Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.415
Filter
1.
Sci Rep ; 14(1): 13498, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866841

ABSTRACT

Aquatic macrophytes form a three dimensional complex structure in the littoral zones of lakes, with many physical, chemical and biological gradients and interactions. This special habitat harbours a unique microalgal assemblage called metaphyton, that differs both from the phytoplankton of the pelagial and from the benthic assemblages whose elements are tightly attached to the substrates. Since metaphytic assemblages significantly contribute to the diversity of lakes' phytoplankton, it is crucial to understand and disentangle those mechanisms that ensure their development. Therefore, we focused on the question of how a single solid physical structure contribute to maintaining metaphytic assemblages. Using a laboratory experiment we studied the floristic and functional differences of microalgal assemblages in microcosms that simulated the conditions that an open water, a complex natural macrophyte stand (Utricularia vulgaris L.), or an artificial substrate (cotton wool) provide for them. We inoculated the systems with a species rich (> 326 species) microalgal assemblage collected from a eutrophic oxbow lake, and studied the diversity, trait and functional group composition of the assemblages in a 24 day long experimental period. We found that both natural and artificial substrates ensured higher species richness than the open water environment. Functional richness in the open water environment was lower than in the aquaria containing natural macrophyte stand but higher than in which cotton wool was placed. This means that the artificial physical structure enhanced functional redundancy of the resident functional groups. Elongation measures of microalgal assemblages showed the highest variation in the microcosms that simulated the open water environment. Our results suggest that assembly of metaphytic algal communities is not a random process, instead a deterministic one driven by the niche characteristics of the complex three dimensional structure created by the stands of aquatic macrophytes.


Subject(s)
Biodiversity , Ecosystem , Lakes , Microalgae , Microalgae/growth & development , Microalgae/physiology , Phytoplankton/physiology , Phytoplankton/growth & development
2.
J Math Biol ; 89(2): 15, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884837

ABSTRACT

Mycoloop is an important aquatic food web composed of phytoplankton, chytrids (one dominant group of parasites in aquatic ecosystems), and zooplankton. Chytrids infect phytoplankton and fragment them for easy consumption by zooplankton. The free-living chytrid zoospores are also a food resource for zooplankton. A dynamic reaction-diffusion-advection mycoloop model is proposed to describe the Phytoplankton-chytrid-zooplankton interactions in a poorly mixed aquatic environment. We analyze the dynamics of the mycoloop model to obtain dissipativity, steady state solutions, and persistence. We rigorously derive several critical thresholds for phytoplankton or zooplankton invasion and chytrid transmission among phytoplankton. Numerical diagrams show that varying ecological factors affect the formation and breakup of the mycoloop, and zooplankton can inhibit chytrid transmission among phytoplankton. Furthermore, this study suggests that mycoloop may either control or cause phytoplankton blooms.


Subject(s)
Food Chain , Mathematical Concepts , Models, Biological , Phytoplankton , Zooplankton , Phytoplankton/physiology , Phytoplankton/microbiology , Phytoplankton/growth & development , Zooplankton/physiology , Zooplankton/microbiology , Animals , Chytridiomycota/physiology , Chytridiomycota/pathogenicity , Ecosystem , Population Dynamics/statistics & numerical data , Computer Simulation
3.
Glob Chang Biol ; 30(6): e17348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822656

ABSTRACT

Global climate change intensifies the water cycle and makes freshest waters become fresher and vice-versa. But how this change impacts phytoplankton in coastal, particularly harmful algal blooms (HABs), remains poorly understood. Here, we monitored a coastal bay for a decade and found a significant correlation between salinity decline and the increase of Karenia mikimotoi blooms. To examine the physiological linkage between salinity decreases and K. mikimotoi blooms, we compare chemical, physiological and multi-omic profiles of this species in laboratory cultures under high (33) and low (25) salinities. Under low salinity, photosynthetic efficiency and capacity as well as growth rate and cellular protein content were significantly higher than that under high salinity. More strikingly, the omics data show that low salinity activated the glyoxylate shunt to bypass the decarboxylation reaction in the tricarboxylic acid cycle, hence redirecting carbon from CO2 release to biosynthesis. Furthermore, the enhanced glyoxylate cycle could promote hydrogen peroxide metabolism, consistent with the detected decrease in reactive oxygen species. These findings suggest that salinity declines can reprogram metabolism to enhance cell proliferation, thus promoting bloom formation in HAB species like K. mikimotoi, which has important ecological implications for future climate-driven salinity declines in the coastal ocean with respect to HAB outbreaks.


