Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
J Plant Res ; 137(4): 605-617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506958

ABSTRACT

The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation. In this study, Symphytum officinale was used to detect the effect of nectar robbers on pollinators under different robbing intensity as well as their effects on plant reproductive success. Six robbing levels and three bumblebees with mixed foraging behaviors were used to evaluate the effect of different robbing intensity on pollinator behavior, visitation rate, flower longevity and pollen deposition. Our results indicated that the robbing rate increased gradually with the proportion of robbed flowers, but which did not affect the frequency of legitimate visits. The increase of robbing rate promoted the corolla abscission, and then enhanced the self-pollen deposition, but which had no significant effect on cross-pollen deposition. These results indicate that the overall fitness of S. officinale was improved by combined self and cross-pollination modes when visited by both pollinators and nectar robbers simultaneously. Although nectar robbing is not uncommon, its consequences for pollination in the interaction web have not been well studied. Our results emphasize the significance of indirect impacts in mediating the adaptive outcomes of species interactions.


Subject(s)
Boraginaceae , Flowers , Plant Nectar , Pollination , Reproduction , Pollination/physiology , Flowers/physiology , Animals , Bees/physiology , Reproduction/physiology , Plant Nectar/physiology , Boraginaceae/physiology , Pollen/physiology
2.
Chem Biodivers ; 20(4): e202201139, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36976451

ABSTRACT

Plants produce a plethora of phytochemicals including sugars, amino acids (AAs), volatile organic compounds (VOCs) and secondary metabolites (SMs) with different ecological functions. To attract pollinators and defenders and ensure reproductive success, plants mainly rely on VOCs, while to reward insects, plants synthesize nectar rich in sugars and AAs. Furthermore, plant SMs can play various roles. Some components are able to interact with the nervous system of insects by binding to neuron receptor proteins and thus manipulate pollinator behavior. Others, like alkaloids and phenolics, protect from nectar robbers and enhance memory and foraging efficiency, or, as in the case of flavonoids, exhibit high antioxidant activities supporting pollinator well-being. This review discusses the impact of VOCs and nectar SMs on insect behavior and pollinator health.


Subject(s)
Plant Nectar , Volatile Organic Compounds , Animals , Plant Nectar/chemistry , Plant Nectar/physiology , Pollination/physiology , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Reproduction/physiology , Plants/metabolism , Insecta , Sugars , Amino Acids/metabolism , Flowers/metabolism
3.
J Evol Biol ; 36(1): 280-295, 2023 01.
Article in English | MEDLINE | ID: mdl-36196911

ABSTRACT

Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance-covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma-anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.


Subject(s)
Plant Nectar , Turnera , Animals , Plant Nectar/physiology , Turnera/physiology , Symbiosis , Reproduction , Pollination , Plants , Flowers/genetics
4.
Microb Ecol ; 86(1): 377-391, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35930073

ABSTRACT

The floral nectar of angiosperms harbors a variety of microorganisms that depend predominantly on animal visitors for their dispersal. Although some members of the genus Acinetobacter and all currently known species of Rosenbergiella are thought to be adapted to thrive in nectar, there is limited information about the response of these bacteria to variation in the chemical characteristics of floral nectar. We investigated the growth performance of a diverse collection of Acinetobacter (n = 43) and Rosenbergiella (n = 45) isolates obtained from floral nectar and the digestive tract of flower-visiting bees in a set of 12 artificial nectars differing in sugar content (15% w/v or 50% w/v), nitrogen content (3.48/1.67 ppm or 348/167 ppm of total nitrogen/amino nitrogen), and sugar composition (only sucrose, 1/3 sucrose + 1/3 glucose + 1/3 fructose, or 1/2 glucose + 1/2 fructose). Growth was only observed in four of the 12 artificial nectars. Those containing elevated sugar concentration (50% w/v) and low nitrogen content (3.48/1.67 ppm) were limiting for bacterial growth. Furthermore, phylogenetic analyses revealed that the ability of the bacteria to grow in different types of nectar is highly conserved between closely related isolates and genotypes, but this conservatism rapidly vanishes deeper in phylogeny. Overall, these results demonstrate that the ability of Acinetobacter spp. and Rosenbergiella spp. to grow in floral nectar largely depends on nectar chemistry and bacterial phylogeny.


