Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.079
Filter
1.
Plant Physiol Biochem ; 214: 108872, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964087

ABSTRACT

Bletilla striata, valued for its medicinal and ornamental properties, remains largely unexplored in terms of how light intensity affects its physiology, biochemistry, and polysaccharide formation. In this 5-month study, B. striata plants were exposed to three different light intensities: low light (LL) (5-20 µmol m-2·s-1), middle light (ML) (200 µmol m-2·s-1), and high light (HL) (400 µmol m-2·s-1). The comprehensive assessment included growth, photosynthetic apparatus, chlorophyll fluorescence electron transport, and analysis of differential metabolites based on the transcriptome and metabolome data. The results indicated that ML resulted in the highest plant height and total polysaccharide content, enhanced photosynthetic apparatus performance and light energy utilization, and stimulated carbon metabolism and carbohydrate accumulation. HL reduced Chl content and photosynthetic apparatus functionality, disrupted OEC activity and electron transfer, stimulated carbon metabolism and starch and glucose accumulation, and hindered energy metabolism related to carbohydrate degradation and oxidation. In contrast, LL facilitated leaf growth and increased chlorophyll content but decreased plant height and total polysaccharide content, compromised the photosynthetic apparatus, hampered light energy utilization, stimulated energy metabolism related to carbohydrate degradation and oxidation, and inhibited carbon metabolism and carbohydrate synthesis. Numerous genes in carbon metabolism were strongly related to polysaccharide metabolites. The katE and cysK genes in carbon metabolism were strongly related not only to polysaccharide metabolites, but also to genes involved in polysaccharide biosynthesis. Our results highlight that light intensity plays a crucial role in affecting polysaccharide biosynthesis in B. striata, with carbon metabolism acting as a mediator under suitable light intensity conditions.


Subject(s)
Carbon , Light , Orchidaceae , Photosynthesis , Plant Leaves , Polysaccharides , Orchidaceae/metabolism , Orchidaceae/radiation effects , Orchidaceae/growth & development , Orchidaceae/genetics , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Plant Leaves/metabolism , Plant Leaves/radiation effects , Carbon/metabolism , Photosynthesis/radiation effects , Chlorophyll/metabolism , Gene Expression Regulation, Plant/radiation effects , Multiomics
2.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062804

ABSTRACT

Light quality not only directly affects the photosynthesis of green plants but also plays an important role in regulating the development and movement of leaf stomata, which is one of the key links for plants to be able to carry out normal growth and photosynthesis. By sensing changes in the light environment, plants actively regulate the expansion pressure of defense cells to change stomatal morphology and regulate the rate of CO2 and water vapor exchange inside and outside the leaf. In this study, Cucumis melo was used as a test material to investigate the mitigation effect of different red, blue, and green light treatments on short-term drought and to analyze its drought-resistant mechanism through transcriptome and metabolome analysis, so as to provide theoretical references for the regulation of stomata in the light environment to improve the water use efficiency. The results of the experiment showed that after 9 days of drought treatment, increasing the percentage of green light in the light quality significantly increased the plant height and fresh weight of the treatment compared to the control (no green light added). The addition of green light resulted in a decrease in leaf stomatal conductance and a decrease in reactive oxygen species (ROS) content, malondialdehyde MDA content, and electrolyte osmolality in the leaves of melon seedlings. It indicated that the addition of green light promoted drought tolerance in melon seedlings. Transcriptome and metabolome measurements of the control group (CK) and the addition of green light treatment (T3) showed that the addition of green light treatment not only effectively regulated the synthesis of abscisic acid (ABA) but also significantly regulated the hormonal pathway in the hormones such as jasmonic acid (JA) and salicylic acid (SA). This study provides a new idea to improve plant drought resistance through light quality regulation.