Subject(s)
Climate Change , Harmful Algal Bloom , Salinity , Photosynthesis , Phytoplankton/growth & development , Phytoplankton/physiology , Carbon/metabolism , Carbon/analysis
4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1369-1378, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886436

ABSTRACT

To explore the temporal and spatial variations in phytoplankton community in small estuaries, we collected surface water samples from Yongjiang River estuary during wet, normal, and dry seasons and determined the main driving factors of phytoplankton community. A total of 358 species belonging to nine phyla and 123 genera were identified in all seasons. During wet, normal, and dry seasons, species number was 276, 154 and 151, and the abundance was (170.45±225.43)×103, (51.92±30.28)×103 and (31.65±12.79)×103 cells·L-1, respectively. Diatoms dominated the phytoplankton community, and the main dominant species were Cyclotella meneghiniana, Skeletonema costatum, and Paralia sulcata. Shannon diversity and Pielou evenness indices decreased from inside mouth to outside mouth in wet season, but there was no obvious spatial difference in normal season or dry season. Results of non-metric multidimensional scaling analysis and analysis of similarities showed that phytoplankton community composition differed significantly among different regions (inside, at and outside mouth) and different seasons. In wet season, phytoplankton abundance was significantly positively correlated with temperature, dissolved inorganic nitrogen, and dissolved reactive phosphorus, but significantly negatively correlated with salinity. In normal season, phytoplankton abundance was significantly negatively correlated with temperature. In dry season, it was not significantly correlated with environmental factors. Results of redundancy analysis showed that temperature, salinity, ammonium and dissolved reactive phosphorus explained the variations in phytoplankton community by 19.5%, 11.9%, 9.4% and 8.2%, respectively. These results revealed high dominance of diatoms and the main driving factors (temperature, salinity and nutrients) of phytoplankton community in Yongjiang River estuary.


Subject(s)
Diatoms , Estuaries , Phytoplankton , Rivers , Seasons , Phytoplankton/growth & development , Phytoplankton/classification , China , Diatoms/growth & development , Diatoms/classification , Population Dynamics , Spatio-Temporal Analysis , Environmental Monitoring , Ecosystem , Nitrogen/analysis
5.
Harmful Algae ; 136: 102619, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876523

ABSTRACT

In August 2018, the harmful algae species Margalefidinium polykrikoides bloomed to levels previously unobserved in the open waters of Narragansett Bay, Rhode Island, in a transient but intense bloom. Detected by an Imaging FlowCytobot providing hourly data, it is characterized by a time span of less than a week and patchiness with sub-daily oscillations in concentration. The highest concentrations are recorded at lower salinity and higher temperature, suggesting the bloom may have developed in the upper bay and was transported south. The proportion of chains increased during the height of the bloom, and many of the images contained 4-cells per chain. The development of the bloom was favored by optimal temperature and salinity conditions as well as increased nitrogen coincident with greater precipitation and river flow. The period preceding bloom formation also saw a sharp decrease in the dominating large chain-forming diatom Eucampia sp. and highly abundant Skeletonema spp., thus reducing competition over resources for the slow-growing M. polykrikoides. The height of the bloom was reached during the lowest tidal range of the month when the turbulence and water displacement were lower. This time series highlights an out-of-the-ordinary bloom's environmental and biological conditions and the importance of frequent sampling during known favorable conditions.


