Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.672
1.
J Orthop Surg Res ; 19(1): 325, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822418

OBJECTIVE: Muscle wasting frequently occurs following joint trauma. Previous research has demonstrated that joint distraction in combination with treadmill exercise (TRE) can mitigate intra-articular inflammation and cartilage damage, consequently delaying the advancement of post-traumatic osteoarthritis (PTOA). However, the precise mechanism underlying this phenomenon remains unclear. Hence, the purpose of this study was to examine whether the mechanism by which TRE following joint distraction delays the progression of PTOA involves the activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as its impact on muscle wasting. METHODS: Quadriceps samples were collected from patients with osteoarthritis (OA) and normal patients with distal femoral fractures, and the expression of PGC-1α was measured. The hinged external fixator was implanted in the rabbit PTOA model. One week after surgery, a PGC-1α agonist or inhibitor was administered for 4 weeks prior to TRE. Western blot analysis was performed to detect the expression of PGC-1α and Muscle atrophy gene 1 (Atrogin-1). We employed the enzyme-linked immunosorbent assay (ELISA) technique to examine pro-inflammatory factors. Additionally, we utilized quantitative real-time polymerase chain reaction (qRT-PCR) to analyze genes associated with cartilage regeneration. Synovial inflammation and cartilage damage were evaluated through hematoxylin-eosin staining. Furthermore, we employed Masson's trichrome staining and Alcian blue staining to analyze cartilage damage. RESULTS: The decreased expression of PGC-1α in skeletal muscle in patients with OA is correlated with the severity of OA. In the rabbit PTOA model, TRE following joint distraction inhibited the expressions of muscle wasting genes, including Atrogin-1 and muscle ring finger 1 (MuRF1), as well as inflammatory factors such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in skeletal muscle, potentially through the activation of PGC-1α. Concurrently, the production of IL-1ß, IL-6, TNF-α, nitric oxide (NO), and malondialdehyde (MDA) in the synovial fluid was down-regulated, while the expression of type II collagen (Col2a1), Aggrecan (AGN), SRY-box 9 (SOX9) in the cartilage, and superoxide dismutase (SOD) in the synovial fluid was up-regulated. Additionally, histological staining results demonstrated that TRE after joint distraction reduced cartilage degeneration, leading to a significant decrease in OARSI scores.TRE following joint distraction could activate PGC-1α, inhibit Atrogin-1 expression in skeletal muscle, and reduce C-telopeptides of type II collagen (CTX-II) in the blood compared to joint distraction alone. CONCLUSION: Following joint distraction, TRE might promote the activation of PGC-1α in skeletal muscle during PTOA progression to exert anti-inflammatory effects in skeletal muscle and joint cavity, thereby inhibiting muscle wasting and promoting cartilage regeneration, making it a potential therapeutic intervention for treating PTOA.


Disease Progression , Muscle, Skeletal , Muscular Atrophy , Osteoarthritis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Rabbits , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Osteoarthritis/etiology , Osteoarthritis/metabolism , Osteoarthritis/prevention & control , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Male , Humans , Physical Conditioning, Animal/physiology , Female , Disease Models, Animal
2.
Mol Biol Rep ; 51(1): 667, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780696

BACKGROUND: The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1ß, Tnf-α, and Tgfß1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS: Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1ß, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfß1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfß1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS: Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.


Cytokines , Matrix Metalloproteinases , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Physical Conditioning, Animal/physiology , Male , Rats , Muscle, Skeletal/metabolism , Cytokines/metabolism , Cytokines/genetics , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Extracellular Matrix/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Gene Expression Regulation
3.
Physiol Res ; 73(2): 295-304, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710060

