Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Nat Commun ; 12(1): 6263, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741017

ABSTRACT

Phytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.


Subject(s)
Genes, Plant , Glycine max/growth & development , Glycine max/immunology , NLR Proteins/metabolism , Phytophthora/pathogenicity , Plant Diseases/immunology , Chromosome Mapping/methods , DNA Copy Number Variations , Disease Resistance , NLR Proteins/genetics , Phytophthora/isolation & purification , Plant Diseases/genetics , Plant Diseases/parasitology , Glycine max/metabolism
2.
PLoS One ; 16(11): e0257785, 2021.
Article in English | MEDLINE | ID: mdl-34784360

ABSTRACT

Chinese hickory (Carya cathayensis Sarg.) is an economically and ecologically important nut plant in China. Dieback and basal stem necrosis have been observed in the plants since 2016, and its recent spread has significantly affected plant growth and nut production. Therefore, a survey was conducted to evaluate the disease incidence at five sites in Linan County, China. The highest incidence was recorded at the Tuankou site at up to 11.39% in 2019. The oomycete, Phytophthora cinnamomi, was isolated from symptomatic plant tissue and plantation soil using baiting and selective media-based detection methods and identified. Artificial infection with the representative P. cinnamomi ST402 isolate produced vertically elongated discolorations in the outer xylem and necrotic symptoms in C. cathayensis seedlings in a greenhouse trial. Molecular detections based on loop-mediated isothermal amplification (LAMP) specific to P. cinnamomi ST402 were conducted. Result indicated that LAMP detection showed a high coherence level with the baiting assays for P. cinnamomi detection in the field. This study provides the evidence of existence of high-pathogenic P. cinnamomi in the C. cathayensis plantation soil in China and the insights into a convenient tool developed for conducting field monitoring of this aggressive pathogen.


Subject(s)
Carya/microbiology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Phytophthora/isolation & purification , Plant Diseases/microbiology , Electron Transport Complex IV/genetics , Phylogeny , Phytophthora/cytology , Phytophthora/pathogenicity , Plant Stems/microbiology , Seedlings/microbiology , Surveys and Questionnaires
3.
Sci Rep ; 11(1): 16907, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413429

ABSTRACT

The Phytophtora root and stem rot is a serious disease in soybean. It is caused by the oomycete pathogen Phytophthora sojae. Growing Phytophthora resistant cultivars is the major method of controlling this disease. Resistance is race- or gene-specific; a single gene confers immunity against only a subset of the P. sojae isolates. Unfortunately, rapid evolution of new Phytophthora sojae virulent pathotypes limits the effectiveness of an Rps ("resistance to Phytophthora sojae") gene to 8-15 years. The current study was designed to investigate the effectiveness of Rps12 against a set of P. sojae isolates using recombinant inbred lines (RILs) that contain recombination break points in the Rps12 region. Our study revealed a unique Rps gene linked to the Rps12 locus. We named this novel gene as Rps13 that confers resistance against P. sojae isolate V13, which is virulent to recombinants that contains Rps12 but lack Rps13. The genetic distance between the two Rps genes is 4 cM. Our study revealed that two tightly linked functional Rps genes with distinct race-specificity provide broad-spectrum resistance in soybean. We report here the molecular markers for incorporating the broad-spectrum Phytophthora resistance conferred by the two Rps genes in commercial soybean cultivars.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Glycine max/genetics , Glycine max/microbiology , Phytophthora/physiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Alleles , Inbreeding , Physical Chromosome Mapping , Phytophthora/isolation & purification , Plant Proteins/metabolism , Polymorphism, Genetic
4.
Microbes Environ ; 36(2)2021.
Article in English | MEDLINE | ID: mdl-34108359

