Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.025
1.
Reprod Domest Anim ; 59(6): e14621, 2024 Jun.
Article En | MEDLINE | ID: mdl-38828534

Estimating the parturition date in dogs is challenging due to their reproductive peculiarities that. Ultrasonographic examination serves as a tool for studying embryo/foetal biometry and estimating the time of parturition by measuring foetal and extra-foetal structures. However, due to reproductive differences among various dog breeds, such estimates may have a non-significant pattern, representing inaccuracies in the estimated date of birth. This study aimed to monitor pregnant Toy Poodle bitches and establish relationships between ultrasonographically measured foetal and extra-foetal dimensions and the remaining time until parturition. Eighteen pregnant Toy Poodle bitches were subjected to weekly ultrasonographic evaluations and measurements of the inner chorionic cavity diameter, craniocaudal length (CCL), biparietal diameter (BPD), diameter of the deep portion of diencephalo-telencephalic vesicle (DPTV), abdominal diameter, thorax diameter (TXD), placental thickness and the renal diameter (REND). These parameters were retrospectively correlated with the date of parturition and linear regressions were established between gestational measurements and days before parturition (DBP). All analyses were conducted using the Statistical Package for Social Sciences (IBM® SPSS®) program at a 5% significance level. The foetal measurements that showed a high correlation (r) and reliability (R2) with DBP were BPD [(DBP = [15.538 × BPD] - 39.756), r = .97 and R2 = .93], TXD [(DBP = [8.933 × TXD] - 32.487), r = .94 and R2 = .89], DPTV [(DBP = [34.580 × DPTV] - 39.403), r = .93 and R2 = .86] and REND [(DBP = [13.735 × REND] - 28.937), r = .91 and R2 = .82]. This statistically validates the application of these specific formulas to estimate the parturition date in Toy Poodle bitches.


Parturition , Ultrasonography, Prenatal , Animals , Female , Pregnancy , Dogs/embryology , Ultrasonography, Prenatal/veterinary , Biometry , Fetus/anatomy & histology , Fetus/diagnostic imaging , Retrospective Studies , Placenta/diagnostic imaging , Placenta/anatomy & histology , Embryo, Mammalian/physiology , Gestational Age
2.
J Robot Surg ; 18(1): 237, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833204

A major obstacle in applying machine learning for medical fields is the disparity between the data distribution of the training images and the data encountered in clinics. This phenomenon can be explained by inconsistent acquisition techniques and large variations across the patient spectrum. The result is poor translation of the trained models to the clinic, which limits their implementation in medical practice. Patient-specific trained networks could provide a potential solution. Although patient-specific approaches are usually infeasible because of the expenses associated with on-the-fly labeling, the use of generative adversarial networks enables this approach. This study proposes a patient-specific approach based on generative adversarial networks. In the presented training pipeline, the user trains a patient-specific segmentation network with extremely limited data which is supplemented with artificial samples generated by generative adversarial models. This approach is demonstrated in endoscopic video data captured during fetoscopic laser coagulation, a procedure used for treating twin-to-twin transfusion syndrome by ablating the placental blood vessels. Compared to a standard deep learning segmentation approach, the pipeline was able to achieve an intersection over union score of 0.60 using only 20 annotated images compared to 100 images using a standard approach. Furthermore, training with 20 annotated images without the use of the pipeline achieves an intersection over union score of 0.30, which, therefore, corresponds to a 100% increase in performance when incorporating the pipeline. A pipeline using GANs was used to generate artificial data which supplements the real data, this allows patient-specific training of a segmentation network. We show that artificial images generated using GANs significantly improve performance in vessel segmentation and that training patient-specific models can be a viable solution to bring automated vessel segmentation to the clinic.


Placenta , Humans , Pregnancy , Placenta/blood supply , Placenta/diagnostic imaging , Female , Deep Learning , Image Processing, Computer-Assisted/methods , Fetofetal Transfusion/surgery , Fetofetal Transfusion/diagnostic imaging , Machine Learning , Robotic Surgical Procedures/methods , Neural Networks, Computer
3.
PLoS One ; 19(5): e0302623, 2024.
Article En | MEDLINE | ID: mdl-38776318

