Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Can J Microbiol ; 70(5): 150-162, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38427979

ABSTRACT

This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.


Subject(s)
Azospirillum brasilense , Cucumis sativus , Pisum sativum , Rhizobium leguminosarum , Seedlings , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Cucumis sativus/microbiology , Cucumis sativus/growth & development , Seedlings/growth & development , Seedlings/microbiology , Rhizobium leguminosarum/growth & development , Rhizobium leguminosarum/metabolism , Azospirillum brasilense/growth & development , Azospirillum brasilense/metabolism , Pisum sativum/microbiology , Pisum sativum/growth & development , Plant Roots/microbiology , Plant Roots/growth & development , Chemotaxis , Plant Exudates/chemistry , Plant Exudates/metabolism
2.
Plant J ; 106(6): 1791-1806, 2021 06.
Article in English | MEDLINE | ID: mdl-33797826

ABSTRACT

Low-molecular-weight organic acid (OA) extrusion by plant roots is critical for plant nutrition, tolerance to cations toxicity, and plant-microbe interactions. Therefore, methodologies for the rapid and precise quantification of OAs are necessary to be incorporated in the analysis of roots and their exudates. The spatial location of root exudates is also important to understand the molecular mechanisms directing OA production and release into the rhizosphere. Here, we report the development of two complementary methodologies for OA determination, which were employed to evaluate the effect of inorganic ortho-phosphate (Pi) deficiency and aluminum toxicity on OA excretion by Arabidopsis roots. OA exudation by roots is considered a core response to different types of abiotic stress and for the interaction of roots with soil microbes, and for decades has been a target trait to produce plant varieties with increased capacities of Pi uptake and Al tolerance. Using targeted ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-HRMS/MS), we achieved the quantification of six OAs in root exudates at sub-micromolar detection limits with an analysis time of less than 5 min per sample. We also employed targeted (MS/MS) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to detect the spatial location of citric and malic acid with high specificity in roots and exudates. Using these methods, we studied OA exudation in response to Al toxicity and Pi deficiency in Arabidopsis seedlings overexpressing genes involved in OA excretion. Finally, we show the transferability of the MALDI-MSI method by analyzing OA excretion in Marchantia polymorpha gemmalings subjected to Pi deficiency.


Subject(s)
Acids/chemistry , Aluminum/toxicity , Phosphorus/administration & dosage , Plant Exudates/chemistry , Plant Roots/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Arabidopsis/chemistry , Arabidopsis/drug effects , Arabidopsis/metabolism , Gene Expression Regulation, Plant/drug effects , Marchantia/chemistry , Marchantia/drug effects , Marchantia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
3.
Vet Parasitol ; 292: 109399, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33711619

ABSTRACT

Nematodes develop resistance to the most common commercially available drugs. The aim of this study was to identify and evaluate the action of protein exudates from Mimosa caesalpiniifolia, Leucaena leucocephala, Acacia mangium, and Stylosanthes capitata seeds on the gastrointestinal nematode Haemonchus contortus. The exuded proteins were precipitated, dialyzed, lyophilized, and assessed for their effect on egg hatching and artificial larval exsheathment inhibition. Proteome analysis of the protein extracts was also performed. Although no egg-hatching inhibition was observed, all exudates showed efficacy in inhibiting the larval exsheathment of H. contortus larvae with an EC50 varying from 0.61 to 0.26 mg P mL-1. Proteomic analysis revealed the presence of proteases, protease inhibitors, chitinases, and lectins among other proteins in the exudates. Most of the exuded proteins belong to the oxidative stress/plant defense and energy/carbohydrate metabolism functional clusters. This study concluded that the bioactive proteins from different classes exuded by seeds of M. caesalpiniifolia, L. leucocephala, A. mangium, and S. capitata show stage-specific inhibition against H. contortus.