ABSTRACT

Phytophthora species cause destructive plant diseases worldwide. All Phytophthora species, except for one, are listed as plant quarantine organisms in Japan. The exception, Phytophthora nicotianae is considered to be a domestic species. The injurious pests Phytophthora ramorum, Phytophthora lateralis, and Phytophthora kernoviae are invasive pathogens that cause tree mortality worldwide, mainly in the United States and the United Kingdom. To effectively control Phytophthora diseases, we established detection methods that utilize the loop-mediated isothermal amplification (LAMP) of the genus Phytophthora and the four species P. ramorum, P. lateralis, P. kernoviae, and P. nicotianae. LAMP primers for P. ramorum, P. lateralis, and P. kernoviae were newly designed in the present study. Our multiplex assay includes the detection of plant DNA as an internal control. When the optimum ratio between plant and pathogen primers was used in multiplex LAMP assays, 1 pg to 100 fg of pathogen DNA was detected with similar sensitivity to that in simplex LAMP assays. The detection of plant DNA in the absence of pathogens enables us to check for and avoid undesirable negative results caused by enzyme inactivation or the contamination of amplification inhibitors from plant tissues. The total time from sample collection to results is approximately 120| |min, and, thus, our multiplex LAMP assay may be used as an accurate and time-saving detection method for Phytophthora pathogens.


Subject(s)
Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Phytophthora/isolation & purification , Plant Diseases/microbiology , DNA Primers/genetics , Japan , Phytophthora/classification , Phytophthora/genetics , Plant Diseases/genetics , Plants/genetics , Plants/microbiology
5.
PLoS One ; 16(5): e0250527, 2021.
Article in English | MEDLINE | ID: mdl-34038450

ABSTRACT

Slow growing oomycete isolates with morphological resemblance to Phytophthora were obtained from forest streams during routine monitoring for the EU quarantine forest pathogen Phytophthora ramorum in Ireland and Northern Ireland. Internal Transcribed Spacer (ITS) sequence analysis indicated that they belonged to two previously unknown species of Nothophytophthora, a recently erected sister genus of Phytophthora. Morphological and temperature-growth studies were carried out to characterise both new species. In addition, Bayesian and Maximum-Likelihood analyses of nuclear 5-loci and mitochondrial 3-loci datasets were performed to resolve the phylogenetic positions of the two new species. Both species were sterile, formed chlamydospores and partially caducous nonpapillate sporangia, and showed slower growth than any of the six known Nothophytophthora species. In all phylogenetic analyses both species formed distinct, strongly supported clades, closely related to N. chlamydospora and N. valdiviana from Chile. Based on their unique combination of morphological and physiological characters and their distinct phylogenetic positions the two new species are described as Nothophytophthora irlandica sp. nov. and N. lirii sp. nov. Their potential lifestyle and geographic origin are discussed.


Subject(s)
DNA, Ribosomal Spacer/genetics , Phylogeny , Phytophthora/isolation & purification , Plant Diseases/microbiology , Rivers/microbiology , Sequence Analysis, DNA/methods , Stramenopiles/isolation & purification , Northern Ireland , Phytophthora/genetics , Stramenopiles/genetics
6.
Sci Rep ; 11(1): 809, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436928

ABSTRACT

Phytophthora nicotianae is highly pathogenic to Solanaceous crops and is a major problem in tobacco production. The tobacco cultivar Beihart1000-1 (BH) is resistant, whereas the Xiaohuangjin 1025 (XHJ) cultivar is susceptible to infection. Here, BH and XHJ were used as models to identify resistant and susceptible genes using RNA sequencing (RNA-seq). Roots were sampled at 0, 6, 12, 24, and 60 h post infection. In total, 23,753 and 25,187 differentially expressed genes (DEGs) were identified in BH and XHJ, respectively. By mapping upregulated DEGs to the KEGG database, changes of the rich factor of "plant pathogen interaction pathway" were corresponded to the infection process. Of all the DEGs in this pathway, 38 were specifically regulated in BH. These genes included 11 disease-resistance proteins, 3 pathogenesis-related proteins, 4 RLP/RLKs, 2 CNGCs, 7 calcium-dependent protein kinases, 4 calcium-binding proteins, 1 mitogen-activated protein kinase kinase, 1 protein EDS1L, 2 WRKY transcription factors, 1 mannosyltransferase, and 1 calmodulin-like protein. By combining the analysis of reported susceptible (S) gene homologs and DEGs in XHJ, 9 S gene homologs were identified, which included 1 calmodulin-binding transcription activator, 1 cyclic nucleotide-gated ion channel, 1 protein trichome birefringence-like protein, 1 plant UBX domain-containing protein, 1 ADP-ribosylation factor GTPase-activating protein, 2 callose synthases, and 2 cellulose synthase A catalytic subunits. qRT-PCR was used to validate the RNA-seq data. The comprehensive transcriptome dataset described here, including candidate resistant and susceptible genes, will provide a valuable resource for breeding tobacco plants resistant to P. nicotianae infections.