Aging leads to a decrease in muscle function, mass, and strength in skeletal muscle of animals and humans. The transcriptome identified activation of the JAK/STAT pathway, a pathway that is associated with skeletal muscle atrophy, and endurance training has a significant effect on improving sarcopenia; however, the exact mechanism still requires further study. We investigated the effect of endurance training on sarcopenia. Six-month-old male SAMR1 mice were used as a young control group (group C), and the same month-old male SAMP8 mice were divided into an exercise group (group E) and a model group (group M). A 3-month running exercise intervention was performed on group E, and the other two groups were kept normally. Aging caused significant signs of sarcopenia in the SAMP8 mice, and endurance training effectively improved muscle function, muscle mass, and muscle strength in the SAMP8 mice. The expression of JAK2/STAT3 pathway factor was decreased in group E compared with group M, and the expression of SOCS3, the target gene of STAT3, and NR1D1, an atrophy-related factor, was significantly increased. Endurance training significantly improved the phenotypes associated with sarcopenia, and the JAK2/STAT3 pathway is a possible mechanism for the improvement of sarcopenia by endurance training, while NR1D1 may be its potential target. Keywords: Sarcopenia, Endurance training, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear receptor subfamily 1, group D member 1 (Nr1d1).


Endurance Training , Janus Kinase 2 , Physical Conditioning, Animal , STAT3 Transcription Factor , Sarcopenia , Signal Transduction , Animals , Sarcopenia/metabolism , Sarcopenia/prevention & control , Sarcopenia/therapy , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Male , Mice , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Aging/metabolism
4.
Physiol Res ; 73(2): 285-294, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710059

This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.


Down-Regulation , Fibrosis , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Vascular Endothelial Growth Factor A , Animals , Male , Rats , Disease Progression , Electric Stimulation , Electric Stimulation Therapy/methods , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/prevention & control , Muscular Diseases/etiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal/physiology , Rats, Wistar , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics
5.
Vet Med Sci ; 10(3): e1466, 2024 05.
Article En | MEDLINE | ID: mdl-38695249

BACKGROUND: In this study, we investigated the effects of swimming activity and feed restriction on digestion and antioxidant enzyme activities in juvenile rainbow trout (average body weight of 26.54 ± 0.36 g). METHODS: The stomach, liver and kidney tissues were obtained from four distinct groups: the static water group (fish were kept in static water and fed to satiation), the feeding restricted group (fish were kept in static water with a 25% feed restriction), the swimming exercised group (fish were forced to swimming at a flow rate of 1 Body Length per second (BL/s)) and the swimming exercised-feed restricted group (subjected to swimming exercise at a 1 BL/s flow rate along with a 25% feed restriction). We determined the levels of glutathione, lipid peroxidation and the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase, as well as the presence of reactive oxygen species in the tissues obtained from the fish. Additionally, the activities of pepsin, protease, lipase and arginase in these tissues were measured. RESULTS: Swimming activity and feed restriction showed different effects on the enzyme activities of the fish in the experimental groups. CONCLUSION: It can be concluded that proper nutrition and exercise positively influence the antioxidant system and enzyme activities in fish, reducing the formation of free radicals. This situation is likely to contribute to the fish's development.


Antioxidants , Oncorhynchus mykiss , Swimming , Animals , Oncorhynchus mykiss/physiology , Oncorhynchus mykiss/metabolism , Swimming/physiology , Antioxidants/metabolism , Aquaculture , Physical Conditioning, Animal/physiology , Food Deprivation/physiology , Animal Nutritional Physiological Phenomena , Digestion/physiology , Animal Feed/analysis , Liver/enzymology , Liver/metabolism
6.
PLoS One ; 19(5): e0300373, 2024.
Article En | MEDLINE | ID: mdl-38696403

Captive and domestic animals are often required to engage in physical activity initiated or organised by humans, which may impact their body temperature, with consequences for their health and welfare. This is a particular concern for animals such as elephants that face thermoregulatory challenges because of their body size and physiology. Using infrared thermography, we measured changes in skin temperature associated with two types of physical activity in ten female Asian elephants (Elephas maximus) at an eco-tourism lodge in Nepal. Six elephants took part in an activity relatively unfamiliar to the elephants-a polo tournament-and four participated in more familiar ecotourism activities. We recorded skin temperatures for four body regions affected by the activities, as well as an average skin temperature. Temperature change was used as the response variable in the analysis and calculated as the difference in elephant temperature before and after activity. We found no significant differences in temperature change between the elephants in the polo-playing group and those from the non-polo playing group. However, for both groups, when comparing the average skin body temperature and several different body regions, we found significant differences in skin temperature change before and after activity. The ear pinna was the most impacted region and was significantly different to all other body regions. This result highlights the importance of this region in thermoregulation for elephants during physical activity. However, as we found no differences between the average body temperatures of the polo and non-polo playing groups, we suggest that thermoregulatory mechanisms can counteract the effects of both physical activities the elephants engaged in.