Subject(s)
Cucumis melo , Droughts , Light , Stress, Physiological , Cucumis melo/physiology , Cucumis melo/metabolism , Cucumis melo/radiation effects , Cucumis melo/growth & development , Cucumis melo/genetics , Plant Leaves/radiation effects , Plant Leaves/metabolism , Plant Leaves/physiology , Photosynthesis/radiation effects , Gene Expression Regulation, Plant , Plant Stomata/physiology , Plant Stomata/radiation effects , Reactive Oxygen Species/metabolism , Transcriptome , Abscisic Acid/metabolism , Seedlings/radiation effects , Seedlings/growth & development , Seedlings/metabolism , Seedlings/physiology , Metabolome , Green Light , Blue Light
3.
Sci Rep ; 14(1): 17424, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075122

ABSTRACT

Despite the growing interest in indoor greenery and its positive effects on occupants' well-being, there is limited knowledge on the optimal light levels for indoor plants that ensure energy efficiency and sustainable growth. This study explored the survival of ornamental plants under low-light conditions typical of indoor workplaces without daylight and investigated the impact of increased light intensity or extended day length on their growth. Three species of foliage plants (Epipremnum aureum, Pachira aquatica, and Rhaphidophora tetrasperma) were cultivated in growth chambers with three different lighting schemes. The results showed that plants sustained growth with 6.8 µmol m-2 s-1 white LED light for 9 h/day, suggesting that extra lighting might not be necessary for shade-tolerant species in offices. In this environment, plants maintained efficient photosynthesis under low illumination by increasing their specific leaf area. Elevating the light to 20.1 µmol m-2 s-1 and extending the day length to 18 h/day enhanced the plants' relative growth rate. Climbing plants allocated more biomass to stems, resulting in a lower leaf weight ratio and noticeably altering their appearance. This study demonstrates that customized lighting strategies effectively support indoor greening goals, like adjusting intensity for energy savings or adding light for greening large spaces.


Subject(s)
Lighting , Workplace , Photosynthesis/radiation effects , Plant Leaves/growth & development , Plant Leaves/radiation effects , Light , Adaptation, Physiological , Biomass , Working Conditions
4.
Sci Rep ; 14(1): 13137, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849505

ABSTRACT

Acclimation to crop niches for thousands of years has made indigenous rice cultivars better suited for stress-prone environments. Still, their response to UV-B resiliency is unknown. 38 rice landraces were grown in cemented pots in a randomised block design with three replicates under open field conditions in Sambalpur University in the wet season of 2022. Half of the plants in each of the cultivars were administered UV-B radiation at the panicle emergence stage in an adjustable UV-B chamber permitting sunlight, and the effects of the stress on various morpho-physiological features, such as spikelet sterility, flag leaf photosynthetic and flavonoid pigment contents, and lipid peroxidation activities, were estimated for calibration of stress resistance. The experiment identified Swarnaprabha and Lalkain as the most sensitive and resilient to stress respectively, and the differential response between them was further revealed in the expression of genes related to UV-B sensitivity. Subject to the stress, Swarnaprabha exhibited symptoms of injuries, like leaf burns, and a higher loss of various photosynthetic parameters, such as pigment contents, SPAD and Fv/Fm, ETR and qP values, while NPQ increased only in Lalkain. Exposure to UV-B increased the total phenolic and flavonoid contents in Lalkain while depressing them in Swarnaprabha. Such an effect amounted to a higher release of fluorescent energy in the latter. The levels of expression of gene families controlling flavonoid activation and UV-B signal transduction, such as OsWRKY, OsUGT, OsRLCK, OsBZIP, OsGLP, and CPD photolyase were similar in both the cultivars in the control condition. However, exposure to UV-B stress overexpressed them in resilient cultivars only. The magnitude of expression of the genes and the impact of the stress on photosynthetic parameters, phenolic compounds and pubescent hair structure at the panicle emergence stage could be valid indicators among indigenous rice for UV-B tolerance.


Subject(s)
Genetic Variation , Oryza , Photosynthesis , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Oryza/genetics , Oryza/radiation effects , Oryza/growth & development , Photosynthesis/radiation effects , Gene Expression Regulation, Plant/radiation effects , Plant Leaves/radiation effects , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Flavonoids/metabolism , Stress, Physiological
5.
Physiol Plant ; 176(3): e14383, 2024.
Article in English | MEDLINE | ID: mdl-38859677

ABSTRACT

The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.