Oxygen-Enhanced Magnetic Resonance Imaging (OE-MRI) of the human placenta is potentially a sensitive marker of in vivo oxygenation. This methodological study shows that full coverage of the placenta is possible using 3D mapping of the change in longitudinal relaxation rate (ΔR1), in a group of healthy pregnant subjects breathing elevated levels of oxygen. Twelve pregnant subjects underwent a comparison of 2D and 3D OE-MRI. ΔR1 was mapped for a single 2D slice (ss-2D), a single matched-slice from the 3D volume (ss-3D) and the full 3D volume (vol-3D). The group-average median ΔR1 values for ss-3D (0.023 s-1) and vol-3D (0.022 s-1) do not differ significantly from ss-2D (0.020 s-1), when compared using a two-tailed paired t-test (ss-3D (p = 0.58) and vol-3D (p = 0.70)). However, median baseline T1 (T1b) for ss-2D was higher (1603 ms) than T1b for ss-3D (1540 ms, p = 0.07) and significantly higher than vol-3D (1515 ms, p = 0.02), when compared using a two-tailed paired t-test. In contrast with previous studies, no correlation of median ΔR1 with gestation age at scan for the normal group (N = 10) was observed for ss-2D, likely due to the smaller gestational range. Full volume OE-MRI maps reveal sensitivity to changes in ΔR1, with some participants showing an enhanced gradient in the intermediate space between the fetal and maternal sides of the placenta in the 3D data. This study shows that it is feasible to acquire whole placental volume OE-MRI data in women with healthy pregnancy.


Imaging, Three-Dimensional , Magnetic Resonance Imaging , Oxygen , Placenta , Humans , Female , Pregnancy , Magnetic Resonance Imaging/methods , Placenta/diagnostic imaging , Oxygen/metabolism , Adult , Imaging, Three-Dimensional/methods
4.
Taiwan J Obstet Gynecol ; 63(3): 341-349, 2024 May.
Article En | MEDLINE | ID: mdl-38802197

OBJECTIVE: To evaluate the performance of maternal factors, biophysical and biochemical markers at 11-13 + 6 weeks' gestation in the prediction of gestational diabetes mellitus with or without large for gestational age (GDM ± LGA) fetus and great obstetrical syndromes (GOS) among singleton pregnancy following in-vitro fertilisation (IVF)/embryo transfer (ET). MATERIALS AND METHODS: A prospective cohort study was conducted between December 2017 and January 2020 including patients who underwent IVF/ET. Maternal mean arterial pressure (MAP), ultrasound markers including placental volume, vascularisation index (VI), flow index (FI) and vascularisation flow index (VFI), mean uterine artery pulsatility index (mUtPI) and biochemical markers including placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 (sFlt-1) were measured at 11-13 + 6 weeks' gestation. Logistic regression analysis was performed to determine the significant predictors of complications. RESULTS: Among 123 included pregnancies, 38 (30.9%) had GDM ± LGA fetus and 28 (22.8%) had GOS. The median maternal height and body mass index were significantly higher in women with GDM ± LGA fetus. Multivariate logistic regression analysis demonstrated that in the prediction of GDM ± LGA fetus and GOS, there were significant independent contributions from FI MoM (area under curve (AUROC) of 0.610, 95% CI 0.492-0.727; p = 0.062) and MAP MoM (AUROC of 0.645, 95% CI 0.510-0.779; p = 0.026), respectively. CONCLUSION: FI and MAP are independent predictors for GDM ± LGA fetus and GOS, respectively. However, they have low predictive value. There is a need to identify more specific novel biomarkers in differentiating IVF/ET pregnancies that are at a higher risk of developing complications.


Diabetes, Gestational , Placenta , Pregnancy Trimester, First , Ultrasonography, Prenatal , Humans , Female , Pregnancy , Adult , Prospective Studies , Placenta/diagnostic imaging , Placenta/blood supply , Ultrasonography, Prenatal/methods , Fertilization in Vitro , Biomarkers/blood , Fetal Macrosomia/diagnostic imaging , Placenta Growth Factor/blood , Predictive Value of Tests , Gestational Age , Embryo Transfer , Uterine Artery/diagnostic imaging , Pregnancy Complications/diagnostic imaging , Reproductive Techniques, Assisted
5.
BMJ Case Rep ; 17(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38724211

Placental mesenchymal dysplasia (PMD) is an exceptionally rare placental anomaly characterised by placentomegaly and grape-like vesicles resembling partial mole on ultrasonography, yet it can coexist with a viable fetus. We present the case of a primigravida who presented at 22 weeks gestation with a suspected partial mole but with a normally growing fetus. The differential diagnoses considered included placental mesenchymal disease, partial mole and twin pregnancy with molar pregnancy. With normal beta HCG levels and prenatal invasive testing reports, a probable diagnosis of PMD was made, and after thorough counselling, the decision was made to continue the pregnancy. The pregnancy progressed until 37 weeks, culminating in the uneventful delivery of a 2.4 kg healthy male infant. Histopathology confirmed PMD. Early recognition and management of PMD pose significant challenges, given its rarity. Prenatal identification of PMD during both early and late gestation could avert unnecessary termination of pregnancy.