Subject(s)
Nicotiana/genetics , Phytophthora/pathogenicity , Plant Diseases/genetics , Plant Roots/genetics , Disease Resistance/genetics , Gene Expression Profiling/methods , Gene Ontology , Phytophthora/isolation & purification , Plant Breeding/methods , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Proteins/genetics , Plant Roots/immunology , Plant Roots/parasitology , Sequence Analysis, RNA/methods , Nicotiana/immunology , Nicotiana/parasitology , Transcriptome
7.
Microb Ecol ; 81(1): 122-133, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32740757

ABSTRACT

Roots act as a biological filter that exclusively allows only a portion of the soil-associated microbial diversity to infect the plant. This microbial diversity includes organisms both beneficial and detrimental to plants. Phytophthora species are among the most important groups of detrimental microbes that cause various soil-borne plant diseases. We used a metabarcoding approach with Phytophthora-specific primers to compare the diversity and richness of Phytophthora species associated with roots of native and non-native trees, using different types of soil inocula collected from native and managed forests. Specifically, we analysed (1) roots of two non-native tree species (Eucalyptus grandis and Acacia mearnsii) and native trees, (2) roots of two non-native tree species from an in vivo plant baiting trial, (3) roots collected from the field versus those from the baiting trial, and (4) roots and soil samples collected from the field. The origin of the soil and the interaction between root and soil significantly influenced Phytophthora species richness. Moreover, species richness and community composition were significantly different between the field root samples and field soil samples with a higher number of Phytophthora species in the soil than in the roots. The results also revealed a substantial and previously undetected diversity of Phytophthora species from South Africa.


Subject(s)
Phytophthora/classification , Phytophthora/isolation & purification , Plant Roots/parasitology , Soil/parasitology , Trees/parasitology , Acacia/parasitology , Biodiversity , Eucalyptus/parasitology , Forests , Phytophthora/genetics , Plant Diseases/parasitology , South Africa
8.
Biotechniques ; 69(4): 270-280, 2020 10.
Article in English | MEDLINE | ID: mdl-32815734

ABSTRACT

DNA extraction can be lengthy and sometimes ends up with amplification inhibitors. We present the potential of recombinase polymerase amplification (RPA) to replace plant DNA extraction. In our rapid 'RPA-PCR couple' concept, RPA is tuned to slower reaction kinetics to promote amplification of long targets. RPA primers amplify target and some flanking regions directly from simple plant macerates. Then PCR primers exponentially amplify the target directly from the RPA reaction. We present the coupling of RPA with conventional, TaqMan and SYBR Green PCR assays. We applied the concept to strawberry Phytophthora pathogens and the Phytophthora identification marker atp9-nad9. We found RPA-PCR couple specific, sensitive and reliable. The approach may also benefit other difficult samples such as food, feces and ancient samples.


Subject(s)
DNA, Plant/isolation & purification , Phytophthora/isolation & purification , Polymerase Chain Reaction/methods , Recombinases/genetics , Benzothiazoles/pharmacology , DNA, Plant/genetics , Diamines/pharmacology , Fragaria/genetics , Fragaria/parasitology , Kinetics , Nucleic Acid Amplification Techniques/methods , Phytophthora/genetics , Phytophthora/pathogenicity , Quinolines/pharmacology
9.
J Vis Exp ; (160)2020 06 25.
Article in English | MEDLINE | ID: mdl-32658194