Elephants , Skin Temperature , Animals , Elephants/physiology , Female , Skin Temperature/physiology , Physical Conditioning, Animal/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Thermography/methods
7.
Physiol Res ; 73(2): 273-284, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710057

Lifestyle intervention encompassing nutrition and physical activity are effective strategies to prevent progressive lipid deposition in the liver. This study aimed to explore the effect of dietary change, and/or high-intensity interval training (HIIT) on hepatic lipid accumulation in high fat diet (HFD)-induced obese rats. We divided lean rats into lean control (LC) or HIIT groups (LH), and obese rats into obese normal chow diet (ND) control (ONC) or HIIT groups (ONH) and obese HFD control (OHC) or HIIT groups (OHH). We found that dietary or HIIT intervention significantly decreased body weight and the risk of dyslipidemia, prevented hepatic lipid accumulation. HIIT significantly improved mitochondrial fatty acid oxidation through upregulating mitochondrial enzyme activities, mitochondrial function and AMPK/PPARalpha/CPT1alpha pathway, as well as inhibiting hepatic de novo lipogenesis in obese HFD rats. These findings indicate that dietary alone or HIIT intervention powerfully improve intrahepatic storage of fat in diet induced obese rats. Keywords: Obesity, Exercise, Diet, Mitochondrial function, Lipid deposition.


Diet, High-Fat , High-Intensity Interval Training , Lipid Metabolism , Liver , Obesity , Rats, Sprague-Dawley , Animals , Obesity/metabolism , Obesity/therapy , Male , Diet, High-Fat/adverse effects , Rats , Liver/metabolism , Physical Conditioning, Animal/physiology
8.
Braz J Med Biol Res ; 57: e13234, 2024.
Article En | MEDLINE | ID: mdl-38716980

Patients undergoing chemotherapy with cisplatin commonly present gastrointestinal effects such as constipation and gastric emptying (GE) delay. Both the purinergic system and physical exercise modulate the gastrointestinal (GI) tract. In the current study, we investigated the role of ATP, physical exercise, and P2X7 receptor blocking on GE delay induced by cisplatin in rats. Male rats were divided into the following groups: control (C), cisplatin (Cis), exercise (Ex), Brilliant Blue G (BBG), ATP, Cis+Ex, Cis+ATP, Cis+BBG, Cis+Ex+BBG, Cis+Ex+BBG+ATP, and Cis+ATP+BBG. GE delay was induced by treatment with 1 mg/kg cisplatin (1 time/week for 5 weeks, ip). The moderate physical exercise was swimming (1 h/day, 5 days/week for 5 weeks). At the end of the treatment or exercise and 30 min before the GE assessment, some groups received BBG (50 mg/kg, sc) or ATP (2 mg/kg, sc). Then, GE was assessed after a 10-min postprandial period. Chronic use of Cis decreased GE delay (P<0.05) compared to the control group. Both exercise and ATP prevented (P<0.05) GE delay compared to Cis. The pretreatment with BBG significantly inhibited (P<0.05) the effect of exercise and ATP. On the other hand, the association between exercise and ATP reversed (P<0.05) the effect of the BBG and prevented GE delay. Therefore, we suggest that both exercise and treatment with ATP activate P2X7 receptors and prevent GE delay induced by cisplatin in rats.