Hydatidiform Mole , Placenta Diseases , Placenta , Humans , Pregnancy , Female , Hydatidiform Mole/diagnosis , Hydatidiform Mole/diagnostic imaging , Diagnosis, Differential , Placenta Diseases/diagnosis , Placenta Diseases/diagnostic imaging , Placenta/pathology , Placenta/diagnostic imaging , Adult , Male , Infant, Newborn , Ultrasonography, Prenatal , Pregnancy Outcome
6.
Medicina (Kaunas) ; 60(5)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38792902

Background and Objectives: This study aims to report the location of the placenta in the first trimester of pregnancy in groups of women according to the number of previous caesarean deliveries and the visibility of the caesarean scar niche. Materials and Methods: The prospective observational research included adult women aged 18 to 41 years during pregnancy after one or more previous caesarean sections (CSs). Transvaginal (TVS) and transabdominal sonography (TAS) was used to examine the uterine scar and placental location during 11-14 weeks. The CS scar niche ("defect") was bordered in the sagittal plane as a notch at the previous CS scar's site with a depth of 2.0 mm or more. A comparative analysis of the placental location (high or low and anterior or posterior) was performed between groups of women according to the CS number and the CS scar niche. Results: A total of 122 participants were enrolled during the first-trimester screening. The CS scar defect ("niche") was visible in 40.2% of cases. In cases after one previous CS, the placenta was low in the uterine cavity (anterior or posterior) at 77.4%, and after two or more CSs, it was at 67.9%. Comparing the two groups according to the CS scar niche, the placenta was low in 75.5% of cases in the participant group with a CS scar niche and in 75% of cases without a CS scar niche (p = 0.949). Conclusions: The number of previous caesarean deliveries has no effect on the incidence rate of low-lying placentas in the first trimester. Moreover, the presence of the CS scar niche is not associated with anterior low-lying placentas.


Cesarean Section , Cicatrix , Placenta , Pregnancy Trimester, First , Humans , Female , Pregnancy , Prospective Studies , Adult , Cicatrix/diagnostic imaging , Cesarean Section/adverse effects , Longitudinal Studies , Placenta/pathology , Placenta/diagnostic imaging , Adolescent , Young Adult
7.
Arch Gynecol Obstet ; 310(1): 213-219, 2024 Jul.
Article En | MEDLINE | ID: mdl-38727816

PURPOSE: In a certain proportion of dichorionic twin pregnancies, the two placentas are fused. The clinical significance of this finding remains unclear. Our objective was to compare outcomes of dichorionic twin pregnancies with fused versus separate placentas as determined on first-trimester ultrasound. METHODS: Retrospective study of patients with dichorionic twins followed at a tertiary center between 2014 and 2022. The co-primary outcomes were fetal growth restriction and preeclampsia. Associations between fused placentas and the study outcomes were estimated using multivariable Poisson regression and were reported as adjusted relative risk (aRR) with a 95%-confidence interval (CI). RESULTS: Of the 328 eligible patients, 175 (53.4%) and 153 (46.6%) had fused and separate placentas, respectively. Compared with pregnancies with separate placentas, patients with fused placentas had a lower risk of preeclampsia [aRR 0.48 (95%-CI 0.24-0.97)] but a higher risk of fetal growth restriction [aRR 1.23 (95%-CI 1.02-1.48)] and admission to the neonatal intensive care unit [aRR 1.31 (95%-CI 1.01-1.71)]. In addition, pregnancies with fused placentas were more likely to have a total placental weight below the 10th percentile than those with separate placentas [aRR 1.93 (95%-CI 1.16-3.21)]. DISCUSSION: Dichorionic twin pregnancies with fused placentas have a lower risk of preeclampsia but are more likely to be complicated by fetal growth restriction, observations that may be attributed to the lower total placentas mass in pregnancies with fused compared with separate placentas. Fused placentas can be used as a potential biomarker for the prediction of pregnancy complications in dichorionic twin pregnancies.


Fetal Growth Retardation , Placenta , Pre-Eclampsia , Pregnancy, Twin , Humans , Female , Pregnancy , Retrospective Studies , Placenta/diagnostic imaging , Adult , Fetal Growth Retardation/epidemiology , Twins, Dizygotic , Pregnancy Outcome , Ultrasonography, Prenatal , Pregnancy Trimester, First , Infant, Newborn
8.
Sci Rep ; 14(1): 12357, 2024 05 29.
Article En | MEDLINE | ID: mdl-38811636

Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR < 0.001), with changes most evident after 30 weeks gestation. A significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR = 0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.