ABSTRACT

Phytophthora capsici is a devastating oomycete pathogen that affects many important solanaceous and cucurbit crops causing significant economic losses in vegetable production annually. Phytophthora capsici is soil-borne and a persistent problem in vegetable fields due to its long-lived survival structures (oospores and chlamydospores) that resist weathering and degradation. The main method of dispersal is through the production of zoospores, which are single-celled, flagellated spores that can swim through thin films of water present on surfaces or in water-filled soil pores and can accumulate in puddles and ponds. Therefore, irrigation ponds can be a source of the pathogen and initial points of disease outbreaks. Detection of P. capsici in irrigation water is difficult using traditional culture-based methods because other microorganisms present in the environment, such as Pythium spp., usually overgrow P. capsici making it undetectable. To determine the presence of P. capsici spores in water sources (irrigation water, runoff, etc.), we developed a hand pump-based filter paper (8-10 µm) method that captures the pathogen's spores (zoospores) and is later used to amplify the pathogen's DNA through a novel loop-mediated isothermal amplification (LAMP) assay designed for the specific amplification of P. capsici. This method can amplify and detect DNA from a concentration as low as 1.2 x 102 zoospores/mL, which is 40 times more sensitive than conventional PCR. No cross-amplification was obtained when testing closely related species. LAMP was also performed using a colorimetric LAMP master mix dye, displaying results that could be read with the naked eye for on-site rapid detection. This protocol could be adapted to other pathogens that reside, accumulate, or are dispersed via contaminated irrigation systems.


Subject(s)
Agricultural Irrigation , Nucleic Acid Amplification Techniques/methods , Phytophthora/isolation & purification , Water/parasitology , DNA/genetics , Phytophthora/genetics , Soil/parasitology
10.
Environ Microbiol ; 22(12): 5019-5032, 2020 12.
Article in English | MEDLINE | ID: mdl-32452108

ABSTRACT

The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.


Subject(s)
Biodiversity , Phytophthora/classification , Phytophthora/isolation & purification , Plant Leaves/microbiology , Floods , French Guiana , Phytophthora/genetics , Plant Diseases/microbiology , Plants , Rainforest , Soil , Soil Microbiology
11.
PLoS One ; 15(2): e0221742, 2020.
Article in English | MEDLINE | ID: mdl-32023247

ABSTRACT

Wood and wood products can harbor microorganisms that can raise phytosanitary concerns in countries importing or exporting these products. To evaluate the efficacy of wood treatment on the survival of microorganisms of phytosanitary concern the method of choice is to grow microbes in petri dishes for subsequent identification. However, some plant pathogens are difficult or impossible to grow in axenic cultures. A molecular methodology capable of detecting living fungi and fungus-like organisms in situ can provide a solution. RNA represents the transcription of genes and can become rapidly unstable after cell death, providing a proxy measure of viability. We designed and used RNA-based molecular diagnostic assays targeting genes essential to vital processes and assessed their presence in wood colonized by fungi and oomycetes through reverse transcription and real-time polymerase chain reaction (PCR). A stability analysis was conducted by comparing the ratio of mRNA to gDNA over time following heat treatment of mycelial cultures of the Oomycete Phytophthora ramorum and the fungus Grosmannia clavigera. The real-time PCR results indicated that the DNA remained stable over a period of 10 days post treatment in heat-treated samples, whereas mRNA could not be detected after 24 hours for P. ramorum or 96 hours for G. clavigera. Therefore, this method provides a reliable way to evaluate the viability of these pathogens and offers a potential way to assess the effectiveness of existing and emerging wood treatments. This can have important phytosanitary impacts on assessing both timber and non-timber forest products of commercial value in international wood trade.


Subject(s)
Ophiostomatales/isolation & purification , Phytophthora/isolation & purification , Wood/microbiology , Cell Survival , DNA, Fungal/analysis , Ophiostomatales/cytology , Ophiostomatales/genetics , Phytophthora/cytology , Phytophthora/genetics , Plant Diseases/microbiology , Polymerase Chain Reaction , RNA, Fungal/analysis
12.
PLoS One ; 15(1): e0224007, 2020.
Article in English | MEDLINE | ID: mdl-31978166