Subject(s)
Plant Nectar , Sugars , Bees , Animals , Plant Nectar/analysis , Plant Nectar/chemistry , Plant Nectar/physiology , Phylogeny , Sugars/analysis , Carbohydrates/analysis , Flowers/microbiology , Glucose , Sucrose/analysis , Fructose/analysis , Enterobacteriaceae/genetics
5.
PLoS One ; 17(2): e0262985, 2022.
Article in English | MEDLINE | ID: mdl-35113889

ABSTRACT

The Dilleniaceae is known to produce nectarless flowers pollinated by bees, but the fact that bats ingest Dillenia biflora pollen led us to question pollination assumptions for these trees. We aimed to identify the pollinators of D. biflora, check for nectar presence, and investigate potential for cleistogamy and global prevalence of this pollination system. We examined aspects of the pollination of D. biflora on two Fijian islands using video recordings, direct observations, hand pollination, measurements (flowers, bite marks, nectar), and monitoring. The flowers, receptive for one night, contained copious nectar and had permanently closed globose corollas that required removal by bats for pollination. All the 101 flowers that retained their corolla died and did not produce seeds by cleistogamy. The bat Notopteris macdonaldi was well adapted to corolla removal. Keeping corollas closed until bats manipulate the nectar-rich flowers is a beneficial strategy in high-rainfall environments with many flower parasites. We propose to name a pollination system reliant exclusively on bats "chiropteropisteusis." From clues in the literature, other species in the geographical range of Dillenia are probably chiropteropisunous. Chiropteropisteusis should be investigated in the Old-World range of Dillenia, many species of which are threatened. The remarkable "fall" of the entire corolla observed by an earlier botanist for several species in the genus is most likely attributable to bats. This discovery has important implications for the conservation of bat-dependent trees and their associated fauna, particularly considering the high level of threat faced by flying-foxes globally.


Subject(s)
Chiroptera/physiology , Dilleniaceae/physiology , Flowers/physiology , Plant Nectar/physiology , Pollen/chemistry , Pollination , Animals
6.
Sci Rep ; 11(1): 23327, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857828

ABSTRACT

Pollen selection affects honeybee colony development and productivity. Considering that pollen is consumed by young in-hive bees, and not by foragers, we hypothesized that young bees learn pollen cues and adjust their preferences to the most suitable pollens. To assess whether young bees show preferences based on learning for highly or poorly suitable pollens, we measured consumption preferences for two pure monofloral pollens after the bees had experienced one of them adulterated with a deterrent (amygdalin or quinine) or a phagostimulant (linoleic acid). Preferences were obtained from nurse-aged bees confined in cages and from nurse bees in open colonies. Furthermore, we tested the bees' orientation in a Y-maze using a neutral odour (Linalool or Nonanal) that had been previously associated with an amygdalin-adulterated pollen. Consumption preferences of bees, both in cages and in colonies, were reduced for pollens that had been adulterated with deterrents and increased for pollens that had been supplemented with linoleic acid. In the Y-maze, individuals consistently avoided the odours that they had previously experienced paired with the deterrent-adulterated pollen. Results show that nurse-aged bees associate pollen-based or pollen-related cues with either a distasteful/malaise experience or a tasty/nutritious event, leading to memories that bias their pollen-mediated response.