Heart Defects, Congenital , Magnetic Resonance Imaging , Placenta , Placentation , Humans , Female , Pregnancy , Heart Defects, Congenital/diagnostic imaging , Adult , Placenta/diagnostic imaging , Placenta/pathology , Magnetic Resonance Imaging/methods , Case-Control Studies
9.
Placenta ; 151: 10-17, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631235

INTRODUCTION: We aimed to identify factors predictive of adverse maternal and neonatal outcomes in patients with placenta accreta spectrum (PAS) disorders using magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) parameters. METHOD: Fifty-six normal singleton pregnancies at 33-39 weeks of gestation underwent MRI examination at 1.5 T. The IVIM parameters were obtained from the placenta. The correlation between the f value and postpartum hemorrhage (PPH) and between the f value and transfused units of red blood cells (RBCs) was estimated by linear regression. The correlation between various influencing factors (clinical risk factors, MRI features, and IVIM parameters) and poor outcomes was investigated using univariate and multivariate analyses. RESULT: The interobserver agreement ranged from fair to excellent (k = 0.30-0.88). Multivariate analyses showed that previous cesarean sections, low signal intensity bands on T2WI and the D value were independent risk factors for adverse outcomes. The combination of three risk factors demonstrated the highest AUC of 0.903, with a sensitivity and specificity of 73.10 % and 96.90 %, respectively. Last, f was positively correlated with PPH and units of RBCs transfused. DISCUSSION: Preoperative MRI features and IVIM parameters may be used to predict poor outcomes in patients with invasive placental disorders like PAS.


Magnetic Resonance Imaging , Placenta Accreta , Predictive Value of Tests , Humans , Female , Placenta Accreta/diagnostic imaging , Pregnancy , Magnetic Resonance Imaging/methods , Adult , Infant, Newborn , Postpartum Hemorrhage/diagnostic imaging , Pregnancy Outcome , Placenta/diagnostic imaging , Placenta/pathology
10.
Placenta ; 151: 19-25, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657321

INTRODUCTION: Placental insufficiency may lead to preeclampsia and fetal growth restriction. There is no cure for placental insufficiency, emphasizing the need for monitoring fetal and placenta health. Current monitoring methods are limited, underscoring the necessity for imaging techniques to evaluate fetal-placental perfusion and oxygenation. This study aims to use MRI to evaluate placental oxygenation and perfusion in the reduced uterine perfusion pressure (RUPP) model of placental insufficiency. METHODS: Pregnant rats were randomized to RUPP (n = 11) or sham surgery (n = 8) on gestational day 14. On gestational day 19, rats imaged using a 7T MRI scanner to assess oxygenation and perfusion using T2* mapping and 3D-DCE MRI sequences, respectively. The effect of the RUPP on the feto-placental units were analyzed from the MRI images. RESULTS: RUPP surgery led to reduced oxygenation in the labyrinth (24.7 ± 1.8 ms vs. 28.0 ± 2.1 ms, P = 0.002) and junctional zone (7.0 ± 0.9 ms vs. 8.1 ± 1.1 ms, P = 0.04) of the placenta, as indicated by decreased T2* values. However, here were no significant differences in fetal organ oxygenation or placental perfusion between RUPP and sham animals. DISCUSSION: The reduced placental oxygenation without a corresponding decrease in perfusion suggests an adaptive response to placental ischemia. While acute reduction in placental perfusion may cause placental hypoxia, persistence of this condition could indicate chronic placental insufficiency after ischemic reperfusion injury. Thus, placental oxygenation may be a more reliable biomarker for assessing fetal condition than perfusion in hypertensive disorders of pregnancies including preeclampsia and FGR.


Disease Models, Animal , Magnetic Resonance Imaging , Oxygen , Placenta , Placental Insufficiency , Rats, Sprague-Dawley , Animals , Pregnancy , Female , Placental Insufficiency/diagnostic imaging , Placental Insufficiency/metabolism , Magnetic Resonance Imaging/methods , Placenta/diagnostic imaging , Placenta/metabolism , Placenta/blood supply , Rats , Oxygen/metabolism , Placental Circulation/physiology , Imaging, Three-Dimensional/methods , Contrast Media
11.
Clin Rheumatol ; 43(6): 1989-1997, 2024 Jun.
Article En | MEDLINE | ID: mdl-38671260