Subject(s)
Exudates and Transudates/chemistry , Fabaceae/chemistry , Haemonchus/drug effects , Plant Proteins/pharmacology , Seeds/chemistry , Animals , Anthelmintics/chemistry , Anthelmintics/pharmacology , Plant Exudates/chemistry
4.
Nat Prod Res ; 35(12): 2072-2075, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31385540

ABSTRACT

Resinous exudate obtained from the aerial parts of Adesmia boronioides Hook.f. were evaluated to determine anti-phytopathogenic effects. Briefly, resinous exudate was obtained by dipping fresh plant material in dichloromethane; chemical composition was determined by GC-MS; and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated against four phytopathogenic bacteria. Resinous exudate yield was 8.5% (resin/fresh plant), of which esquel-6-en-9-one (14.25%), esquel-7-en-9-one (5.86%), and veratric acid (2.59%) were the effective antibacterial compounds. Tested against Pectobacterium carotovorum subsp. carotovora, Erwinia amylovora, Bacillus subtilis, and Pseudomonas syringae, MICs and MBCs ranged from 16 to 128 µg/mL and 32-256 µg/mL, respectively. These results provide initial evidence that resinous bush A. boronioides is a new and alternative source of substances with agricultural interest.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Fabaceae/chemistry , Plant Exudates/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/pathogenicity , Drug Evaluation, Preclinical , Erwinia amylovora/drug effects , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Pectobacterium carotovorum/drug effects , Plant Components, Aerial/chemistry , Plant Diseases/microbiology , Plant Exudates/chemistry , Pseudomonas syringae/drug effects , Resins, Plant/chemistry , Resins, Plant/pharmacology
5.
Plant Physiol Biochem ; 154: 491-497, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32663650

ABSTRACT

Biological Nitrification Inhibition (BNI) of Brachiaria humidicola has been mainly attributed to the root-exuded fusicoccane-type diterpene brachialactone. We hypothesized, however, that according to the high diversity of fusicoccanes described for plants and microorganisms, BNI of B. humidicola is caused by an assemblage of bioactive fusicoccanes. B. humidicola root exudates were collected hydroponically and compounds isolated by semi-preparative HPLC. Chemical structures were revealed by spectroscopic techniques, including HRMS as well as 1D and 2D NMR. Nitrification inhibiting (NI) potential of isolated compounds was evaluated by a Nitrosomonas europaea based bioassay. Besides the previously described brachialactone (1), root exudates contained 3-epi-brachialactone (2), the C3-epimer of 1 (m/z 334), as well as 16-hydroxy-3-epi-brachialactone (3) with an additional hydroxyl group at C16 (m/z 350) and 3,18-epoxy-9-hydroxy-4,7-seco-brachialactone (4), which is a ring opened brachialactone derivative with a 3,18 epoxide ring and a hydroxyl group at C9 (m/z 332). The 3-epi-brachialactone (2) showed highest NI activity (ED50 ~ 20 µg mL-1, ED80 ~ 40 µg mL-1), followed by compound 4 with intermediate (ED50 ~ 40 µg mL-1), brachialactone (1) with low and compound 3 without activity. In coherence with previous reports on fusicoccanes, stereochemistry at C3 was of high relevance for the biological activity (NI potential) of brachialactones.


Subject(s)
Brachiaria/chemistry , Lactones/chemistry , Nitrification , Plant Exudates/chemistry , Nitrosomonas europaea , Plant Roots
6.
Carbohydr Polym ; 228: 115408, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31635742

ABSTRACT

This report details the design of carboxymethylated cashew gum (CG) as a platform for antibody (Ab) immobilization, which can then be used as a biosensor for bacteria detection. The CG was isolated and characterized, followed by conversion to carboxymethyl cashew gum (CMCG). The CMCG film was a viable support for antibody immobilization; it was electrodeposited on gold surface using the cyclic voltammetry technique, applying a potential sweep from -1.0 V to 1.3 V with a scan rate of 50 mV s-1 and 10 scans. The COOH groups on the surface of the film were critical in promoting Ab bonding. The immobilization of the Ab was mediated by protein A (PrA) for recognition of the antigen. Voltammetry studies were used to monitor the antibody immobilization. Finally, the analytical response of the CMCG-PrA-Ab system was evaluated with the chronoamperometry technique and was found to detect Salmonella Typhimurium bacteria rapidly and efficiently.