Subject(s)
Acclimatization , Photosynthesis , Photosystem II Protein Complex , Ultraviolet Rays , Vitis , Photosynthesis/radiation effects , Photosynthesis/physiology , Acclimatization/radiation effects , Acclimatization/physiology , Vitis/radiation effects , Vitis/physiology , Vitis/metabolism , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Plant Stomata/physiology , Plant Stomata/radiation effects , Flavonols/metabolism
6.
Physiol Plant ; 176(4): e14410, 2024.
Article in English | MEDLINE | ID: mdl-38945685

ABSTRACT

Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 µmol m-2 s-1) while DC stayed constant at 300 µmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.


Subject(s)
Circadian Rhythm , Light , Solanum lycopersicum , Solanum lycopersicum/radiation effects , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Circadian Rhythm/physiology , Circadian Rhythm/radiation effects , Photosynthesis/radiation effects , Photosynthesis/physiology , Photoperiod , Xanthophylls/metabolism , Sunlight , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Kinetics , Plant Leaves/radiation effects , Plant Leaves/physiology , Plant Leaves/metabolism
7.
J Photochem Photobiol B ; 257: 112962, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917720

ABSTRACT

Pulsed light illumination stands out as a noteworthy technique for photosynthetic H2 production, playing a crucial role in eliminating O2 and activating hydrogenase enzymes. However, further improvements are essential to make H2 photoproduction suitable for future commercial applications. In our study, we observed a distinct enhancement in pulsed light-induced H2 photoproduction in the unicellular green alga Chlamydomonas reinhardtii when treated with the optimal concentration of the mild O2 scavenger Na2SO3. This improvement was a result of reduced O2 content, increased hydrogenase enzyme activity, and suppressed H2-uptake activity. Furthermore, our findings indicate that exposing Na2SO3-treated C. reinhardtii to optimal light waveform continues to significantly boost pulsed light-induced H2 photoproduction, attributed to the alleviation of impaired photosystem II activity. Altogether, the combined application of optimal sulfite concentration and light waveform effectively enhances pulsed light-induced photosynthetic H2 production in the green alga C. reinhardtii.


Subject(s)
Chlamydomonas reinhardtii , Hydrogen , Light , Photosystem II Protein Complex , Sulfites , Sulfites/metabolism , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/radiation effects , Chlamydomonas reinhardtii/drug effects , Hydrogen/metabolism , Photosystem II Protein Complex/metabolism , Photosynthesis/radiation effects , Photosynthesis/drug effects , Oxygen/metabolism , Hydrogenase/metabolism
8.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763078

ABSTRACT

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Subject(s)
Chlamydomonas reinhardtii , Light-Harvesting Protein Complexes , Osmotic Pressure , Photosystem II Protein Complex , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosynthesis/radiation effects , Light , Chlorophyll/metabolism
9.
Plant Physiol Biochem ; 212: 108777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820915

ABSTRACT

This study investigated the responses of Didymodon constrictus and Hypnum plumaeforme to different light qualities emitted by light-emitting diodes (LEDs), including white light (WL), red light (RL), blue light (BL), yellow light (YL), green light (GL), and a combination of red and blue light (R1B1L). The research analyzed the fluorescence imaging, photosynthetic pigments, coloration, and growth characteristics related to antioxidant enzymes in these two moss species. The results indicated that R1B1L significantly enhanced the content of photosynthetic pigments, maximum relative electron transport rate (rETRmax), saturation light intensity (IK), and the greenness of the moss. RL improved the maximum quantum yield (Fv/Fm), the light energy efficiency of H. plumaeforme and effective quantum yield in both moss species. In contrast, BL notably increased non-photochemical quenching (NPQ), photochemical quenching (qp), and the steady-state fluorescence decrease ratio (RFD) in H. plumaeforme. The application of GL significantly increases the maximum photon yield (Fv/Fm) in D. constrictus, as well as the light energy efficiency and elongation length, resulting in a shift in the color composition of both moss species towards yellow. Among the light treatments, R1B1L had the highest induction rate and promotional effect on the growth of both moss species. These mosses absorbed GL and RL effectively, while BL played a crucial role in the dissipation of heat and electron transfer in H. plumaeforme. This research provides valuable insights for the regulation of LED light environments and the physiological adaptability of moss in artificial cultivation.


Subject(s)
Chlorophyll , Light , Chlorophyll/metabolism , Fluorescence , Bryophyta/metabolism , Bryophyta/radiation effects , Bryophyta/growth & development , Photosynthesis/radiation effects , Photosynthesis/physiology , Bryopsida/metabolism , Bryopsida/radiation effects , Bryopsida/growth & development
10.
New Phytol ; 243(2): 662-673, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769735

ABSTRACT

It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.