OBJECTIVES: Women with chronic rheumatic disease (CRD) are at greater risk of foetal growth restriction than their healthy peers. T2*-weighted magnetic resonance imaging of placenta (T2*P-MRI) is superior to conventional ultrasonography in predicting birth weight and works as a proxy metabolic mirror of the placental function. We aimed to compare T2*P-MRI in pregnant women with CRD and healthy controls. In addition, we aimed to investigate the correlation between T2*P-MRI and birth weight. METHODS: Using a General Electric (GE) 1.5 Tesla, we consecutively performed T2*-weighted placental MRI in 10 women with CRD and 18 healthy controls at gestational week (GW)24 and GW32. We prospectively collected clinical parameters during pregnancy including birth outcome and placental weight. RESULTS: Women with CRD had significantly lower T2*P-MRI values at GW24 than healthy controls (median T2*(IQR) 92.1 ms (81.6; 122.4) versus 118.6 ms (105.1; 129.1), p = 0.03). T2*P-MRI values at GW24 showed a significant correlation with birth weight, as the T2*P-MRI value was reduced in all four pregnancies complicated by SGA at birth. Three out of four pregnancies complicated by SGA at birth remained undetected by routine antenatal ultrasound. CONCLUSION: This study demonstrates reduced T2*P-MRI values and a high proportion of SGA at birth in CRD pregnancies compared to controls, suggesting an increased risk of placental dysfunction in CRD pregnancies. T2*P-MRI may have the potential to focus clinical vigilance by identifying pregnancies at risk of SGA as early as GW24. Key Points • Placenta-related causes of foetal growth restriction in women with rheumatic disease remain to be investigated. • T2*P-MRI values at gestational week 24 predicted foetuses small for gestational age at birth. • T2*P-MRI may indicate pregnant women with chronic rheumatic disease (CRD) in need of treatment optimization.


Birth Weight , Fetal Growth Retardation , Magnetic Resonance Imaging , Placenta , Rheumatic Diseases , Humans , Female , Pregnancy , Fetal Growth Retardation/diagnostic imaging , Adult , Rheumatic Diseases/diagnostic imaging , Rheumatic Diseases/complications , Placenta/diagnostic imaging , Case-Control Studies , Denmark , Prospective Studies , Infant, Newborn , Pregnancy Complications/diagnostic imaging , Infant, Small for Gestational Age , Chronic Disease
12.
Sci Rep ; 14(1): 8894, 2024 04 17.
Article En | MEDLINE | ID: mdl-38632453

To assess the diagnostic performance of three cardiothoracic (CT) ratio techniques, including diameter, circumference, and area, for predicting hemoglobin (Hb) Bart's disease between 17 and 22 weeks' gestation, and to create a multivariable scoring system using multiple ultrasound markers. Before invasive testing, three CT ratio techniques and other ultrasound markers were obtained in 151 singleton pregnancies at risk of Hb Bart's disease. CT diameter ratio demonstrated the highest sensitivity among the other techniques. Significant predictors included CT diameter ratio > 0.5, middle cerebral artery-peak systolic velocity (MCA-PSV) > 1.5 multiples of the median, and placental thickness > 3 cm. MCA-PSV exhibited the highest sensitivity (97.8%) in predicting affected fetuses. A multivariable scoring achieved excellent sensitivity (100%) and specificity (84.9%) for disease prediction. CT diameter ratio exhibited slightly outperforming the other techniques. Increased MCA-PSV was the most valuable ultrasound marker. Multivariable scoring surpassed single-parameter analysis in predictive capabilities.


Hemoglobins, Abnormal , alpha-Thalassemia , Pregnancy , Female , Humans , Hydrops Fetalis , Placenta/diagnostic imaging , Ultrasonography, Prenatal/methods , alpha-Thalassemia/diagnosis , Biomarkers
13.
Acta Neurochir (Wien) ; 166(1): 172, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592539

INTRODUCTION: Neurovascular surgery, particularly aneurysm clipping, is a critical skill for aspiring neurosurgeons. However, hands-on training opportunities are limited, especially with the growing popularity of endovascular techniques. To address this challenge, we present a novel neurovascular surgical training station that combines synthetic 3D-printed models with placental vascular structures to create a semi-realistic surgical field. METHODS: Our model consists of three components: a 3D-printed skull replica with anatomical landmarks, a malleable silicone parenchyma with a Sylvian fissure, and vascular layers (placenta). The placental vascular layer is catheterized and perfused to replicate pulsatile flow, offering a realistic aneurysm simulation. This innovative training station provides a cost-effective solution (approximately 200 USD once) without ethical constraints. Surgeons can practice essential skills such as Sylvian fissure dissection, managing anatomical constraints like bone, and achieving proximal vascular control. The model's realism allows for training in various scenarios, including clipping with different hand orientations and handling ruptures realistically. CONCLUSION: Our neurovascular surgical station bridges the gap between existing training models, offering affordability, ecological considerations, and minimal ethical concerns. It empowers neurosurgery residents to refine their skills in handling both emergencies and elective cases under close-to-real surgical conditions, with the potential for independent practice and senior supervision.