Subject(s)
Anacardium/metabolism , Biosensing Techniques/methods , Plant Exudates/chemistry , Plant Gums/chemistry , Salmonella typhimurium/isolation & purification , Antibodies/administration & dosage
7.
Chemosphere ; 222: 679-687, 2019 May.
Article in English | MEDLINE | ID: mdl-30735968

ABSTRACT

The aims of this study were (1) to isolate new multi-resistant actinobacteria from soil, rhizosphere and plant samples collected from an ancient illegal pesticide storage and (2) to elucidate the effects of these microorganisms developed with maize root exudates on lindane and Cr(VI) removal. Fifty-seven phenotypically different actinobacteria were isolated and four of them, belonging to the genus Streptomyces exhibit tolerance to a mixture of lindane and Cr(VI). Two rhizospheric strains named as Streptomyces sp. Z38 and Streptomyces sp. Z2 were selected to be grown with root exudates because they showed the highest Cr(VI) and lindane removal in co-contaminated medium. When root exudates were the only carbon source, metal dissipation increased significantly either as single or mixed contaminant, compared to metal dissipation with glucose. No significant differences were found on lindane removal with root exudates or glucose, so a higher lindane concentration was evaluated. Despite of this, lindane removal remained stable while metal dissipation was notoriously lower when lindane concentration was enhanced. In addition to a good performance growing with mixed contaminants, Streptomyces strains showed plant growth promoting traits that could improve plant establishment. The results presented in this study show the importance of the screening programs addressed to find new actinobacteria able to grow in co-contaminated systems. It was also evidenced that root exudates of maize improve the growth of Streptomyces strains when they were used as carbon source, being the dissipation of Cr(VI) considerably improved in presence of lower lindane concentration.


Subject(s)
Actinobacteria/metabolism , Biodegradation, Environmental , Chromium/isolation & purification , Hexachlorocyclohexane/isolation & purification , Plant Exudates/chemistry , Drug Resistance, Multiple , Pesticides/isolation & purification , Plant Development , Soil Microbiology , Soil Pollutants/isolation & purification , Streptomyces/metabolism , Zea mays/chemistry
8.
Carbohydr Res ; 461: 4-10, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29549750

ABSTRACT

The fruit of Physalis peruviana is widely used in traditional Colombian medicine as an antidiabetic treatment. The aim of the study reported here was to identify the compounds responsible for the hypoglycemic activity using the α-amylase inhibition test. Bioguided fractionation of a dichloromethane extract of the sticky exudate that covers the fruit allowed the isolation and identification of three new sucrose esters, named as peruvioses C-E (1-3), along with the known peruvioses A (6), B (5) and F (4), the structures of which were elucidated by extensive NMR and MS experiments. These compounds proved to be responsible for the hypoglycemic activity observed in the extract. Peruviose D (2) showed the highest activity, with an inhibitory activity value of 84.8%. This is the first study to establish the potential of sucrose esters as α-amylase inhibitors and to explain the hypoglycemic effect that has traditionally been attributed to gooseberry fruit.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Esters/chemistry , Esters/pharmacology , Fruit/chemistry , Physalis/chemistry , Plant Exudates/chemistry , Plant Exudates/pharmacology , Sucrose/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Magnetic Resonance Spectroscopy , Mass Spectrometry
9.
J Sci Food Agric ; 97(13): 4515-4519, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28337740