ABSTRACT

The root rot causing oomycete, Phytophthora agathidicida, threatens the long-term survival of the iconic New Zealand kauri. Currently, testing for this pathogen involves an extended soil bioassay that takes 14-20 days and requires specialised staff, consumables, and infrastructure. Here we describe a loop-mediated isothermal amplification (LAMP) assay for the detection of P. agathidicida that targets a portion of the mitochondrial apocytochrome b coding sequence. This assay has high specificity and sensitivity; it did not cross react with a range of other Phytophthora isolates and detected as little as 1 fg of total P. agathidicida DNA or 116 copies of the target locus. Assay performance was further investigated by testing plant tissue baits from flooded soil samples using both the extended soil bioassay and LAMP testing of DNA extracted from baits. In these comparisons, P. agathidicida was detected more frequently using the LAMP test. In addition to greater sensitivity, by removing the need for culturing, the hybrid baiting plus LAMP approach is more cost effective than the extended soil bioassay and, importantly, does not require a centralised laboratory facility with specialised staff, consumables, and equipment. Such testing will allow us to address outstanding questions about P. agathidicida. For example, the hybrid approach could enable monitoring of the pathogen beyond areas with visible disease symptoms, allow direct evaluation of rates and patterns of spread, and allow the effectiveness of disease control to be evaluated. The hybrid LAMP bioassay also has the potential to empower local communities to evaluate the pathogen status of local kauri stands, providing information for disease management and conservation initiatives.


Subject(s)
Araucariaceae/microbiology , Phytophthora/genetics , Plant Diseases/microbiology , Soil Microbiology , Araucariaceae/genetics , Biological Assay , DNA, Plant/genetics , New Zealand , Phytophthora/isolation & purification , Phytophthora/pathogenicity , Plant Diseases/genetics
13.
PLoS One ; 15(1): e0227250, 2020.
Article in English | MEDLINE | ID: mdl-31910244

ABSTRACT

Oomycete plant pathogens are difficult to control and routine genetic research is challenging. A major problem is instability of isolates. Here we characterize >600 field and single zoospore isolates of Phytophthora capsici for inheritance of mating type, sensitivity to mefenoxam, chromosome copy number and heterozygous allele frequencies. The A2 mating type was highly unstable with 26% of 241 A2 isolates remaining A2. The A1 mating type was stable. Isolates intermediately resistant to mefenoxam produced fully resistant single-spore progeny. Sensitive isolates remained fully sensitive. Genome re-sequencing of single zoospore isolates revealed extreme aneuploidy; a phenomenon dubbed Dynamic Extreme Aneuploidy (DEA). DEA is characterized by the asexual inheritance of diverse intra-genomic combinations of chromosomal ploidy ranging from 2N to 3N and heterozygous allele frequencies that do not strictly correspond to ploidy. Isolates sectoring on agar media showed dramatically altered heterozygous allele frequencies. DEA can explain the rapid increase of advantageous alleles (e.g. drug resistance), mating type switches and copy neutral loss of heterozygosity (LOH). Although the mechanisms driving DEA are unknown, it can play an important role in adaptation and evolution and seriously hinders all aspects of P. capsici research.


Subject(s)
Aneuploidy , Phytophthora/physiology , Plant Diseases/microbiology , Reproduction, Asexual/genetics , Vegetables/microbiology , Alleles , Biological Evolution , Chromosome Mapping , Cucumis sativus/microbiology , Genetic Variation , Genotype , Loss of Heterozygosity , Phytophthora/isolation & purification , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Single-Cell Analysis , Spores/genetics
14.
Genomics ; 112(3): 2309-2317, 2020 05.
Article in English | MEDLINE | ID: mdl-31923618

ABSTRACT

Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. Knowledge about resistant genes is limited in pepper accessions to P. capsici. In this study, a diverse collection of 37 commercial edible and ornamental genotypes, and implication of seven novel candidate DEGs genes (XLOC_ 021757, XLOC_021821, XLOC_012788, XLOC_011295, XLOC_021928, XLOC_015473 and XLOC_000341) were up-regulated on resistant and susceptible pepper cultivars, through real-time polymerase chain reaction (qPCR) at transplanting and maturing stages. All seven related defense-gene candidates were up-regulated in all inoculated accessions to P. capsici, but these genes were highly expressed in resistant ones, 19OrnP-PBI, 37ChillP-Paleo, and 23CherryP-Orsh. The transcriptional levels of the seven related candidate DEGs were 5.90, 5.64, 5.62, 5.18, 3.94, 3.69, 3.16 folds higher in the resistant pepper genotypes, than the control ones, non-inoculated genotypes respectively. The candidate genes expressed herein, will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.