Aneurysm , Placenta , Female , Pregnancy , Humans , Placenta/diagnostic imaging , Placenta/surgery , Computer Simulation , Dissection , Printing, Three-Dimensional
14.
Placenta ; 150: 72-79, 2024 May.
Article En | MEDLINE | ID: mdl-38615536

INTRODUCTION: Proper placental development is crucial to fetal health but is challenging to functionally assess non-invasively and is thus poorly characterized in populations. Body mass index (BMI) has been linked with adverse outcomes, but the causative mechanism is uncertain. Velocity-selective arterial spin labeling (VS-ASL) MRI provides a method to non-invasively measure placental perfusion with robustness to confounding transit time delays. In this study, we report on the measurement of perfusion in the human placenta in early pregnancy using velocity-selective arterial spin labeling (VS-ASL) MRI, comparing non-obese and obese participants. METHODS: Participants (N = 97) undergoing routine prenatal care were recruited and imaged with structural and VS-ASL perfusion MRI at 15 and 21 weeks gestation. Resulting perfusion images were analyzed with respect to obesity based on BMI, gestational age, and the presence of adverse outcomes. RESULTS: At 15 weeks gestation BMI was not associated with placental perfusion or perfusion heterogeneity. However, at 21 weeks gestation BMI was associated with higher placental perfusion (p < 0.01) and a decrease in perfusion heterogeneity (p < 0.05). In alignment with past studies, perfusion values were also higher at 21 weeks compared to 15 weeks gestation. In a small cohort of participants with adverse outcomes, at 21 weeks lower perfusion was observed compared to participants with uncomplicated pregnancies. DISCUSSION: These results suggest low placental perfusion in the early second trimester may not be the culpable factor driving associations of obesity with adverse outcomes.


Body Mass Index , Obesity , Placenta , Pregnancy Trimester, Second , Spin Labels , Humans , Female , Pregnancy , Placenta/diagnostic imaging , Placenta/blood supply , Adult , Obesity/diagnostic imaging , Magnetic Resonance Imaging/methods , Placental Circulation/physiology , Young Adult
15.
Hum Reprod ; 39(5): 923-935, 2024 May 02.
Article En | MEDLINE | ID: mdl-38503486