Adenosine Triphosphate , Antineoplastic Agents , Cisplatin , Gastric Emptying , Physical Conditioning, Animal , Rats, Wistar , Receptors, Purinergic P2X7 , Animals , Cisplatin/pharmacology , Male , Adenosine Triphosphate/metabolism , Gastric Emptying/drug effects , Gastric Emptying/physiology , Receptors, Purinergic P2X7/metabolism , Physical Conditioning, Animal/physiology , Antineoplastic Agents/pharmacology , Rats , Purinergic P2X Receptor Antagonists/pharmacology
9.
J Cardiothorac Surg ; 19(1): 283, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730417

OBJECTIVE: Myocardial infarction (MI) -induced cardiac dysfunction can be attenuated by aerobic exercises. This study explored the mechanism of interval training (IT) regulating cardiac function in MI rats, providing some theoretical basis for clarifying MI pathogenesis and new ideas for clinically treating MI. METHODS: Rats were subjected to MI modeling, IT intervention, and treatments of the Transforming growth factor-ß1 (TGF-ß1) pathway or the nod-like receptor protein 3 (NLRP3) activators. Cardiac function and hemodynamic indicator alterations were observed. Myocardial pathological damage and fibrosis, reactive oxygen species (ROS) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, MDA content, inflammasome-associated protein levels, and inflammatory factor levels were assessed. The binding between TGF-ß1 and receptor was detected. RESULTS: MI rats exhibited decreased left ventricle ejection fraction (LVEF), left ventricle fractional shortening  (LVFS), left ventricular systolic pressure  (LVSP), positive and negative derivates max/min (dP/dt max/min) and increased left ventricular end-systolic pressure (LVEDP), a large number of scar areas in myocardium, disordered cell arrangement and extensive fibrotic lesions, increased TGF-ß1 and receptor binding, elevated ROS level and MDA content and weakened SOD, CAT and GSH-Px activities, and up-regulated NLRP3, apoptosis-associated speck-like protein containing a CARD  (ASC) and cleaved-caspase-1 levels, while IT intervention caused ameliorated cardiac function. IT inactivated the TGF-ß1 pathway to decrease oxidative stress in myocardial tissues of MI rats and inhibit NLRP3 inflammasome activation. Activating NLRP3 partially reversed IT-mediated improvement on cardiac function in MI rats. CONCLUSION: IT diminished oxidative stress in myocardial tissues and suppressed NLRP3 inflammasome activation via inactivating the TGF-ß1 pathway, thus improving the cardiac function of MI rats.


Inflammasomes , Myocardial Infarction , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Transforming Growth Factor beta1 , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Transforming Growth Factor beta1/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Inflammasomes/metabolism , Male , Disease Models, Animal , Signal Transduction/physiology , Physical Conditioning, Animal/physiology , Reactive Oxygen Species/metabolism , Ventricular Function, Left/physiology , Myocardium/metabolism , Myocardium/pathology
10.
Nat Commun ; 15(1): 3836, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714691

Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.


Activin Receptors, Type I , Epigenesis, Genetic , Hippocampus , Memory, Long-Term , Physical Conditioning, Animal , Animals , Female , Humans , Male , Mice , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Aging/genetics , Aging/physiology , Hippocampus/metabolism , Memory, Long-Term/physiology , Mice, Inbred C57BL , Neuronal Plasticity/genetics , Physical Conditioning, Animal/physiology , Promoter Regions, Genetic
11.
BMC Vet Res ; 20(1): 217, 2024 May 22.
Article En | MEDLINE | ID: mdl-38773549

BACKGROUND: It has been reported that capacitive resistive electric transfer (CRET) increases blood circulation, hemoglobin oxygenation and temperature in muscles. The attributed benefits of these changes have been linked to improved athletic performance, enhanced muscle flexibility and fastening recovery from exercise-induced fatigue. For all of this, the present research aims to investigate whether the application of CRET 24 h before exercise affects the accelerometric pattern in horses during exercise. Six sound Standardbred trotters were subjected to a CRET session of 40 min of duration, applied on both sides of the neck, back and croup, 24 h before a training session. Training sessions consisted of a warming-up (WU) for 6400 m and a training bout (TB) at their maximal training speed for 1600 m. The same protocol was followed for the device off (sham protocol), also applied 24 h before the training session. CRET and sham experiments were separated by one week, the order of application of both was randomly defined for each individual and drivers were blinded for the duration of the experiment. During the training sessions, horses wore an accelerometer fixed at the sternal level. Speed, stride frequency (SF), length (SL), regularity and symmetry and accelerometric activities were measured during WU and TB. RESULTS: CRET increased speed, mediolateral and total accelerometric activities during WU and speed, SL, dorsoventral, longitudinal and total accelerometric activities during TB, but stride regularity and symmetry decreased. CONCLUSION: The application of CRET 24 h before exercise increased speed and accelerometric activities, results that highlight the need to evaluate the interaction between CRET and training in order to develop new methods to limit fatigue. However, the decrease in stride regularity and symmetry after CRET application could be negative effects, which could be attributed to the increased speed.


Physical Conditioning, Animal , Animals , Horses/physiology , Physical Conditioning, Animal/physiology , Male , Accelerometry/veterinary , Female , Gait/physiology
12.
An Acad Bras Cienc ; 96(2): e20231388, 2024.
Article En | MEDLINE | ID: mdl-38747802

This study is the first to apply training impulse (TRIMP) and Training Monotony (TM) methodologies, within the realm of sport science, in animal model studies. Rats were divided into Sedentary (SED, n=10) and Training (TR, n=13). TR performed a four-week moderate-intensity interval training with load progression. Lactate kinetics, lactate training impulse (TRIMPLac), maximal speed training impulse (TRIMPSmax) and TM were utilized to develop and monitor training protocol. TR showed an 11.9% increase in time to exhaustion at the second maximum incremental test and a 17.5% increase at the third test. External work was increased by 17.8% at the second test and 30.3% at the third. There was a 10.6% increase in external work at the third test compared to the second for TR. No difference in TRIMPLac between the 1st week (94±9 A.U) and 3rdweek (83±10 A.U) were seen. TRIMPSmax was 2400 A.U. in the 1st week, 2760 A.U. in the 2nd and 3rd weeks, and 3120 A.U. in the 4th week. The TM remained at 1.24 A.U throughout the protocol and there was no dropouts. TRIMPLac and TRIMPSmax contributed to the development and monitoring loads, demonstrating their potential to improve the accuracy of training protocols in animal model research.


Lactic Acid , Physical Conditioning, Animal , Rats, Wistar , Animals , Physical Conditioning, Animal/physiology , Male , Lactic Acid/blood , Lactic Acid/analysis , Rats , Time Factors
13.
Ecol Evol Physiol ; 97(2): 97-117, 2024.
Article En | MEDLINE | ID: mdl-38728689

AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.


Selection, Genetic , Animals , Mice , Biological Evolution , Running/physiology , Running/psychology , Behavior, Animal/physiology , Male , Female , Motor Activity/physiology , Physical Conditioning, Animal/physiology
14.
BMC Pulm Med ; 24(1): 236, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745304

BACKGROUND: We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/ß-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS: Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/ß-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/ß-catenin agonist) and XAV939 (Wnt/ß-catenin antagonist) to investigate whether Wnt/ß-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, ß-catenin and PPARγ proteins in the lung tissue. RESULTS: Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased ß-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS: Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/ß-catenin-PPARγ pathway.


Mice, Inbred C57BL , PPAR gamma , Physical Conditioning, Animal , Pulmonary Disease, Chronic Obstructive , Wnt Signaling Pathway , Animals , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/metabolism , Male , Wnt Signaling Pathway/physiology , Mice , Physical Conditioning, Animal/physiology , PPAR gamma/metabolism , Disease Models, Animal , Lung/metabolism , Lung/physiopathology , Inflammation/metabolism
15.
Nature ; 629(8010): 174-183, 2024 May.
Article En | MEDLINE | ID: mdl-38693412

Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1-3. Here, the Molecular Transducers of Physical Activity Consortium4 profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository ( https://motrpac-data.org/ ).


Endurance Training , Multiomics , Physical Conditioning, Animal , Physical Endurance , Animals , Female , Humans , Male , Rats , Acetylation , Blood/immunology , Blood/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Databases, Factual , Epigenome , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Internet , Lipidomics , Metabolome , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Organ Specificity/physiology , Phosphorylation , Physical Conditioning, Animal/physiology , Physical Endurance/genetics , Physical Endurance/physiology , Proteome/metabolism , Proteomics , Time Factors , Transcriptome/genetics , Ubiquitination , Wounds and Injuries/genetics , Wounds and Injuries/immunology , Wounds and Injuries/metabolism
16.
Arq Bras Cardiol ; 121(4): e20230490, 2024 Apr.
Article Pt, En | MEDLINE | ID: mdl-38695409

BACKGROUND: Obesity is associated with the development of cardiovascular diseases and is a serious public health problem. In animal models, high-fat diet (HFD) feeding impairs cardiac structure and function and promotes oxidative stress and apoptosis. Resistance exercise training (RT), however, has been recommended as coadjutant in the treatment of cardiometabolic diseases, including obesity, because it increases energy expenditure and stimulates lipolysis. OBJECTIVE: In this systematic review, we aimed to assess the benefits of RT on the heart of rats and mice fed HFD. METHODS: Original studies were identified by searching PubMed, Scopus, and Embase databases from December 2007 to December 2022. This study was conducted in accordance with the criteria established by PRISMA and registered in PROSPERO (CRD42022369217). The risk of bias and methodological quality was evaluated by SYRCLE and CAMARADES, respectively. Eligible studies included original articles published in English that evaluated cardiac outcomes in rodents submitted to over 4 weeks of RT and controlled by a sedentary, HFD-fed control group (n = 5). RESULTS: The results showed that RT mitigates cardiac oxidative stress, inflammation, and endoplasmic reticulum stress. It also modifies the activity of structural remodeling markers, although it does not alter biometric parameters, histomorphometric parameters, or the contractile function of cardiomyocytes. CONCLUSION: Our results indicate that RT partially counteracts the HFD-induced adverse cardiac remodeling by increasing the activity of structural remodeling markers; elevating mitochondrial biogenesis; reducing oxidative stress, inflammatory markers, and endoplasmic reticulum stress; and improving hemodynamic, anthropometric, and metabolic parameters.


FUNDAMENTO: A obesidade está associada ao desenvolvimento de doenças cardiovasculares e constitui um grave problema de saúde pública. Em modelos animais, a alimentação com uma dieta hiperlipídica (DH) compromete a estrutura e a função cardíaca e promove estresse oxidativo e apoptose. O treinamento resistido (TR), entretanto, tem sido recomendado como coadjuvante no tratamento de doenças cardiometabólicas, incluindo a obesidade, porque aumenta o gasto energético e estimula a lipólise. OBJETIVO: Na presente revisão sistemática, nosso objetivo foi avaliar os benefícios do TR no coração de ratos e camundongos alimentados com DH. MÉTODOS: Foram identificados estudos originais por meio de busca nas bases de dados PubMed, Scopus e Embase de dezembro de 2007 a dezembro de 2022. O presente estudo foi conduzido de acordo com os critérios estabelecidos pelo PRISMA e registrado no PROSPERO (CRD42022369217). O risco de viés e a qualidade metodológica foram avaliados pelo SYRCLE e CAMARADES, respectivamente. Os estudos elegíveis incluíram artigos originais publicados em inglês que avaliaram desfechos cardíacos em roedores submetidos a mais de 4 semanas de TR e controlados por um grupo controle sedentário alimentado com DH (n = 5). RESULTADOS: Os resultados mostraram que o TR atenua o estresse oxidativo cardíaco, a inflamação e o estresse do retículo endoplasmático. Também modifica a atividade de marcadores de remodelamento estrutural, apesar de não alterar parâmetros biométricos, parâmetros histomorfométricos ou a função contrátil dos cardiomiócitos. CONCLUSÃO: Nossos resultados indicam que o TR parcialmente neutraliza o remodelamento cardíaco adverso induzido pela DH, aumentando a atividade dos marcadores de remodelamento estrutural; elevando a biogênese mitocondrial; reduzindo o estresse oxidativo, marcadores inflamatórios e estresse do retículo endoplasmático; e melhorando os parâmetros hemodinâmicos, antropométricos e metabólicos.