Subject(s)
Amygdalin/chemistry , Bees/physiology , Feeding Behavior/physiology , Learning , Linoleic Acid/chemistry , Plant Nectar/physiology , Pollen/chemistry , Animals , Food Contamination/analysis , Pollen/drug effects
7.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34785627

ABSTRACT

Sugar will eventually be exported transporters (SWEETs), a newly discovered class of sugar transporters, play a significant role in sugar efflux processes across various kingdoms of life. In fact, SWEETs have a long evolutionary path from prokaryotes to higher plants. In plants, they are involved in developmental processes, including nectar secretion, pollen nutrition, and seed filling. While the role of SWEETs has been well studied in biotic stresses, particularly their manipulation by pathogens for sugar acquisition, they have also been linked to many abiotic stresses. Although the phylogenetic relationships and solved structures of SWEETs in different plants have been revealed, their regulation remains unexplored. The current review deals with all the exciting discoveries around SWEETs, including their classification and diversity, and bridges the gaps in their evolutionary story, from bacterial semiSWEETs to eukaryotic SWEETs. We also critically examine SWEETs at genomic, transcriptomic, and proteomic levels, as evinced by recently published examples from grain, millet, and horticultural crops. In addition, we highlight the possibilities of utilizing SWEETs in applications such as bioethanol production and disease diagnostic markers. We attempt to elucidate and unify findings related to the yet unsolved puzzle of SWEET regulation in plants to improve crop production and protection for sustainable agriculture.


Subject(s)
Crops, Agricultural/growth & development , Plant Proteins/metabolism , Plants/metabolism , Biological Transport , Disease Resistance , Ethanol/metabolism , Gene Expression Regulation, Plant , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Phloem/physiology , Plant Nectar/physiology , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/microbiology , Seeds/growth & development , Stress, Physiological , Symbiosis
8.
Plant J ; 107(4): 1016-1028, 2021 08.
Article in English | MEDLINE | ID: mdl-34048120

ABSTRACT

Nectar volume and sugar composition are key determinants of the strength of plant-pollinator mutualisms. The main nectar sugars are sucrose, glucose and fructose, which can vary widely in ratio and concentration across species. Brassica spp. produce a hexose-dominant nectar (high in the monosaccharides glucose and fructose) with very low levels of the disaccharide sucrose. Cell wall invertases (CWINVs) catalyze the irreversible hydrolysis of sucrose into glucose and fructose in the apoplast. We found that BrCWINV4A is highly expressed in the nectaries of Brassica rapa. Moreover, a brcwinv4a null mutant: (i) has greatly reduced CWINV activity in the nectaries; (ii) produces a sucrose-rich nectar; but (iii) with significantly less volume. These results definitively demonstrate that CWINV activity is not only essential for the production of a hexose-rich nectar, but also support a hypothetical model of nectar secretion in which its hydrolase activity is required for maintaining a high intracellular-to-extracellular sucrose ratio that facilitates the continuous export of sucrose into the nectary apoplast. The extracellular hydrolysis of each sucrose into two hexoses by BrCWINV4A also likely creates the osmotic potential required for nectar droplet formation. These results cumulatively indicate that modulation of CWINV activity can at least partially account for naturally occurring differences in nectar volume and sugar composition. Finally, honeybees prefer nectars with some sucrose, but wild-type B. rapa flowers were much more heavily visited than flowers of brcwinv4a, suggesting that the potentially attractive sucrose-rich nectar of brcwinv4a could not compensate for its low volume.


Subject(s)
Brassica rapa/cytology , Brassica rapa/metabolism , Plant Nectar/physiology , Sugars/metabolism , beta-Fructofuranosidase/metabolism , Animals , Bees , Brassica rapa/genetics , Cell Wall/enzymology , Gene Expression Regulation, Plant , Hydrolysis , Mutation , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Pollination , Seeds/genetics , Seeds/physiology , Sugars/chemistry , beta-Fructofuranosidase/genetics
9.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-33969829

ABSTRACT

Pigment patterns in corollas are common, and act as nectar guides for pollinators. We discovered multiple floral morphs of Justicia adhatoda L. (Acanthaceae) with variable extents of corolla vein pigmentation in a population in Sariska, Rajasthan. Two floral morphs, one completely white and the other white with dark purple vein pigmentation, were compared in order to investigate any possible differences relating to: (a) corolla surface structure, (b) pollinator visitation, (c) reward for the pollinator, and (d) fitness parameters in the morphs. Both morphs showed similar UV reflectance, had distally located conical cells in petals, indicated similar pollinator visitation and had similar nectar content. Contrastingly, seed germination and seed weight were significantly higher in the purple-veined morph, while fruit set and seed set were higher in the white morph which also showed higher amounts of saturated fatty acids in the seeds. The results about aborted seeds differed inconsistently. Thus, variation in corolla pigmentation in J. adhatoda suggests fitness trade-off between the morphs with higher fruit and seed set, but lower seed germination and seed weight in the white morph compared to the purple-veined. We are led to the possibility of different selective pressures acting on the morphs and resulting in adaptive polymorphism.