Subject(s)
Forests , Plant Stems , Seasons , Sunlight , Trees , Trees/growth & development , Trees/radiation effects , Trees/physiology , Europe , Plant Stems/radiation effects , Plant Stems/growth & development , Plant Stems/physiology , Photosynthesis/radiation effects
11.
New Phytol ; 243(2): 567-579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38812270

ABSTRACT

Aerosols could significantly influence ecosystem carbon and water fluxes, potentially altering their interconnected dynamics, typically characterized by water-use efficiency (WUE). However, our understanding of the underlying ecophysiological mechanisms remains limited due to insufficient field observations. We conducted 4-yr measurements of leaf photosynthesis and transpiration, as well as 3-yr measurements of stem growth (SG) and sap flow of poplar trees exposed to natural aerosol fluctuation, to elucidate aerosol's impact on plant WUE. We found that aerosol improved sun leaf WUE mainly because a sharp decline in photosynthetically active radiation (PAR) inhibited its transpiration, while photosynthesis was less affected, as the negative effect induced by declined PAR was offset by the positive effect induced by low leaf vapor pressure deficit (VPDleaf). Conversely, diffuse radiation fertilization (DRF) effect stimulated shade leaf photosynthesis with minimal impact on transpiration, leading to an improved WUE. The responses were further verified by a strong DRF on SG and a decrease in sap flow due to the suppresses in total radiation and VPD. Our field observations indicate that, contrary to the commonly assumed coupling response, carbon uptake and water use exhibited dissimilar reactions to aerosol pollution, ultimately enhancing WUE at the leaf and canopy level.


Subject(s)
Aerosols , Carbon , Photosynthesis , Plant Leaves , Plant Transpiration , Populus , Water , Water/metabolism , Photosynthesis/radiation effects , Photosynthesis/drug effects , Carbon/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Leaves/drug effects , Plant Transpiration/physiology , Plant Transpiration/radiation effects , Populus/physiology , Populus/radiation effects , Populus/drug effects , Plant Stems/radiation effects , Plant Stems/drug effects , Plant Stems/physiology
12.
J Hazard Mater ; 473: 134670, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781858

ABSTRACT

Benzotriazole ultraviolet (UV) stabilizers (BUVs) have emerged as significant environmental contaminants, frequently detected in various ecosystems. While the toxicity of BUVs to aquatic organisms is well-documented, studies on their impact on plant life are scarce. Plants are crucial as they provide the primary source of energy and organic matter in ecosystems through photosynthesis. This study investigated the effects of UV-328 (2-(2-hydroxy-4',6'-di-tert-amylphenyl) benzotriazole) on plant growth indices and photosynthesis processes, employing conventional physiological experiments, RNA sequencing (RNA-seq) analysis, and computational methods. Results demonstrated a biphasic response in plant biomass and the maximum quantum yield of PS II (Fv/Fm), showing improvement at a 50 µM UV-328 treatment but reduction under 150 µM UV-328 exposure. Additionally, disruption in thylakoid morphology was observed at the higher concentration. RNA-seq and qRT-PCR analysis identified key differentially expressed genes (light-harvesting chlorophyll-protein complex Ⅰ subunit A4, light-harvesting chlorophyll b-binding protein 3, UVR8, and curvature thylakoid 1 A) related to photosynthetic light harvesting, UV-B sensing, and chloroplast structure pathways, suggesting they may contribute to the observed alterations in photosynthesis activity induced by UV-328 exposure. Molecular docking analyses further supported the binding affinity between these proteins and UV-328. Overall, this study provided comprehensive physiological and molecular insights, contributing valuable information to the evaluation of the potential risks posed by UV-328 to critical plant physiological processes.


Subject(s)
Photosynthesis , Triazoles , Ultraviolet Rays , Photosynthesis/drug effects , Photosynthesis/radiation effects , Triazoles/toxicity , Molecular Docking Simulation , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Arabidopsis/radiation effects , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/growth & development
13.
J Photochem Photobiol B ; 256: 112939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761748

ABSTRACT

The visible light spectrum (400-700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590-620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420-430 nm and 590-620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.