ABSTRACT

BACKGROUND: Due to the increasing valuation and appreciation of honeydew honey in many European countries and also to existing contamination among different types of honeys, authentication is an important aspect of quality control with regard to guaranteeing the origin in terms of source (honeydew or floral) and needs to be determined. Furthermore, proteins are minor components of the honey, despite the importance of their physiological effects, and can differ according to the source of the honey. In this context, the aims of this study were to carry out protein extraction from honeydew and floral honeys and to discriminate these honeys from the same botanical species, Mimosa scabrella Bentham, through proteome comparison using two-dimensional gel electrophoresis and principal component analysis. RESULTS: The results showed that the proteome profile and principal component analysis can be a useful tool for discrimination between these types of honey using matched proteins (45 matched spots). Also, the proteome profile showed 160 protein spots in honeydew honey and 84 spots in the floral honey. CONCLUSION: The protein profile can be a differential characteristic of this type of honey, in view of the importance of proteins as bioactive compounds in honey. © 2017 Society of Chemical Industry.


Subject(s)
Flowers/chemistry , Food Contamination/analysis , Honey/analysis , Mimosa/chemistry , Plant Exudates/chemistry , Proteome/chemistry , Electrophoresis, Gel, Two-Dimensional , Flowers/classification , Mimosa/classification , Principal Component Analysis
10.
J Food Sci ; 81(8): H2069-75, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27376349

ABSTRACT

Concentrated agave sap (CAS) has gained popularity as an unrefined sweetener. It is obtained by boiling "aguamiel" that contains phytochemicals with diverse bioactivities. Saponins have been the most widely studied agave phytochemicals due to their cancer antiproliferative effect but their concentration may vary due to maturity of the agave plant and collection site. In this study, 18 CAS samples produced in different states of Mexico were analyzed using multivariate methods to determine which physicochemical or phytochemical parameters were responsible for variation. Additionally, extracts with different saponin profiles were tested to determine possible correlations with antiproliferative activity. Total soluble solids, pH, and water activity were similar to those reported for other agave sweeteners. Antioxidant capacity of samples was correlated to browning index. Eleven steroidal saponins were found in CAS samples and they were the main source of variability. Magueyoside B, a kammogenin tetraglycoside, was the most abundant saponin in all samples. With respect to bioactivity, multivariate analysis indicated that magueyoside B and a gentrogenin tetraglycoside were compounds strongly related with bioactivity. CAS from Hidalgo, Puebla, and Veracruz had higher concentration of magueyoside B than from the other kamogenin tetraglycoside found in the samples from other Mexican states. These results could be used as a first approach to characterize and standardize CAS to validate the potential health benefits derived from its consumption.


Subject(s)
Agave/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Colonic Neoplasms/drug therapy , Plant Extracts/therapeutic use , Saponins/therapeutic use , Agave/classification , Antineoplastic Agents, Phytogenic/analysis , Antineoplastic Agents, Phytogenic/pharmacology , Caco-2 Cells , Environment , Humans , Mexico , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Exudates/chemistry , Saponins/analysis , Saponins/pharmacology , Sweetening Agents
11.
Sci Rep ; 6: 22627, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26943243

ABSTRACT

Biosynthetic investigation of quinonemethide triterpenoid 22ß-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using (13)C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22ß-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.


Subject(s)
Antioxidants/metabolism , Magnoliaceae , Plant Exudates/metabolism , Plant Roots/metabolism , Spermidine/analogs & derivatives , Antioxidants/chemistry , Cells, Cultured , In Vitro Techniques , Indolequinones/chemistry , Metabolic Networks and Pathways , Mevalonic Acid/metabolism , Plant Exudates/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spermidine/chemistry , Spermidine/metabolism , Triterpenes/chemistry
12.
J Agric Food Chem ; 63(22): 5335-43, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26034922