Subject(s)
Adaptation, Physiological , Flowers/anatomy & histology , Justicia/anatomy & histology , Pollination/physiology , Quantitative Trait, Heritable , Color , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Genetic Fitness , Justicia/genetics , Justicia/growth & development , Justicia/metabolism , Phenotype , Pigmentation/genetics , Plant Nectar/physiology , Reproduction/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
10.
BMC Plant Biol ; 21(1): 230, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022807

ABSTRACT

BACKGROUND: Nitraria tangutorum is an important desert shrub that shows resistance to drought, salt and wind erosion stresses. It is a central ecological species in its area. Here, we have studied how N. tangutorum has adapted to achieve a successful reproduction strategy. RESULTS: We found that N. tangutorum is mainly pollinated by insects of the Hymenoptera, Diptera and Coleoptera orders. Nitraria tangutorum has very small flowers, with the nectary composed of secretive epidermal cells from which nectar is secreted, located within the inner petals. In addition, analyzing the transcriptome of four successive flower developmental stages revealed that mainly differentially expressed genes associated with flower and nectary development, nectar biosynthesis and secretion, flavonoid biosynthesis, plant hormone signal transduction and plant-pathogen interaction show dynamic expression. From the nectar, we could identify seven important proteins, of which the L-ascorbate oxidase protein was first found in plant nectar. Based on the physiological functions of these proteins, we predict that floral nectar proteins of N. tangutorum play an important role in defending against microbial infestation and scavenging active oxygen. CONCLUSIONS: This study revealed that N. tangutorum is an insect-pollinated plant and its nectary is composed of secretive epidermal cells that specialized into secretive trichomes. We identified a large number of differentially expressed genes controlling flower and nectary development, nectar biosynthesis and secretion, flavonoid biosynthesis, plant hormone signal transduction and plant-pathogen interaction. We suggest that proteins present in N. tangutorum nectar may have both an antibacterial and oxygen scavenging effect. These results provide a scientific basis for exploring how the reproductive system of N. tangutorum and other arid-desert plants functions.


Subject(s)
Magnoliopsida/physiology , Plant Nectar/physiology , Plant Proteins/metabolism , Pollination , Proteome/metabolism , Transcriptome , Animals , Coleoptera/physiology , Diptera/physiology , Hymenoptera/physiology , Magnoliopsida/genetics
11.
Protoplasma ; 257(1): 299-317, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31529247

ABSTRACT

Orobanche picridis is an obligate root parasite devoid of chlorophyll in aboveground organs, which infects various Picris species. Given the high level of phenotypic variability of the species, the considerable limitation of the number of taxonomically relevant traits (mainly in terms of generative elements), and the low morphological variation between species, Orobanche is regarded as one of the taxonomically most problematic genera. This study aimed to analyse the taxonomic traits of O. picridis flowers with the use of stereoscopic and bright-field microscopy as well as fluorescence, scanning, and transmission electron microscopy. The micromorphology of sepals, petals, stamens, and pistils was described. For the first time, the anatomy of parasitic Orobanche nectaries and the ultrastructure of nectaries and glandular trichomes were presented. Special attention was paid to the distribution and types of glandular and non-glandular trichomes as well as the types of metabolites contained in these structures. It was demonstrated that the nectary gland was located at the base of the gynoecium and nectar was secreted through modified nectarostomata. The secretory parenchyma cells contained nuclei, large amyloplasts with starch granules, mitochondria, and high content of endoplasmic reticulum profiles. Nectar was transported via symplastic and apoplastic routes. The results of histochemical assays and fluorescence tests revealed the presence of four groups of metabolites, i.e. polyphenols (tannins, flavonoids), lipids (acidic and neutral lipids, essential oil, sesquiterpenes, steroids), polysaccharides (acidic and neutral polysaccharides), and alkaloids, in the trichomes located on perianth elements and stamens.