Subject(s)
Harmful Algal Bloom , Phytoplankton , Phytoplankton/physiology , Phytoplankton/growth & development , Rhode Island , Salinity , Environmental Monitoring/methods , Diatoms/physiology , Diatoms/growth & development , Bays , Temperature
6.
Harmful Algae ; 136: 102656, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876531

ABSTRACT

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Subject(s)
Bays , Harmful Algal Bloom , Phytoplankton , Planktothrix , Phytoplankton/physiology , Phytoplankton/growth & development , Bays/microbiology , Microcystins/metabolism , Microcystins/analysis , Environmental Monitoring , Seasons , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Cyanobacteria/growth & development , Cyanobacteria/physiology , Cyanobacteria/genetics
7.
Environ Monit Assess ; 196(6): 501, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698138

ABSTRACT

Brackish waters and estuaries at the lower reaches of rivers accumulate organic matter and nutrients from various sources in the watershed. Sufficient light and shallow water depth stimulate phytoplankton growth, resulting in a more diversified ecosystem with higher trophic levels. For effective watershed management, it is crucial to characterize the water quality of all rivers, including small and medium-sized ones. Our field survey assessed water quality parameters in 26 inflow rivers surrounding Lakes Shinji and Nakaumi, two consolidated brackish lakes in Japan. The parameters included water temperature, salinity, chlorophyll-a, and nutrients. The study used hierarchical clustering. The Silhouette Index was used to assess clustering outcomes and identify any difficulties in dispersion across clusters. The 26 rivers surrounding Lakes Shinji and Nakaumi were classified into six groups based on their water quality characteristics. This classification distinguishes itself from earlier subjective methods that relied on geographical factors. The new approach identifies a need for improved management of river water quality. The results of the cluster analysis provide valuable insights for future management initiatives. It is important to consider these findings alongside established watershed criteria.


Subject(s)
Environmental Monitoring , Lakes , Rivers , Water Quality , Lakes/chemistry , Environmental Monitoring/methods , Rivers/chemistry , Cluster Analysis , Japan , Water Pollutants, Chemical/analysis , Salinity , Chlorophyll A/analysis , Saline Waters , Chlorophyll/analysis , Phytoplankton/classification , Phytoplankton/growth & development
8.
J Math Biol ; 89(1): 8, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801565

ABSTRACT

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Subject(s)
Computer Simulation , Models, Biological , Oxygen , Phytoplankton , Zooplankton , Animals , Oxygen/metabolism , Zooplankton/metabolism , Zooplankton/growth & development , Zooplankton/physiology , Phytoplankton/metabolism , Phytoplankton/growth & development , Phytoplankton/physiology , Oceans and Seas , Plankton/metabolism , Plankton/growth & development , Mathematical Concepts , Ecosystem , Seawater/chemistry , Food Chain , Anaerobiosis
9.
Glob Chang Biol ; 30(5): e17308, 2024 May.
Article in English | MEDLINE | ID: mdl-38721885

ABSTRACT

At high latitudes, the suitable window for timing reproductive events is particularly narrow, promoting tight synchrony between trophic levels. Climate change may disrupt this synchrony due to diverging responses to temperature between, for example, the early life stages of higher trophic levels and their food resources. Evidence for this is equivocal, and the role of compensatory mechanisms is poorly understood. Here, we show how a combination of ocean warming and coastal water darkening drive long-term changes in phytoplankton spring bloom timing in Lofoten Norway, and how spawning time of Northeast Arctic cod responds in synchrony. Spring bloom timing was derived from hydrographical observations dating back to 1936, while cod spawning time was estimated from weekly fisheries catch and roe landing data since 1877. Our results suggest that land use change and freshwater run-off causing coastal water darkening has gradually delayed the spring bloom up to the late 1980s after which ocean warming has caused it to advance. The cod appear to track phytoplankton dynamics by timing gonadal development and spawning to maximize overlap between offspring hatch date and predicted resource availability. This finding emphasises the importance of land-ocean coupling for coastal ecosystem functioning, and the potential for fish to adapt through phenotypic plasticity.


Subject(s)
Climate Change , Phytoplankton , Seasons , Phytoplankton/physiology , Phytoplankton/growth & development , Animals , Norway , Reproduction , Gadus morhua/physiology , Gadus morhua/growth & development , Seawater , Temperature
10.
Sci Rep ; 14(1): 9975, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693309

ABSTRACT

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Subject(s)
Chlorophyll A , Ecosystem , Phytoplankton , Seasons , Phytoplankton/growth & development , Phytoplankton/physiology , Mediterranean Sea , Chlorophyll A/analysis , Chlorophyll A/metabolism , Chlorophyll/analysis , Chlorophyll/metabolism , Biomass , Environmental Monitoring/methods , Remote Sensing Technology
11.
J Math Biol ; 88(6): 77, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695878