ABSTRACT

Several studies have described the effects of seed exudates against microorganisms, but only few of them have investigated the proteins that have defensive activity particularly against nematode parasites. This study focused on the proteins released in the exudates of soybean seeds and evaluated their nematicidal properties against Meloidogyne incognita. A proteomic approach indicated the existence of 63 exuded proteins, including ß-1,3-glucanase, chitinase, lectin, trypsin inhibitor, and lipoxygenase, all of which are related to plant defense. The presence of some of these proteins was confirmed by their in vitro activity. The soybean exudates were able to reduce the hatching of nematode eggs and to cause 100% mortality of second-stage juveniles (J2). The pretreatment of J2 with these exudates resulted in a 90% reduction of the gall number in tobacco plants. These findings suggest that the exuded proteins are directly involved in plant defense against soil pathogens, including nematodes, during seed germination.


Subject(s)
Antinematodal Agents/chemistry , Glycine max/chemistry , Plant Exudates/chemistry , Plant Proteins/chemistry , Proteome/chemistry , Seeds/chemistry , Tylenchoidea/drug effects , Animals , Antinematodal Agents/metabolism , Antinematodal Agents/pharmacology , Mass Spectrometry , Plant Exudates/metabolism , Plant Exudates/pharmacology , Plant Proteins/metabolism , Plant Proteins/pharmacology , Proteome/metabolism , Proteome/pharmacology , Seeds/metabolism , Glycine max/metabolism , Tylenchoidea/growth & development
13.
Oecologia ; 176(2): 345-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25135179

ABSTRACT

In old, phosphorus (P)-impoverished habitats, root specializations such as cluster roots efficiently mobilize and acquire P by releasing large amounts of carboxylates in the rhizosphere. These specialized roots are rarely mycorrhizal. We investigated whether Discocactus placentiformis (Cactaceae), a common species in nutrient-poor campos rupestres over white sands, operates in the same way as other root specializations. Discocactus placentiformis showed no mycorrhizal colonization, but exhibited a sand-binding root specialization with rhizosheath formation. We first provide circumstantial evidence for carboxylate exudation in field material, based on its very high shoot manganese (Mn) concentrations, and then firm evidence, based on exudate analysis. We identified predominantly oxalic acid, but also malic, citric, lactic, succinic, fumaric, and malonic acids. When grown in nutrient solution with P concentrations ranging from 0 to 100 µM, we observed an increase in total carboxylate exudation with decreasing P supply, showing that P deficiency stimulated carboxylate release. Additionally, we tested P solubilization by citric, malic and oxalic acids, and found that they solubilized P from the strongly P-sorbing soil in its native habitat, when the acids were added in combination and in relatively low concentrations. We conclude that the sand-binding root specialization in this nonmycorrhizal cactus functions similar to that of cluster roots, which efficiently enhance P acquisition in other habitats with very low P availability.


Subject(s)
Cactaceae/chemistry , Phosphorus/chemistry , Plant Exudates/chemistry , Plant Roots/chemistry , Soil/chemistry , Brazil , Carboxylic Acids/chemistry , Mycorrhizae , Plant Roots/anatomy & histology , Rhizosphere
14.
J Sci Food Agric ; 93(15): 3856-62, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23900918

ABSTRACT

BACKGROUND: The micromorphology and anatomy of nutlets, myxocarpy (mucilage exudation) and mucilage structure of Argentinean chia were described using scanning electron microscopy (SEM). The proximal composition of nutlets and mucilage was also studied. RESULTS: Chia nutlets are made up of a true seed and a pericarp enclosing the seed; they are small, glabrous, elliptic and apically rounded. The pericarp has cuticle, exocarp, mesocarp and bone cells vertically arranged and endocarp. The myxocarpy was carefully recorded by SEM. After 5 min in contact with water, the cuticle of nutlets is broken and the exocarp cell content gradually surrounds the rest of the nutlet. The proximal composition of chia nutlets was studied; fat is the major component (327 ± 8.0 g kg(-1)) followed by protein (293 ± 4.0 g kg(-1)) and fiber (276 ± 1.0 g kg(-1)). Extractions of chia nutlets with water at room temperature yielded 38 ± 1.0 g kg(-1) (dry basis) of mucilage. The fresh mucilage structure was similar to a network of open pores. The freeze-dried crude mucilage contained more ash, residual fat and protein than commercial guar and locust bean gum. The solubility of 10.0 g L(-1) w/v solution of chia freeze-dried crude mucilage in water increased with temperature, being maximal at 60 °C (870 g kg(-1)). CONCLUSION: The results obtained show a fast exudation of chia mucilage when nutlets are in contact with water. The freeze-dried crude mucilage hydrates easily in water, even at low temperatures. Chia nutlets have mucilaginous substances, with interesting functional properties from a technological and physiological point of view.