Subject(s)
Flowers/anatomy & histology , Flowers/ultrastructure , Orobanche/anatomy & histology , Orobanche/ultrastructure , Parasites/classification , Parasites/ultrastructure , Animals , Flowers/classification , Fluorescence , Orobanche/classification , Plant Nectar/physiology
12.
Protoplasma ; 257(1): 245-259, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31428856

ABSTRACT

Pinguicula (Lentibulariaceae) is a genus comprising around 96 species of herbaceous, carnivorous plants, which are extremely diverse in flower size, colour and spur length and structure as well as pollination strategy. In Pinguicula, nectar is formed in the flower spur; however, there is a gap in the knowledge about the nectary trichome structure in this genus. Our aim was to compare the nectary trichome structure of various Pinguicula species in order to determine whether there are any differences among the species in this genus. The taxa that were sampled were Pinguicula moctezumae, P. moranensis, P. rectifolia, P. emarginata and P. esseriana. We used light microscopy, histochemistry, scanning and transmission electron microscopy to address those aims. We show a conservative nectary trichome structure and spur anatomy in various Mexican Pinguicula species. The gross structural similarities between the examined species were the spur anatomy, the occurrence of papillae, the architecture of the nectary trichomes and the ultrastructure characters of the trichome cells. However, there were some differences in the spur length, the size of spur trichomes, the occurrence of starch grains in the spur parenchyma and the occurrence of cell wall ingrowths in the terminal cells of the nectary trichomes. Similar nectary capitate trichomes, as are described here, were recorded in the spurs of species from other Lentibulariaceae genera. There are many ultrastructural similarities between the cells of nectary trichomes in Pinguicula and Utricularia.


Subject(s)
Flowers/anatomy & histology , Lamiaceae/anatomy & histology , Plant Nectar/physiology , Trichomes/anatomy & histology , Flowers/ultrastructure , Lamiaceae/ultrastructure , Plant Stomata/anatomy & histology , Plant Stomata/ultrastructure , Trichomes/ultrastructure
13.
Sci Rep ; 9(1): 17552, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772181

ABSTRACT

Aeschynanthus (Gesneriaceae), a genus comprising approximately 160 species in subtropical Southeast Asia, has red, tubular flowers, typical of a sunbird pollination syndrome. A. acuminatus, the species that is distributed extending to the northern edge of the genus, where the specialized nectarivorous sunbirds are absent, possesses reddish-green flowers and a wide-open corolla tube, flowering time shifts from summer to winter and the species achieves high fruiting success. This atypical flower led us to investigate the pollination biology of this species. Three species of generalist passerines, Grey-cheeked Fulvetta (Alcippe morrisonia, Sylviidae), White-eared Sibia (Heterophasia auricularis, Leiothrichidae) and Taiwan Yuhina (Yuhina brunneiceps, Zosteropidae), were recorded visiting A. acuminatus flowers. Pollination effectiveness was quantified via conspecific pollen presence on stigmas and natural fruit set. The significantly high natural fruit set (60%) and conspecific pollen transfer rate (94%) indicate high reproductive success facilitated by the accurate pollen placement on the birds. The existence of copious (61 µL) and highly diluted (7%) hexose-dominant nectar, together with a major reflectance peak of corolla lobe in the long-wavelength red color spectrum, is consistent with the pollination syndrome of generalist passerines. The high pollination effectiveness of A. acuminatus due to the recruitment of generalist passerines as pollinators, and the specializations of floral traits to match generalist bird pollination, appear crucial in the successful colonization on islands such as Taiwan that lack specialized bird pollinators.