STUDY QUESTION: Is morphologic development of the first-trimester utero-placental vasculature associated with embryonic growth and development, fetal growth, and birth weight percentiles? SUMMARY ANSWER: Using the utero-placental vascular skeleton (uPVS) as a new imaging marker, this study reveals morphologic development of the first-trimester utero-placental vasculature is positively associated with embryonic growth and development, fetal growth, and birth weight percentiles. WHAT IS KNOWN ALREADY: First-trimester development of the utero-placental vasculature is associated with placental function, which subsequently impacts embryonic and fetal ability to reach their full growth potential. The attribution of morphologic variations in the utero-placental vascular development, including the vascular structure and branching density, on prenatal growth remains unknown. STUDY DESIGN, SIZE, DURATION: This study was conducted in the VIRTUAL Placental study, a subcohort of 214 ongoing pregnancies, embedded in the prospective observational Rotterdam Periconception Cohort (Predict study). Women were included before 10 weeks gestational age (GA) at a tertiary referral hospital in The Netherlands between January 2017 and March 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: We obtained three-dimensional power Doppler volumes of the gestational sac including the embryo and the placenta at 7, 9, and 11 weeks of gestation. Virtual Reality-based segmentation and a recently developed skeletonization algorithm were applied to the power Doppler volumes to generate the uPVS and to measure utero-placental vascular volume (uPVV). Absolute vascular morphology was quantified by assigning a morphologic characteristic to each voxel in the uPVS (i.e. end-, bifurcation-crossing-, or vessel point). Additionally, total vascular length (mm) was calculated. The ratios of the uPVS characteristics to the uPVV were calculated to determine the density of vascular branching. Embryonic growth was estimated by crown-rump length and embryonic volume. Embryonic development was estimated by Carnegie stages. Fetal growth was measured by estimated fetal weight in the second and third trimester and birth weight percentiles. Linear mixed models were used to estimate trajectories of longitudinal measurements. Linear regression analysis with adjustments for confounders was used to evaluate associations between trajectories of the uPVS and prenatal growth. Groups were stratified for conception method (natural/IVF-ICSI conceptions), fetal sex (male/female), and the occurrence of placenta-related complications (yes/no). MAIN RESULTS AND THE ROLE OF CHANCE: Increased absolute vascular morphologic development, estimated by positive random intercepts of the uPVS characteristics, is associated with increased embryonic growth, reflected by crown-rump length (endpoints ß = 0.017, 95% CI [0.009; 0.025], bifurcation points ß = 0.012, 95% CI [0.006; 0.018], crossing points ß = 0.017, 95% CI [0.008; 0.025], vessel points ß = 0.01, 95% CI [0.002; 0.008], and total vascular length ß = 0.007, 95% CI [0.003; 0.010], and similarly with embryonic volume and Carnegie stage, all P-values ≤ 0.01. Density of vascular branching was negatively associated with estimated fetal weight in the third trimester (endpoints: uPVV ß = -94.972, 95% CI [-185.245; -3.698], bifurcation points: uPVV ß = -192.601 95% CI [-360.532; -24.670]) and birth weight percentiles (endpoints: uPVV ß = -20.727, 95% CI [-32.771; -8.683], bifurcation points: uPVV ß -51.097 95% CI [-72.257; -29.937], and crossing points: uPVV ß = -48.604 95% CI [-74.246; -22.961])), all P-values < 0.05. After stratification, the associations were observed in natural conceptions specifically. LIMITATION, REASONS FOR CAUTION: Although the results of this prospective observational study clearly demonstrate associations between first-trimester utero-placental vascular morphologic development and prenatal growth, further research is required before we can draw firm conclusions about a causal relationship. WIDER IMPLICATIONS OF THE FINDINGS: Our findings support the hypothesis that morphologic variations in utero-placental vascular development play a role in the vascular mechanisms involved in embryonic and fetal growth and development. Application of the uPVS could benefit our understanding of the pathophysiology underlying placenta-related complications. Future research should focus on the clinical applicability of the uPVS as an imaging marker for the early detection of fetal growth restriction. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the Department of Obstetrics and Gynecology of the Erasmus MC, University Medical Centre, Rotterdam, The Netherlands. There are no conflicts of interest. TRIAL REGISTRATION NUMBER: Registered at the Dutch Trial Register (NTR6854).


Birth Weight , Fetal Development , Placenta , Pregnancy Trimester, First , Ultrasonography, Prenatal , Humans , Female , Pregnancy , Placenta/blood supply , Placenta/diagnostic imaging , Adult , Netherlands , Prospective Studies , Embryonic Development/physiology , Uterus/blood supply , Uterus/diagnostic imaging , Gestational Age , Placentation , Cohort Studies
17.
Front Endocrinol (Lausanne) ; 15: 1344666, 2024.
Article En | MEDLINE | ID: mdl-38544693

Background: To explore the predictive value of placental features in early pregnancy for gestational diabetes mellitus (GDM) using deep and radiomics-based machine learning (ML) applied to ultrasound imaging (USI), and to develop a nomogram in conjunction with clinical features. Methods: This retrospective multicenter study included 415 pregnant women at 11-13 weeks of gestation from two institutions: the discovery group from center 1 (n=305, control group n=166, GDM group n=139), and the independent validation cohort (n=110, control group n=57, GDM group n=53) from center 2. The 2D USI underwent pre-processed involving normalization and resampling. Subsequently, the study performed screening of radiomics features with Person correlation and mutual information methods. An RBF-SVM model based on radiomics features was constructed using the five-fold cross-validation method. Resnet-50 as the backbone network was employed to learn the region of interest and constructed a deep convolutional neural network (DLCNN) from scratch learning. Clinical variables were screened using one-way logistic regression, with P<0.05 being the threshold for statistical significance, and included in the construction of the clinical model. Nomogram was built based on ML model, DLCNN and clinical models. The performance of nomogram was assessed by calibration curves, area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). Results: The AUCs for the ML model in the discovery cohort and independent validation cohort were 0.91 (0.88-0.94) and 0.86 (0.79-0.93), respectively. And 0.65 (0.59-0.71), 0.69 (0.59-0.79) for the DLCNN, 0.66 (0.59-0.72), 0.66 (0.55-0.76) for the clinical model, respectively. The nomogram exhibited the highest performance with AUCs of 0.93 (0.90-0.95) and 0.88 (0.81-0.94) The receiver operating characteristic curve (ROC) proved the superiority of the nomogram of clinical utility, and calibration curve showed the goodness of fit of the model. The DCA curve indicated that the nomogram outperformed other models in terms of net patient benefit. Conclusions: The study emphasized the intrinsic relationship between early pregnancy placental USI and the development of GDM. The use of nomogram holds potential for clinical applications in predicting the development of GDM.