Subject(s)
Dietary Fiber/analysis , Fruit/chemistry , Plant Exudates/chemistry , Salvia/chemistry , Seeds/chemistry , Argentina , Diet , Freeze Drying , Fruit/metabolism , Fruit/ultrastructure , Humans , Salvia/ultrastructure , Seeds/ultrastructure , Solubility , Temperature , Water
15.
Phytochemistry ; 72(17): 2237-43, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21840559

ABSTRACT

The ethanol extract from the dried exudate of Bursera fagaroides (Burseraceae) showed significant cytotoxic activity in the HT-29 (human colon adenocarcinoma) test system. The extract provided four podophyllotoxin related lignans, identified as (7'R,8R,8'R)-(-)-deoxypodophyllotoxin (3), (7'R,8R,8'R)-(-)-morelensin (4), (8R,8'R)-(-)-yatein (5), and (8R,8'R)-(-)-5'-desmethoxyyatein (6), whose spectroscopic and chiroptical properties were compared with those of (7R,7'R,8R,8'R)-(-)-podophyllotoxin (1) and its acetyl derivative (2). Their absolute configurations were assigned by comparison of the vibrational circular dichroism spectra of 1 and 3 with those obtained by density functional theory calculations.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents, Phytogenic/chemistry , Bursera/chemistry , Colonic Neoplasms/drug therapy , Phytotherapy , Plant Exudates/chemistry , Podophyllotoxin/analogs & derivatives , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , 4-Butyrolactone/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Benzofurans/chemistry , Benzofurans/pharmacology , Benzofurans/therapeutic use , Cell Line, Tumor , Circular Dichroism , Dioxoles/chemistry , Dioxoles/pharmacology , Dioxoles/therapeutic use , Drugs, Chinese Herbal , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Exudates/pharmacology , Plant Exudates/therapeutic use , Podophyllotoxin/chemistry , Podophyllotoxin/pharmacology , Podophyllotoxin/therapeutic use
16.
Vet Microbiol ; 141(1-2): 53-8, 2010 Feb 24.
Article in English | MEDLINE | ID: mdl-19818567

ABSTRACT

Infectious pancreatic necrosis is a disease caused by a birnavirus affecting several wild and commercial aquatic organisms. This infectious disease results in significant losses in the farming industry and therefore effective therapeutic agents are needed to control outbreaks caused by this pathogen. Our goal was to evaluate in vitro antiviral effect of a group of natural compounds (geranyl aromatic derivatives) isolated from the resinous exudate of the plant Heliotropium filifolium (Heliotropiaceae), semi-synthetics compounds obtained from them, and the resinous exudate, on CHSE-214 cell line infected with infectious pancreatic necrosis virus (IPNV) using a virus plaque inhibition assay at various concentrations. The compound ester filifolinyl senecionate was the best antiviral with EC(50) 160 microg/mL and a cytotoxic concentration required to reduce cell viability by 50% up to 400 microg/mL. In order to obtain information about the mechanism of the antiviral action, was evaluated the influence of ester filifolinyl senecionate on the viral RNA synthesis. This compound produced inhibition of the synthesis of viral genomic RNA, suggesting that the ester could be interacting with the viral RNA during the viral cycle. Additionally, a preliminary study of the interaction between ester and a sample of single-stranded RNA was studied at the level of theory Restricted Hartree Fock PM3 method. The results showed that the ester formed hydrogen bonds mainly with nitrogenous bases but not with ribose and phosphate. These results allow propose that the ester filifolinyl senecionate is a good candidate for used as antiviral therapy for IPN virus in salmon fry.