Subject(s)
Lamiales/physiology , Passeriformes , Pollination , Animals , Biological Evolution , Asia, Eastern , Flowers/anatomy & histology , Lamiales/anatomy & histology , Passeriformes/anatomy & histology , Plant Nectar/physiology
14.
J Plant Res ; 132(4): 499-507, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31228016

ABSTRACT

Extrafloral nectary (EFN)-bearing plants attract ants to gain protection against herbivores. Some EFN-bearing plants possess different types of EFNs, which might have different effects on ants on the plants. Mallotus japonicus (Thunb.) Muell. Arg. (Euphorbiaceae) bears two types of EFNs, including a pair of large EFNs at the leaf base and many small EFNs along the leaf edge. This study aimed to determine the different roles of the two types of EFNs in biotic defense by ants. A field experiment was conducted to investigate the effect of leaf damage on EFN production and on the distribution pattern of ants. After leaf damage, the number of leaf edge EFNs increased in the leaves first-produced. The number of ants on the leaves also increased, and the foraging area of ants extended from the leaf base to the leaf tip. An EFN-covering field experiment revealed that leaf edge EFNs had a greater effect than leaf base EFNs on ant dispersal on leaves. The extended foraging area of ants resulted in an increase of encounter or attack rate against an experimentally placed herbivore, Spodoptera litura. These results suggest that M. japonicus plants control the foraging area of ants on their leaves using different types of EFNs in response to leaf damage, thus achieving a very effective biotic defense against herbivores by ants.


Subject(s)
Ants , Mallotus Plant/physiology , Plant Leaves/physiology , Plant Nectar/physiology , Animals , Herbivory , Mallotus Plant/anatomy & histology , Plant Leaves/anatomy & histology , Spodoptera
15.
Sci Rep ; 9(1): 8357, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31175314

ABSTRACT

Nectar robbing - foraging nectar illegitimately - has negative, neutral, or positive effects on maternal function of plant reproduction and/or on pollinators. It has been suggested that nectar robbing has a non-negative effect on maternal function of plant reproduction in autogamous and mixed breeding plants; however this hypothesis requires deeper understanding with more studies. We investigated the impact of natural nectar robbing on maternal function of plant reproduction and visitation characteristics of pollinators in Sesamum radiatum, an autogamous plant. Pollinators were observed on unrobbed open flowers and robbed open flowers. In robbed flowers, pollinators' visit type and foraging time were examined. The seed sets of these flower types were examined. Xylocopa latipes was both a primary robber and a legitimate pollinator, X. bryorum was an exclusive primary robber, and Megachile disjuncta was a cosmopolitan pollinator. In robbed flowers, most of the pollinators foraged mostly as secondary nectar robbers. The foraging time shortened considerably when pollinators robbed nectar - a positive effect on pollinators' foraging efficiency. Robbing did not negatively affect seed set - a neutral effect on the plant's reproduction. Our study agrees that nectar robbing might have a non-negative effect on reproduction in autogamous and mixed breeding plants.


Subject(s)
Codonopsis/physiology , Plant Nectar/metabolism , Pollination/physiology , Sesamum/physiology , Animals , Bees/physiology , Feeding Behavior/physiology , Flowers/physiology , Plant Nectar/physiology , Reproduction/physiology , Seeds/physiology
16.
Plant Biol (Stuttg) ; 21(5): 967-974, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31050864

ABSTRACT

The trait-fitness relationship influences the strength and direction of floral evolution. To fully understand and predict the evolutionary trajectories of floral traits, it is critical to disentangle the direct and indirect effects of floral traits on plant fitness in natural populations. We experimentally quantified phenotypic selection on floral traits through female fitness and estimated the casual effects of nectar robbing with different nectar robbing intensities on trait-fitness relationships in both the L- (long-style and short-anther phenotype) and S-morph (short-style and long-anther phenotype) flowers among Primula secundiflora populations. A larger number of flowers and wider corolla tubes had both direct and indirect positive effects on female fitness in the P. secundiflora populations. The indirect effects of these two traits on female fitness were mediated by nectar robbers. The indirect effect of the number of flowers on female fitness increased with increasing nectar robbing intensity. In most populations, the direct and/or indirect effects of floral traits on female fitness were stronger in the S-morph flowers than in the L-morph flowers. In addition, nectar robbers had a direct positive effect on female fitness, but this effect varied between the L- and S-morph flowers. These results show the potential role of nectar robbers in influencing the trait-fitness relationships in this primrose species.