Artificial Intelligence , Diabetes, Gestational , Pregnancy , Female , Humans , Ultrasonics , Diabetes, Gestational/diagnosis , Placenta/diagnostic imaging , Neural Networks, Computer
18.
Magn Reson Imaging ; 109: 180-186, 2024 Jun.
Article En | MEDLINE | ID: mdl-38513786

OBJECTIVES: Increasing trend of PAS (placenta accreta spectrum disorders) incidence is a major health concern as PAS is associated with high maternal morbidity and mortality during cesarean section. Prenatal identification of PAS is crucial for delivery planning and patients management. This study aims to explore whether diffusion-derived vessel density (DDVD) computed from a simple diffusion MRI protocol differs in PAS from normal placenta. METHODS: We enrolled 86 patients with PAS disorders and 40 pregnant women without PAS disorders. Each patient underwent intravoxel incoherent motion (IVIM) MRI sequence with 11 b-values. Placenta diffusion-derived vessel density (DDVD-b0b50) was the signal difference between b = 0 and b = 50 s/mm2 images. DDVD(b0b50) A/N was calculated as [accreta lesion DDVD(b0b50)]/ [normal placenta DDVD(b0b50)]. The correlation between DDVD and gestational age was explored using Spearman rank correlation. Differences of DDVD(b0b50) A/N in patients with normal placentas and with PAS, and in patients with different subtypes of PAS were explored. RESULTS: DDVD was negatively correlated with gestational age (p = 0.023, r = -0.359) in patients with normal placentas. DDVD(b0b50) A/N was significantly higher in patients with PAS (median:1.16, mean: 1.261) than normal placenta (median:1.02, mean: 1.032, p < 0.001) and especially higher in patients with placenta increta (median:1.14, mean: 1.278) and percreta (median: 1.20, mean: 1.396, p < 0.001). CONCLUSION: As a higher DDVD indicates higher physiological volume of micro-vessels in PAS, this study suggests DDVD can be a potential biomarker to evaluate the placenta perfusion.


Placenta Accreta , Placenta , Pregnancy , Humans , Female , Placenta/diagnostic imaging , Placenta Accreta/diagnostic imaging , Cesarean Section , Diffusion Magnetic Resonance Imaging , Biomarkers , Retrospective Studies
19.
Sci Adv ; 10(12): eadk1278, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38507481

Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.


Placenta , Placentation , Pregnancy , Female , Mice , Animals , Placenta/diagnostic imaging , Microscopy/methods , Optical Imaging , Intravital Microscopy
20.
Placenta ; 149: 7-12, 2024 Apr.
Article En | MEDLINE | ID: mdl-38452718

INTRODUCTION: Information about placental size in ongoing pregnancies may aid the identification of pregnancies with increased risk of adverse outcome. Placental volume can be measured using magnetic resonance imaging (MRI). However, this method is not universally available in antenatal care. Ultrasound is the diagnostic tool of choice in pregnancy. Therefore, we studied whether simple two-dimensional (2D) ultrasound placental measurements were correlated with placental volume measured by MRI. METHODS: We examined a convenience sample of 104 ongoing pregnancies at gestational week 27, using both ultrasound and MRI. The ultrasound measurements included placental length, width and thickness. Placental volume was measured using MRI. The correlation between each 2D placental ultrasound measurement and placental volume was estimated by applying Pearson's correlation coefficient (r). RESULTS: Mean placental length was 17.2 cm (SD 2.1 cm), mean width was 14.7 cm (SD 2.1 cm), and mean thickness was 3.2 cm (SD 0.6 cm). Mean placental volume was 536 cm3 (SD 137 cm3). The 2D ultrasound measurements showed poor correlation with placental volume (placental length; r = 0.27, width; r = 0.37, and thickness r = 0.13). DISCUSSION: Simple 2D ultrasound measurements of the placenta were poorly correlated with placental volume and cannot be used as proximate measures of placental volume. Our finding may be explained by the large variation between pregnancies in intrauterine placental shape.


Placenta , Ultrasonography, Prenatal , Pregnancy , Female , Humans , Placenta/diagnostic imaging , Placenta/pathology , Ultrasonography, Prenatal/methods , Ultrasonography , Prenatal Care , Magnetic Resonance Imaging/methods
...