Subject(s)
Capsicum , Disease Resistance/genetics , Phytophthora/genetics , Plant Diseases/genetics , Capsicum/anatomy & histology , Capsicum/genetics , Capsicum/growth & development , Phenotype , Phylogeny , Phytophthora/classification , Phytophthora/isolation & purification , Phytophthora/metabolism , Plant Diseases/etiology , Real-Time Polymerase Chain Reaction
15.
FEMS Microbiol Lett ; 366(16)2019 08 01.
Article in English | MEDLINE | ID: mdl-31550364

ABSTRACT

Phytophthora cinnamomi Rands is a devastating root rot pathogen of avocado. Robust and sensitive root quantification methods are required for determining seasonal P. cinnamomi root colonization patterns and evaluating management strategies. Our study investigated four P. cinnamomi root quantification methods using a newly developed P. cinnamomi-avocado-seedling bioassay system and a P. cinnamomi-specific probe-based qPCR assay. Phytophthora cinnamomi quantification through plating of roots (root plating) or lemon leaf disks obtained from root baitings (root-baiting-plating) onto semi-selective media were the best methods. Root plating consistently yielded significant differences in P. cinnamomi quantities obtained from seedling roots inoculated with five zoospore concentrations (10-1 × 105 zoospores/ml), whereas root-baiting-plating did so less often. The two methods were comparable in yielding root quantities that were significantly correlated with the inoculated zoospore concentrations, rarely yielding false negatives and having the lowest variability between replicates of the same treatment. qPCR quantification from roots was also an effective method; however, treatment replicates were highly variable and false negatives occurred more frequently. The least effective quantification method was qPCR quantification from lemon leaf disks obtained from root baitings.


Subject(s)
Microbiological Techniques/methods , Persea/microbiology , Phytophthora/isolation & purification , Plant Roots/microbiology , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction/methods
16.
J Appl Microbiol ; 127(4): 1172-1183, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31329353

ABSTRACT

AIMS: This study aimed to develop a random amplified polymorphic DNA (RAPD)-based sequence characterized amplified region (SCAR) marker for species-specific detection of Phytophthora nicotianae, a global plant pathogen. Another objective was to develop a multiplex PCR assay for simultaneous detection of P. nicotianae and huanglongbing-causing bacterium, Candidatus Liberibacter asiaticus (CaLas) in citrus roots using the developed SCAR marker and a previously published 16SrDNA-based CaLas-specific primer set. METHODS AND RESULTS: The RAPD primer, OPA4, amplified a specific fragment of c. 400 bp only in P. nicotianae isolates. The fragment was eluted, purified, cloned and sequenced. One set of SCAR primers (SCAR4F/SCAR4R1), developed from the sequence information of the fragment, was found specific to P. nicotianae and produced an amplicon of 330 bp size, and was found non-specific to the five Phytophthora species (P. citrophthora, P. palmivora, P. lacustris, P. boehmeriae and P. insolita) and five other pathogens (Mycosphaerella citri, Alternaria alternata, Septobasidium pseudopedicillatum, Phytopythium vexans and Colletotrichum gloeosporioides) isolated from the citrus agroecosystem. The sensitivity of the primer pair was 5 pg µl-1 of mycelial DNA. Furthermore, the specific SCAR primers coupled with a previously reported CaLas-specific primer set were used effectively in developing a multiplex PCR assay to detect P. nicotianae and CaLas simultaneously in root tissues of citrus plants. CONCLUSIONS: A rapid method using a RAPD-based SCAR marker for the detection of P. nicotianae was developed. Furthermore, a multiplex PCR assay was established for simultaneous detection of P. nicotianae and CaLas in citrus roots. SIGNIFICANCE AND IMPACT OF THE STUDY: A RAPD-SCAR marker-based detection system and the one-step multiplex PCR method developed in this study can be applied to index citrus trees infected (individually or conjointly) with P. nicotianae and CaLas. The present technique developed would also be useful in monitoring disease epidemiology and phytosanitary surveillance.