Subject(s)
Light , Photosynthesis , Solanum lycopersicum , Photosynthesis/radiation effects , Solanum lycopersicum/growth & development , Solanum lycopersicum/radiation effects , Solanum lycopersicum/metabolism , Lactuca/growth & development , Lactuca/radiation effects , Lactuca/metabolism
14.
New Phytol ; 243(1): 72-81, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703003

ABSTRACT

Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.


Subject(s)
Light , Oxygen , Plant Stems , Wood , Plant Stems/metabolism , Plant Stems/radiation effects , Oxygen/metabolism , Wood/metabolism , Darkness , Fraxinus/metabolism , Chloroplasts/metabolism , Chloroplasts/radiation effects , Plant Bark/metabolism , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism
15.
New Phytol ; 243(1): 145-161, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38736026

ABSTRACT

Diatoms are a diverse group of phytoplankton usually dominating areas characterized by rapidly shifting light conditions. Because of their high growth rates and interesting biochemical profile, their biomass is considered for various commercial applications. This study aimed at identifying strains with superior growth in a photobioreactor (PBR) by screening the natural intraspecific diversity of ecotypes isolated from different habitats. We investigated the effect of PBR light fluctuating on a millisecond scale (FL, simulating the light in a PBR) on 19 ecotypes of the diatom Skeletonema marinoi isolated from the North Sea-Baltic Sea area. We compare growth, pigment ratios, phylogeny, photo-physiological variables and photoacclimation strategies between all strains and perform qPCR and absorption spectra analysis on a subset of strains. Our results show that the ecotypes responded differently to FL, and have contrasting photo-physiological and photoprotective strategies. The strains from Kattegat performed better in FL, and shared common photoacclimation and photoprotection strategies that are the results of adaptation to the specific light climate of the Kattegat area. The strains that performed better with FL conditions had a high light (HL)-acclimated phenotype coupled with unique nonphotochemical quenching features. Based on their characteristics, three strains were identified as good candidates for growth in PBRs.


Subject(s)
Diatoms , Ecosystem , Ecotype , Light , Photobioreactors , Diatoms/growth & development , Diatoms/radiation effects , Diatoms/physiology , Phylogeny , Acclimatization , Chlorophyll/metabolism , Photosynthesis/radiation effects
16.
J Agric Food Chem ; 72(22): 12859-12870, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780458

ABSTRACT

Bamboo is one of the most important nontimber forestry products in the world. Light is not only the most critical source of energy for plant photosynthesis but also involved in regulating the biological processes of plants. However, there are few reports on how blue/red light affects Moso bamboo. This study investigated the growth status and physiological responses of Moso bamboo (Phyllostachys edulis) to blue/red light treatments. The growth status of the bamboo plants was evaluated, revealing that both blue- and red-light treatments promoted plant height and overall growth. Gas exchange parameters, chlorophyll fluorescence, and enzyme activity were measured to assess the photosystem response of Moso bamboo to light treatments. Additionally, the blue light treatment led to a higher chlorophyll content and enzyme activities compared to the red light treatment. A tandem mass tag quantitative proteomics approach identified significant changes in protein abundance under different light conditions with specific response proteins associated with distinct pathways, such as photosynthesis and starch metabolism. Overall, this study provides valuable insights into the physiological and proteomic responses of Moso bamboo to blue/red light treatments, highlighting their potential impact on growth and development.


Subject(s)
Chlorophyll , Light , Photosynthesis , Plant Proteins , Poaceae , Proteomics , Photosynthesis/radiation effects , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Poaceae/metabolism , Poaceae/radiation effects , Poaceae/chemistry , Poaceae/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/chemistry , Plant Leaves/growth & development , Red Light
17.
J Agric Food Chem ; 72(17): 9587-9598, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38588384

ABSTRACT

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.