Subject(s)
Flowers/anatomy & histology , Genetic Fitness , Plant Nectar , Primula/anatomy & histology , Flowers/physiology , Genetic Fitness/physiology , Phenotype , Plant Nectar/physiology , Pollination/physiology , Primula/physiology
17.
Planta ; 250(1): 263-279, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31020407

ABSTRACT

MAIN CONCLUSION: Sugars (glucose, fructose and sucrose), as well as proteogenic and non-proteogenic amino acids, are present in the nectar of Platanthera bifolia and P. chlorantha. Nectar quantity and quality are floral traits that are subjected to pollinator-mediated selection. Nectar sugar and amino acid (AA) composition in two sister species, P. bifolia and P. chlorantha, was analysed and the interspecies differences in nectar and the importance of these nectar characteristics for reproductive success were investigated. Nectar was collected from four P. bifolia and three P. chlorantha populations that exist in different habitats in three regions of NE Poland. Nectar from about 30 flowers (from each population) was sampled and analysed using high-performance liquid chromatography. We found the same primary sugars and AA components in the nectar of both species, although their content varied between the populations according to habitat properties. The nectar of P. bifolia and P. chlorantha both had low sugar concentrations (9.04-20.68%) and were dominated by hexoses, with sucrose:hexoses ratios between 0.03 and 0.31 across the different populations (the average for the P. bifolia populations was 0.17 and the average for the P. chlorantha populations was - 0.05). Total sugar content did not influence reproductive success and we found positive selection on fructose content. In general, 23 different AAs were detected in both Platanthera species. Cysteine and γ-aminobutyric acid were present in only one population of P. chlorantha. Sarcosine dominated among the non-proteogenic AAs. To our knowledge, this is the first report that characterizes the sugar and AA profiles in the nectar of P. bifolia and P. chlorantha in natural populations in the context of effectiveness of reproduction. Total AAs negatively influenced male reproductive success (r = - 0.79). Pollinators of the investigated species were found to be sensitive to the AAs' taste, from taste classes I and IV. Correlation between male reproductive success and the content of AAs from these groups was 0.79 in both cases. In this manuscript, we investigated the characteristics of P. bifolia and P. chlorantha nectar, and compared these characteristics to the available data in the context of their adaptations to the requirements of pollinators and with regard to the importance of nectar quality for reproductive success of the studied species.


Subject(s)
Moths/physiology , Orchidaceae/chemistry , Plant Nectar/chemistry , Amino Acids/analysis , Animals , Ecosystem , Flowers/chemistry , Flowers/physiology , Fructose/analysis , Glucose/analysis , Orchidaceae/physiology , Plant Nectar/physiology , Poland , Pollination , Reproduction , Sucrose/analysis
18.
New Phytol ; 223(1): 377-384, 2019 07.
Article in English | MEDLINE | ID: mdl-30834532

ABSTRACT

Evolution of complex phenotypes depends on the adaptive importance of individual traits, and the developmental changes required to modify traits. Floral syndromes are complex adaptations to pollinators that include color, nectar, and shape variation. Hummingbird-adapted flowers have evolved a remarkable number of times from bee-adapted ancestors in Penstemon, and previous work demonstrates that color over shape better distinguishes bee from hummingbird syndromes. Here, we examined the relative importance of nectar volume and nectary development in defining Penstemon pollination syndromes. We tested the evolutionary association of nectar volume and nectary area with pollination syndrome across 19 Penstemon species. In selected species, we assessed cellular-level processes shaping nectary size. Within a segregating population from an intersyndrome cross, we assessed trait correlations between nectar volume, nectary area, and the size of stamens on which nectaries develop. Nectar volume and nectary area displayed an evolutionary association with pollination syndrome. These traits were correlated within a genetic cross, suggesting a mechanistic link. Nectary area evolution involves parallel processes of cell expansion and proliferation. Our results demonstrate that changes to nectary patterning are an important contributor to pollination syndrome diversity and provide further evidence that repeated origins of hummingbird adaptation involve parallel developmental processes in Penstemon.