Subject(s)
Citrus/microbiology , Genetic Markers/genetics , Multiplex Polymerase Chain Reaction/methods , Phytophthora/genetics , Rhizobiaceae/genetics , DNA/analysis , DNA/genetics , Phytophthora/isolation & purification , Rhizobiaceae/isolation & purification
17.
Int J Mol Sci ; 20(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013701

ABSTRACT

Phytophthora root rot (PRR) causes serious annual soybean yield losses worldwide. The most effective method to prevent PRR involves growing cultivars that possess genes conferring resistance to Phytophthora sojae (Rps). In this study, QTL-sequencing combined with genetic mapping was used to identify RpsX in soybean cultivar Xiu94-11 resistance to all P. sojae isolates tested, exhibiting broad-spectrum PRR resistance. Subsequent analysis revealed RpsX was located in the 242-kb genomic region spanning the RpsQ locus. However, a phylogenetic investigation indicated Xiu94-11 carrying RpsX is distantly related to the cultivars containing RpsQ, implying RpsX and RpsQ have different origins. An examination of candidate genes revealed RpsX and RpsQ share common nonsynonymous SNP and a 144-bp insertion in the Glyma.03g027200 sequence encoding a leucine-rich repeat (LRR) region. Glyma.03g027200 was considered to be the likely candidate gene of RpsQ and RpsX. Sequence analyses confirmed that the 144-bp insertion caused by an unequal exchange resulted in two additional LRR-encoding fragments in the candidate gene. A marker developed based on the 144-bp insertion was used to analyze the genetic population and germplasm, and proved to be useful for identifying the RpsX and RpsQ alleles. This study implies that the number of LRR units in the LRR domain may be important for PRR resistance in soybean.


Subject(s)
Disease Resistance/genetics , Glycine max/genetics , Glycine max/parasitology , Host-Parasite Interactions/genetics , Phytophthora , Plant Diseases/genetics , Plant Diseases/parasitology , Chromosome Mapping , Chromosomes, Plant , Conserved Sequence , Genes, Plant , Genetic Linkage , Genetic Loci , Genotype , High-Throughput Nucleotide Sequencing , Phylogeny , Phytophthora/isolation & purification , Polymorphism, Single Nucleotide , Glycine max/classification
18.
Lett Appl Microbiol ; 69(1): 64-70, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31021437

ABSTRACT

Phytophthora capsici is an important oomycete pathogen that causes devastating diseases in various crops. Methods for the rapid detection of P. capsici are important for disease control and eradication programmes. Here, we developed an assay based on lateral flow strip-based recombinase polymerase amplification (LF-RPA) for the rapid and equipment-free detection of P. capsici. The specific primers and a probe were designed using the sequence of Ypt1, and the optimal assay conditions were 40°C for 20 min. The specificity of the assay was verified using closely related oomycetes and fungal species, and its detection limit was 10 pg of genomic DNA. In combination with a simple DNA extraction method, the LF-RPA assay enabled detection of P. capsici in diseased pepper samples without specialized equipment within 30 min. Consequently, the LF-RPA assay developed in this study enables rapid and equipment-free detection of P. capsici and has potential for further development as a diagnostic kit for application in the field or in resource-limited laboratories. SIGNIFICANCE AND IMPACT OF THE STUDY: We developed a novel assay based on lateral flow strip-based recombinase polymerase amplification (LF-RPA) for the rapid and equipment-free detection of Phytophthora capsici. In combination with a simple DNA extraction method, the LF-RPA assay detected P. capsici in field samples without specialized equipment within 30 min. The assay has potential for further development as a diagnostic kit for application in the field or in resource-limited laboratories.


Subject(s)
Nucleic Acid Amplification Techniques/methods , Phytophthora/genetics , Phytophthora/isolation & purification , Plant Diseases/parasitology , Recombinases/analysis , Alkyl and Aryl Transferases/genetics , DNA Primers/genetics , Limit of Detection , Sensitivity and Specificity
19.
World J Microbiol Biotechnol ; 35(3): 44, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30810828

ABSTRACT

Bud rot disease is a damaging disease of oil palm in Colombia. The pathogen responsible for this disease is a species of oomyctes, Phytophthora palmivora which is also the causal pathogen of several tropical crop diseases such as fruit rot and stem canker of cocoa, rubber, durian and jackfruit. No outbreaks of bud rot have been reported in oil palm in Malaysia or other Southeast Asian countries, despite this particular species being present in the region. Analysis of the genomic sequences of several genetic markers; the internal transcribe spacer regions (ITS) of the ribosomal RNA gene cluster, beta-tubulin gene, translation elongation factor 1 alpha gene (EF-1α), cytochrome c oxidase subunit I & II (COXI and COXII) gene cluster along with amplified fragment length polymorphism (AFLP) analyses have been carried out to investigate the genetic diversity and variation of P. palmivora isolates from around the world and from different hosts in comparison to Colombian oil palm isolates, as one of the steps in understanding why this species of oomycetes causes devastating damage to oil palm in Latin America but not in other regions. Phylogenetic analyses of these regions showed that the Colombian oil palm isolates were not separated from Malaysian isolates. AFLP analysis and a new marker PPHPAV, targeting an unclassified hypothetical protein, was found to be able to differentiate Malaysian and Colombian isolates and showed a clear clade separations. Despite this, pathogenicity studies did not show any significant differences in the level of aggressiveness of different isolates against oil palm in glasshouse tests.


Subject(s)
Arecaceae/microbiology , Phylogeny , Phytophthora/classification , Phytophthora/genetics , Phytophthora/pathogenicity , Plant Diseases/microbiology , Colombia , DNA/isolation & purification , Electron Transport Complex IV/genetics , Genes, Microbial/genetics , Genes, rRNA/genetics , Genetic Variation , Multigene Family , Oomycetes/pathogenicity , Palm Oil , Peptide Elongation Factor 1/genetics , Phytophthora/isolation & purification , Sequence Analysis , Tubulin/genetics
20.
Fungal Biol ; 123(1): 29-41, 2019 01.
Article in English | MEDLINE | ID: mdl-30654955

ABSTRACT

Plant deaths had been observed in the sub-alpine and alpine areas of Australia. Although no detailed aetiology was established, patches of dying vegetation and progressive thinning of canopy suggested the involvement of root pathogens. Baiting of roots and associated rhizosphere soil from surveys conducted in mountainous regions New South Wales and Tasmania resulted in the isolation of eight Phytophthora species; Phytophthora cactorum, Phytophthora cryptogea, Phytophthora fallax, Phytophthora gonapodyides, Phytophthora gregata, Phytophthora pseudocryptogea, and two new species, Phytophthora cacuminis sp. nov and Phytophthora oreophila sp. nov, described here. P. cacuminis sp. nov is closely related to P. fallax, and was isolated from asymptomatic Eucalyptus coccifera and species from the family Proteaceae in Mount Field NP in Tasmania. P. oreophila sp. nov, was isolated from a disturbed alpine herbfield in Kosciuzsko National Park. The low cardinal temperature for growth of the new species suggest they are well adapted to survive under these conditions, and should be regarded as potential threats to the diverse flora of sub-alpine/alpine ecosystems. P. gregata and P. cryptogea have already been implicated in poor plant health. Tests on a range of alpine/subalpine plant species are now needed to determine their pathogenicity, host range and invasive potential.


Subject(s)
Phytophthora/classification , Phytophthora/isolation & purification , Rhizosphere , Soil Microbiology , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Eucalyptus/growth & development , Mycological Typing Techniques , New South Wales , Phylogeny , Phytophthora/genetics , Phytophthora/physiology , Plant Diseases/microbiology , Proteaceae/growth & development , Sequence Analysis, DNA , Tasmania
SELECTION OF CITATIONS
SEARCH DETAIL
...