ABSTRACT

A dynamic reaction-diffusion model of four variables is proposed to describe the spread of lytic viruses among phytoplankton in a poorly mixed aquatic environment. The basic ecological reproductive index for phytoplankton invasion and the basic reproduction number for virus transmission are derived to characterize the phytoplankton growth and virus transmission dynamics. The theoretical and numerical results from the model show that the spread of lytic viruses effectively controls phytoplankton blooms. This validates the observations and experimental results of Emiliana huxleyi-lytic virus interactions. The studies also indicate that the lytic virus transmission cannot occur in a low-light or oligotrophic aquatic environment.


Subject(s)
Basic Reproduction Number , Eutrophication , Mathematical Concepts , Models, Biological , Phytoplankton , Phytoplankton/virology , Phytoplankton/growth & development , Phytoplankton/physiology , Basic Reproduction Number/statistics & numerical data , Haptophyta/virology , Haptophyta/growth & development , Haptophyta/physiology , Computer Simulation
12.
Math Biosci ; 372: 109202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692481

ABSTRACT

Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient-Phytoplankton-Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (µmax) of the phytoplankton is modelled by the well-known Q10 formulation: [Formula: see text] , where µ0 is maximum growth at 0oC. Stability conditions for all three equilibrium points are expressed in terms of the new parameter ρ2, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of ρ2. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25-35° W, 40-45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.


Subject(s)
Models, Biological , Phytoplankton , Phytoplankton/growth & development , Phytoplankton/physiology , Temperature , Eutrophication , Animals , Zooplankton/physiology , Zooplankton/growth & development , Sunlight
14.
Proc Natl Acad Sci U S A ; 121(21): e2311086121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739806

ABSTRACT

Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.


Subject(s)
Chlorophyll A , Climate Change , Phytoplankton , Seasons , Chlorophyll A/metabolism , Chlorophyll A/analysis , Phytoplankton/physiology , Phytoplankton/growth & development , Estuaries , Ecosystem , Plankton/physiology , Plankton/growth & development , Biomass , Chlorophyll/metabolism
15.
J Math Biol ; 88(6): 68, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661851

ABSTRACT

The coexistence of multiple phytoplankton species despite their reliance on similar resources is often explained with mean-field models assuming mixed populations. In reality, observations of phytoplankton indicate spatial aggregation at all scales, including at the scale of a few individuals. Local spatial aggregation can hinder competitive exclusion since individuals then interact mostly with other individuals of their own species, rather than competitors from different species. To evaluate how microscale spatial aggregation might explain phytoplankton diversity maintenance, an individual-based, multispecies representation of cells in a hydrodynamic environment is required. We formulate a three-dimensional and multispecies individual-based model of phytoplankton population dynamics at the Kolmogorov scale. The model is studied through both simulations and the derivation of spatial moment equations, in connection with point process theory. The spatial moment equations show a good match between theory and simulations. We parameterized the model based on phytoplankters' ecological and physical characteristics, for both large and small phytoplankton. Defining a zone of potential interactions as the overlap between nutrient depletion volumes, we show that local species composition-within the range of possible interactions-depends on the size class of phytoplankton. In small phytoplankton, individuals remain in mostly monospecific clusters. Spatial structure therefore favours intra- over inter-specific interactions for small phytoplankton, contributing to coexistence. Large phytoplankton cell neighbourhoods appear more mixed. Although some small-scale self-organizing spatial structure remains and could influence coexistence mechanisms, other factors may need to be explored to explain diversity maintenance in large phytoplankton.


Subject(s)
Computer Simulation , Ecosystem , Mathematical Concepts , Models, Biological , Phytoplankton , Population Dynamics , Phytoplankton/physiology , Phytoplankton/growth & development , Population Dynamics/statistics & numerical data , Biodiversity
16.
Science ; 380(6647): 812-817, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37228198

ABSTRACT

Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.