Diet, High-Fat , Oxidative Stress , Physical Conditioning, Animal , Resistance Training , Ventricular Remodeling , Animals , Diet, High-Fat/adverse effects , Resistance Training/methods , Rats , Physical Conditioning, Animal/physiology , Mice , Ventricular Remodeling/physiology , Oxidative Stress/physiology , Obesity/therapy , Obesity/physiopathology , Disease Models, Animal
17.
Cardiovasc Toxicol ; 24(6): 527-538, 2024 Jun.
Article En | MEDLINE | ID: mdl-38720122

Adolescents commonly co-abuse many drugs including anabolic androgenic steroids either they are athletes or non-athletes. Stanozolol is the major anabolic used in recent years and was reported grouped with cannabis. The current study aimed at evaluating the biochemical and histopathological changes related to the hypertrophic effects of stanozolol and/or cannabis whether in condition of exercise practice or sedentary conditions. Adult male Wistar albino rats received either stanozolol (5 mg/kg, s.c), cannabis (10 mg/kg, i.p.), and a combination of both once daily for two months. Swimming exercise protocol was applied as a training model. Relative heart weight, oxidative stress biomarkers, cardiac tissue fibrotic markers were evaluated. Left ventricular morphometric analysis and collagen quantification was done. The combined treatment exhibited serious detrimental effects on the heart tissues. It increased heart tissue fibrotic markers (Masson's trichrome stain (p < 0.001), cardiac COL3 (p < 0.0001), and VEGF-A (p < 0.05)), lowered heart glutathione levels (p < 0.05) and dramatically elevated oxidative stress (increased malondialdehyde (p < 0.0001) and 8-OHDG (p < 0.0001)). Training was not ameliorating for the observed effects. Misuse of cannabis and stanozolol resulted in more hypertrophic consequences of the heart than either drug alone, which were at least largely assigned to oxidative stress, heart tissue fibrotic indicators, histological alterations, and morphometric changes.


Anabolic Agents , Cardiomegaly, Exercise-Induced , Fibrosis , Oxidative Stress , Rats, Wistar , Stanozolol , Animals , Stanozolol/toxicity , Male , Oxidative Stress/drug effects , Anabolic Agents/toxicity , Cardiomegaly, Exercise-Induced/drug effects , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/prevention & control , Ventricular Remodeling/drug effects , Myocardium/pathology , Myocardium/metabolism , Doping in Sports , Biomarkers/metabolism , Swimming , Physical Conditioning, Animal/physiology , Rats , Disease Models, Animal
18.
PLoS One ; 19(5): e0303092, 2024.
Article En | MEDLINE | ID: mdl-38753824

Strenuous exercise in traditional polo matches creates enormous stress on horses. Hematological and physiological measures may vary across different field-play positions. This study aimed to investigate the effort intensity and the impact of exertion on hematology and heart rate variability (HRV) in polo ponies with different positions. Thirty-two ponies, divided equally into eight teams, were studied. Each comprises forwards (number 1), midfielders (numbers 2 and 3), and defenders (number 4). Team pairs played the first chukka in four low-goal polo matches. Percent maximum heart rate (%HRmax), indicating ponies' effort intensity, was classified into five zones, including zones 1 (<70%), 2 (70-80%), 3 (80-90%), 4 (90-95%) and 5 (>95%). Hematological and HRV parameters were determined before, immediately after, and at 30-minute intervals for 180 minutes after chukkas; HRV variables were also obtained during warm-up and exercise periods. Results indicated that the number two ponies spent more time in zone 4 (p < 0.05) but less in zone 2 (p < 0.01) than the number four ponies. Cortisol levels increased immediately and 30 minutes afterward (p < 0.0001 for both) and then returned to baseline 60-90 minutes after exertion. Other measures (Hct, Hb, RBC, WBC, neutrophils, and CK enzyme) increased immediately (p < 0.0001 for all) and lasted at least 180 minutes after exertion (p < 0.05-0.0001). HRV decreased during the chukka until approximately 90 minutes afterward (p < 0.05-0.0001). The stress index increased during the chukka and declined to baseline at 60 minutes in number 1-3 ponies but lasted 90 minutes in those at number four. Effort intensity distribution differed among field-play positions. Decreased HRV indicated reduced parasympathetic activity during exercise, extending to 90 minutes after exertion in polo ponies. Defenders seem to experience more stress than those in other positions.


Heart Rate , Horses , Animals , Heart Rate/physiology , Physical Conditioning, Animal/physiology , Hydrocortisone/blood , Hydrocortisone/metabolism , Physical Exertion/physiology , Male
19.
Behav Brain Funct ; 20(1): 9, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702776

BACKGROUND: In the present study, we investigated the effect of high-intensity interval training (HIIT) on cognitive behaviors in female rats with a high-fat diet + streptozotocin (STZ)-induced type 2 diabetes. METHODS: Twenty-four female rats were divided into four groups randomly (n = 6): control (C), control + exercise (Co + EX), diabetes mellitus (type 2) (T2D), and diabetes mellitus + exercise (T2D + EX). Diabetes was induced by a two-month high-fat diet and a single dose of STZ (35 mg/kg) in the T2D and T2D + EX groups. The Co + EX and T2D + EX groups performed HIIT for eight weeks (five sessions per week, running on a treadmill at 80-100% of VMax, 4-10 intervals). Elevated plus maze (EPM) and open field test (OFT) were used for assessing anxiety-like behaviors, and passive avoidance test (PAT) and Morris water maze (MWM) were applied for evaluating learning and memory. The hippocampal levels of beta-amyloid (Aß) and Tau were also assessed using Western blot. RESULTS: An increase in fasting blood glucose (FBG), hippocampal level of Tau, and a decrease in the percentage of open arm time (%OAT) as an index of anxiety-like behavior were seen in the female diabetic rats which could be reversed by HIIT. In addition, T2D led to a significant decrease in rearing and grooming in the OFT. No significant difference among groups was seen for the latency time in the PAT and learning and memory in the MWM. CONCLUSIONS: HIIT could improve anxiety-like behavior at least in part through changes in hippocampal levels of Tau.


Amyloid beta-Peptides , Anxiety , Diabetes Mellitus, Experimental , Hippocampus , Physical Conditioning, Animal , tau Proteins , Animals , Female , Hippocampus/metabolism , tau Proteins/metabolism , Rats , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/psychology , Anxiety/therapy , Anxiety/psychology , Anxiety/metabolism , Amyloid beta-Peptides/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/psychology , Diabetes Mellitus, Experimental/therapy , High-Intensity Interval Training/methods , Maze Learning/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/psychology , Diabetes Mellitus, Type 2/therapy , Behavior, Animal/physiology , Diet, High-Fat/adverse effects , Rats, Sprague-Dawley
20.
Neuroreport ; 35(10): 648-656, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38813901

Mitochondria play a crucial role in maintaining cellular energy supply and serve as a source of energy for repairing nerve damage following a stroke. Given that exercise has the potential to enhance energy metabolism, investigating the impact of exercise on mitochondrial function provides a plausible mechanism for stroke treatment. In our study, we established the middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats and implemented early exercise intervention. Neurological severity scores, beam-walking test score, and weight were used to evaluate neurological function. The volume of cerebral infarction was measured by MRI. Nerve cell apoptosis was detected by TUNEL staining. Mitochondrial morphology and structure were detected by mitochondrial electron microscopy. Mitochondrial function was assessed using membrane potential and ATP measurements. Western blotting was used to detect the protein expression of AMPK/PGC-1α/GLUT4. Through the above experiments, we found that early exercise improved neurological function in rats after MCAO, reduced cerebral infarction volume and neuronal apoptosis, promoted the recovery of mitochondrial morphology and function. We further examined the protein expression of AMPK/PGC-1α/GLUT4 signaling pathway and confirmed that early exercise was able to increase its expression. Therefore, we suggest that early exercise initiated the AMPK/PGC-1α/GLUT4 signaling pathway, restoring mitochondrial function and augmenting energy supply. This, in turn, effectively improved both nerve and body function in rats following ischemic stroke.


AMP-Activated Protein Kinases , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Sprague-Dawley , Signal Transduction , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/physiology , Male , AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/therapy , Brain Ischemia/metabolism , Rats , Disease Models, Animal , Apoptosis/physiology
...