Subject(s)
Biomass , Flowers , Mustard Plant , Phytochemicals , Plant Leaves , Red Light , Anthocyanins/analysis , Flowers/chemistry , Flowers/growth & development , Flowers/radiation effects , Mustard Plant/chemistry , Mustard Plant/growth & development , Mustard Plant/radiation effects , Photosynthesis/radiation effects , Phytochemicals/chemistry , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/radiation effects
18.
Plant Cell Environ ; 47(8): 2936-2953, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38629324

ABSTRACT

Plants use light as a resource and signal. Photons within the 400-700 nm waveband are considered photosynthetically active. Far-red photons (FR, 700-800 nm) are used by plants to detect nearby vegetation and elicit the shade avoidance syndrome. In addition, FR photons have also been shown to contribute to photosynthesis, but knowledge about these dual effects remains scarce. Here, we study shoot-architectural and photosynthetic responses to supplemental FR light during the photoperiod in several rice varieties. We observed that FR enrichment only mildly affected the rice transcriptome and shoot architecture as compared to established model species, whereas leaf formation, tillering and biomass accumulation were clearly promoted. Consistent with this growth promotion, we found that CO2-fixation in supplemental FR was strongly enhanced, especially in plants acclimated to FR-enriched conditions as compared to control conditions. This growth promotion dominates the effects of FR photons on shoot development and architecture. When substituting FR enrichment with an end-of-day FR pulse, this prevented photosynthesis-promoting effects and elicited shade avoidance responses. We conclude that FR photons can have a dual role, where effects depend on the environmental context: in addition to being an environmental signal, they are also a potent source of harvestable energy.


Subject(s)
Gene Expression Regulation, Plant , Light , Oryza , Photosynthesis , Plant Shoots , Oryza/genetics , Oryza/growth & development , Oryza/radiation effects , Oryza/physiology , Photosynthesis/radiation effects , Gene Expression Regulation, Plant/radiation effects , Plant Shoots/growth & development , Plant Shoots/radiation effects , Plant Shoots/genetics , Plant Leaves/radiation effects , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/physiology , Carbon Dioxide/metabolism , Photoperiod , Biomass , Transcriptome , Red Light
19.
J Agric Food Chem ; 72(17): 9735-9745, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648561

ABSTRACT

For healthier human nutrition, it is desirable to provide food with a high content of nutraceuticals such as polyphenolics, vitamins, and carotenoids. We investigated to what extent high growth irradiance influences the content of phenolics, α-tocopherol and carotenoids, in wild rocket (Diplotaxis tenuifolia), which is increasingly used as a salad green. Potted plants were grown in a climate chamber with a 16 h day length at photosynthetic photon flux densities varying from 20 to 1250 µmol m-2 s-1. Measurements of the maximal quantum yield of photosystem II, FV/FM, and of the epoxidation state of the violaxanthin cycle (V-cycle) showed that the plants did not suffer from excessive light for photosynthesis. Contents of carotenoids belonging to the V-cycle, α-tocopherol and several quercetin derivatives, increased nearly linearly with irradiance. Nonintrusive measurements of chlorophyll fluorescence induced by UV-A and blue light relative to that induced by red light, indicating flavonoid and carotenoid content, allowed not only a semiquantitative measurement of both compounds but also allowed to follow their dynamic changes during reciprocal transfers between low and high growth irradiance. The results show that growth irradiance has a strong influence on the content of three different types of compounds with antioxidative properties and that it is possible to determine the contents of flavonoids and specific carotenoids in intact leaves using chlorophyll fluorescence. The results may be used for breeding to enhance healthy compounds in wild rocket leaves and to monitor their content for selection of appropriate genotypes.


Subject(s)
Carotenoids , Chlorophyll , Carotenoids/analysis , Carotenoids/metabolism , Chlorophyll/analysis , Chlorophyll/metabolism , Light , Photosynthesis/radiation effects , alpha-Tocopherol/analysis , alpha-Tocopherol/metabolism , Antioxidants/analysis , Antioxidants/metabolism , Antioxidants/chemistry , Phenols/metabolism , Phenols/analysis , Phenols/chemistry , Flavonoids/analysis , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/radiation effects , Plant Leaves/metabolism
20.
Plant Cell Environ ; 47(6): 2240-2257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38482712

ABSTRACT

Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Light , Membrane Proteins , Photosynthesis , Photosystem I Protein Complex , Photosystem II Protein Complex , Photosynthesis/physiology , Photosynthesis/radiation effects , Arabidopsis/physiology , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Electron Transport , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Ferredoxins/metabolism , Mutation , Oxidation-Reduction , Plastocyanin/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL