the real world, however, the design of CS measurements is subject to practical constraints. In this research, we aim at a CS-PAPI system where each measurement involves only a subset of ILDs, and which can be implemented in a cost-effective manner. Approach: We extend the existing PAPI with a self-developed CS unit. The system provides structured CS matrices for which the existing recovery theory cannot be applied directly. A random search strategy is applied to select the CS measurement matrix within this class for which we obtain exact sparse recovery. Results: We implement a CS PAPI system for a compression factor of 4:3, where specific measurements are made on separate groups of 16 ILDs. We algorithmically design optimal CS measurements that have proven sparse CS capabilities. Numerical experiments are used to support our results. Conclusions: CS with proven sparse recovery capabilities can be integrated into PAPI, and numerical results support this setup. Future work will focus on applying it to experimental data and utilizing data-driven approaches to enhance the compression factor and generalize the signal class.


Algorithms , Equipment Design , Image Processing, Computer-Assisted , Photoacoustic Techniques , Photoacoustic Techniques/methods , Photoacoustic Techniques/instrumentation , Image Processing, Computer-Assisted/methods , Data Compression/methods , Phantoms, Imaging
20.
Opt Lett ; 49(6): 1469-1472, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489427

Optoacoustic (OA) imaging has achieved tremendous progress with state-of-the-art systems providing excellent functional and molecular contrast, centimeter scale penetration into living tissues, and ultrafast imaging performance, making it highly suitable for handheld imaging in the clinics. OA can greatly benefit from efficient integration with ultrasound (US) imaging, which remains the routine method in bedside clinical diagnostics. However, such integration has not been straightforward since the two modalities typically involve different image acquisition strategies. Here, we present a new, to our knowledge, hybrid optoacoustic ultrasound (OPUS) imaging approach employing a spherical array with dedicated segments for each modality to enable volumetric OA imaging merged with conventional B-mode US. The system performance is subsequently showcased in healthy human subjects. The new OPUS approach hence represents an important step toward establishing OA in point-of-care diagnostic settings.


Photoacoustic Techniques , Humans , Photoacoustic Techniques/methods , Ultrasonography/methods , Diagnostic Imaging , Healthy Volunteers
...