Subject(s)
Adaptation, Physiological , Penstemon/anatomy & histology , Plant Nectar/physiology , Pollination/physiology , Quantitative Trait, Heritable , Cell Size , Crosses, Genetic , Flowers/physiology , Linear Models , Organ Size , Phylogeny
19.
Plant Biol (Stuttg) ; 21(4): 738-744, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30773824

ABSTRACT

Most angiosperms rely on animal pollination for reproduction, but the dependence on specific pollinator groups varies greatly between species and localities. Notably, such dependence may be influenced by both floral traits and environmental conditions. Despite its importance, their joint contribution has rarely been studied at the assemblage level. At two elevations on the Caribbean island of Dominica, we measured the floral traits and the relative contributions of insects versus hummingbirds as pollinators of plants in the Rubiaceae family. Pollinator importance was measured as visitation rate (VR) and single visit pollen deposition (SVD), which were combined to assess overall pollinator effectiveness (PE). In the wet and cool Dominican highland, we found that hummingbirds were relatively more frequent and effective pollinators than insects, whereas insects and hummingbirds were equally frequent and effective pollinators at the warmer and less rainy midelevation. Furthermore, floral traits correlated independently of environment with the relative importance of pollinators, hummingbirds being more important in plant species having flowers with long and wide corollas producing higher volumes of dilute nectar. Our findings show that both environmental conditions and floral traits influence whether insects or hummingbirds are the most important pollinators of plants in the Rubiaceae family, highlighting the complexity of plant-pollinator systems.


Subject(s)
Birds , Insecta , Pollination , Rubiaceae/physiology , Altitude , Animals , Birds/physiology , Dominica , Flowers/anatomy & histology , Flowers/physiology , Humidity , Insecta/physiology , Plant Nectar/physiology , Rubiaceae/anatomy & histology , Temperature
20.
PLoS One ; 14(2): e0211855, 2019.
Article in English | MEDLINE | ID: mdl-30811515

ABSTRACT

Mutualistic interactions are powerful drivers of biodiversity on Earth that can be represented as complex interaction networks that vary in connection pattern and intensity. One of the most fascinating mutualisms is the interaction between hummingbirds and the plants they visit. We conducted an exhaustive search for articles, theses, reports, and personal communications with researchers (unpublished data) documenting hummingbird visits to flowers of nectar-rewarding plants. Based on information gathered from 4532 interactions between 292 hummingbird species and 1287 plant species, we built an interaction network between nine hummingbird clades and 100 plant families used by hummingbirds as nectar resources at a continental scale. We explored the network architecture, including phylogenetic, morphological, biogeographical, and distributional information. As expected, the network between hummingbirds and their nectar plants was heterogeneous and nested, but not modular. When we incorporated ecological and historical information in the network nodes, we found a generalization gradient in hummingbird morphology and interaction patterns. The hummingbird clades that most recently diversified in North America acted as generalist nodes and visited flowers with ornithophilous, intermediate and non-ornithophilous morphologies, connecting a high diversity of plant families. This pattern was favored by intermediate morphologies (bill, wing, and body size) and by the low niche conservatism in these clades compared to the oldest clades that diversified in South America. Our work is the first effort exploring the hummingbird-plant mutualistic network at a continental scale using hummingbird clades and plant families as nodes, offering an alternative approach to exploring the ecological and evolutionary factors that explain plant-animal interactions at a large scale.


Subject(s)
Birds/physiology , Feeding Behavior/physiology , Plant Nectar/physiology , Plant Physiological Phenomena , Animals , Biodiversity , Body Size , Flowers/physiology , Pollination/physiology , Seasons , South America , Specialization , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...