Subject(s)
Carbon Dioxide , Iron , Nitrogen Fixation , Phytoplankton , Seawater , Ecosystem , Iron/metabolism , Oceans and Seas , Phytoplankton/growth & development , Phytoplankton/metabolism , Seawater/chemistry , Seawater/microbiology , Carbon Cycle , Carbon Dioxide/metabolism
17.
Nature ; 615(7951): 280-284, 2023 03.
Article in English | MEDLINE | ID: mdl-36859547

ABSTRACT

Phytoplankton blooms in coastal oceans can be beneficial to coastal fisheries production and ecosystem function, but can also cause major environmental problems1,2-yet detailed characterizations of bloom incidence and distribution are not available worldwide. Here we map daily marine coastal algal blooms between 2003 and 2020 using global satellite observations at 1-km spatial resolution. We found that algal blooms occurred in 126 out of the 153 coastal countries examined. Globally, the spatial extent (+13.2%) and frequency (+59.2%) of blooms increased significantly (P < 0.05) over the study period, whereas blooms weakened in tropical and subtropical areas of the Northern Hemisphere. We documented the relationship between the bloom trends and ocean circulation, and identified the stimulatory effects of recent increases in sea surface temperature. Our compilation of daily mapped coastal phytoplankton blooms provides the basis for global assessments of bloom risks and benefits, and for the formulation or evaluation of management or policy actions.


Subject(s)
Ecosystem , Eutrophication , Oceans and Seas , Phytoplankton , Phytoplankton/growth & development , Temperature , Water Movements , Risk Assessment , Environmental Policy , Ecology , Harmful Algal Bloom , Tropical Climate , History, 21st Century , Geographic Mapping
18.
Proc Natl Acad Sci U S A ; 119(32): e2203191119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35917347

ABSTRACT

Phytoplankton come in a stunning variety of shapes but elongated morphologies dominate-typically 50% of species have aspect ratio above 5, and bloom-forming species often form chains whose aspect ratios can exceed 100. How elongation affects encounter rates between phytoplankton in turbulence has remained unknown, yet encounters control the formation of marine snow in the ocean. Here, we present simulations of encounters among elongated phytoplankton in turbulence, showing that encounter rates between neutrally buoyant elongated cells are up to 10-fold higher than for spherical cells and even higher when cells sink. Consequently, we predict that elongation can significantly speed up the formation of marine snow compared to spherical cells. This unexpectedly large effect of morphology in driving encounter rates among plankton provides a potential mechanistic explanation for the rapid clearance of many phytoplankton blooms.


Subject(s)
Eutrophication , Phytoplankton , Cell Enlargement , Phytoplankton/cytology , Phytoplankton/growth & development
19.
Proc Natl Acad Sci U S A ; 119(30): e2202268119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858403

ABSTRACT

Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake's high TN:TP ratios. Regardless of causes, the lake's stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake's imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.


Subject(s)
Ecosystem , Lakes , Nitrogen , Phosphorus , Phytoplankton , Zooplankton , Animals , China , Environmental Monitoring , Eutrophication , Lakes/chemistry , Lakes/microbiology , Methane/biosynthesis , Nitrogen/analysis , Nitrogen/metabolism , Organophosphonates/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Phytoplankton/growth & development , Phytoplankton/metabolism , Zooplankton/growth & development , Zooplankton/metabolism
20.
Mar Pollut Bull ; 175: 113344, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35124379

ABSTRACT

Louisiana estuaries are important habitats in the northern Gulf of Mexico, a region undergoing significant and sustained human- and climate-driven changes. This paper synthesizes data collected over multiple years from four Louisiana estuaries - Breton Sound, Terrebonne Bay, the Atchafalaya River Delta Estuary, and Vermilion Bay - to characterize trends in phytoplankton biomass, community composition, and the environmental factors influencing them. Results highlight similarities in timing and composition of maximum chlorophyll, with salinity variability often explaining biomass trends. Distinct drivers for biomass versus community structure were observed in all four estuarine systems. Systems shared a lack of significant correlation between river discharge and overall phytoplankton biomass, while discharge was important for understanding community composition. Temperature was a significant explanatory variable for both biomass and community composition in only one system. These results provide a regional view of phytoplankton dynamics in Louisiana estuaries critical to understanding and predicting the effects of ongoing change.


Subject(s)
Estuaries , Phytoplankton , Biomass , Climate Change , Humans , Louisiana , Phytoplankton/growth & development , Rivers , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...