Subject(s)
Antiviral Agents/pharmacology , Heliotropium/chemistry , Infectious pancreatic necrosis virus/drug effects , Infectious pancreatic necrosis virus/physiology , Plant Exudates/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA/metabolism , Plant Exudates/chemistry , RNA/metabolism , Salmon
17.
Am J Primatol ; 71(2): 120-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18985770

ABSTRACT

Fallback foods have been defined as resources for which a species has evolved specific masticatory and digestive adaptations, and are consumed principally when preferred foods are scarce. In the present field investigation, we examine fungi, fruit, and exudate consumption in one group of Callimico goeldii in order to determine the importance of exudates as a fallback food for this species. Based on a total of 1,198 hr of quantitative behavioral data collected between mid-November 2002-August 2003, we found that pod exudates of Parkia velutina accounted for 19% of callimico feeding time in the dry season. This resource was not consumed in the wet season when fruits and fungi were the most common items in the diet. In the dry season of 2005 (July), the same callimico study group did not consume Parkia pod exudates. Instead, the group ate exudates obtained from holes gouged in tree trunks by pygmy marmosets and exudates resulting from natural weathering and insect damage on trunks, roots, and lianas. Pod exudates are reported to contain greater amounts of readily available energy than do trunk and root exudates, and were consumed throughout all periods of the day, particularly in the late afternoon. Trunk and root exudates were consumed principally in the morning. We propose that digestive adaptations of the hindgut, which enable callimicos to exploit fungi (a resource high in structural carbohydrates) year-round, predispose them to efficiently exploit and process exudates as fallback foods when other resources, such as ripe fruits, are scarce.


Subject(s)
Animal Nutritional Physiological Phenomena , Callimico/physiology , Diet , Fabaceae/chemistry , Plant Exudates/chemistry , Animals , Bolivia , Observation , Seasons
18.
Curr Microbiol ; 56(6): 625-32, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18335278

ABSTRACT

This article correlates colonization with parameters, such as chemotaxis, biofilm formation, and bacterial growth, that are believed to be connected. We show here, by using two varieties of soybean plants that seeds axenically produced exudates, induced a chemotactic response in Bacillus amyloliquefaciens, whereas root exudates did not, even when the exudates, also collected under axenic conditions, were concentrated up to 200-fold. Root exudates did not support bacterial cell division, whereas seed exudates contain compounds that support active cell division and high cell biomass at stationary phase. Seed exudates of the two soybean varieties also induced biofilm formation. B. amyloliquefaciens colonized both seeds and roots, and plant variety significantly affected bacterial root colonization, whereas it did not affect seed colonization. Colonization of roots in B. amyloliquefaciens occurred despite the lack of chemotaxis and growth stimulation by root exudates. The data presented in this article suggest that soybean seed colonization, but not root colonization, by B. amyloliquefaciens is influenced by chemotaxis, growth, and biofilm formation and that this may be caused by qualitative changes of the composition of root exudates.


Subject(s)
Bacillus/physiology , Biofilms/growth & development , Chemotaxis , Glycine max/microbiology , Plant Roots/microbiology , Seeds/microbiology , Bacillus/drug effects , Bacillus/growth & development , Bacillus/isolation & purification , Bacterial Adhesion/drug effects , Biofilms/drug effects , Plant Exudates/chemistry , Plant Exudates/pharmacology , Plant Exudates/physiology , Plant Roots/chemistry , Plant Roots/metabolism , Seeds/chemistry , Seeds/metabolism , Soil Microbiology , Glycine max/chemistry , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL