Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.572
Filter
1.
Planta ; 260(3): 56, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039321

ABSTRACT

MAIN CONCLUSION: Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm2 and the size varied between 128.31 and 339.01 µm2 among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 µmol CO2 mol-1 H2O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.


Subject(s)
Genotype , Oryza , Plant Leaves , Plant Stomata , Plant Transpiration , Water , Oryza/genetics , Oryza/physiology , Oryza/growth & development , Plant Stomata/physiology , Plant Stomata/genetics , Water/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Plant Transpiration/physiology , Vapor Pressure
2.
PLoS One ; 19(7): e0299686, 2024.
Article in English | MEDLINE | ID: mdl-39058678

ABSTRACT

Transpiration efficiency (TE), the biomass produced per unit of water transpired, is a key trait for crop performance under limited water. As water becomes scarce, increasing TE would contribute to increase crop drought tolerance. This study is a first step to explore pearl millet genotypic variability for TE on a large and representative diversity panel. We analyzed TE on 537 pearl millet genotypes, including inbred lines, test-cross hybrids, and hybrids bred for different agroecological zones. Three lysimeter trials were conducted in 2012, 2013 and 2015, to assess TE both under well-watered and terminal-water stress conditions. We recorded grain yield to assess its relationship with TE. Up to two-fold variation for TE was observed over the accessions used. Mean TE varied between inbred and testcross hybrids, across years and was slightly higher under water stress. TE also differed among hybrids developed for three agroecological zones, being higher in hybrids bred for the wetter zone, underlining the importance of selecting germplasm according to the target area. Environmental conditions triggered large Genotype x Environment (GxE) interactions, although TE showed some high heritability. Transpiration efficiency was the second contributor to grain yield after harvest index, highlighting the importance of integrating it into pearl millet breeding programs. Future research on TE in pearl millet should focus (i) on investigating the causes of its plasticity i.e. the GxE interaction (ii) on studying its genetic basis and its association with other important physiological traits.


Subject(s)
Genotype , Pennisetum , Plant Transpiration , Pennisetum/genetics , Pennisetum/physiology , Pennisetum/growth & development , Plant Transpiration/physiology , Droughts , Water/metabolism , Biomass , Plant Breeding/methods , Genetic Variation
3.
Sci Rep ; 14(1): 14672, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918471

ABSTRACT

Investigating differences in resistance to alkaline stress among three willow species can provide a theoretical basis for planting willow in saline soils. Therefore we tested three willow species (Salix matsudana, Salix gordejevii and Salix linearistipularis), already known for their high stress tolerance, to alkaline stress environment at different pH values under hydroponics. Root and leaf dry weight, root water content, leaf water content, chlorophyll content, photosynthesis and chlorophyll fluorescence of three willow cuttings were monitored six times over 15 days under alkaline stress. With the increase in alkaline stress, the water retention capacity of leaves of the three species of willow cuttings was as follows: S. matsudana > S. gordejevii > S. linearistipularis and the water retention capacity of the root system was as follows: S. gordejevii > S. linearistipularis > S. matsudana. The chlorophyll content was significantly reduced, damage symptoms were apparent. The net photosynthetic rate (Pn), rate of transpiration (E), and stomatal conductance (Gs) of the leaves showed a general trend of decreasing, and the intercellular CO2 concentration (Ci) of S. matsudana and S. gordejevii first declined and then tended to level off, while the intercellular CO2 concentration of S. linearistipularis first declined and then increased. The quantum yield and energy allocation ratio of the leaf photosystem II (PSII) reaction centre changed significantly (φPo, Ψo and φEo were obviously suppressed and φDo was promoted). The photosystem II (PSII) reaction centre quantum performance index and driving force showed a clear downwards trend. Based on the results it can be concluded that alkaline stress tolerance of three willow was as follows: S. matsudana > S. gordejevii > S. linearistipularis. However, since the experiment was done on young seedlings, further study at saplings stage is required to revalidate the results.


Subject(s)
Chlorophyll , Photosynthesis , Plant Leaves , Salix , Stress, Physiological , Salix/metabolism , Salix/physiology , Salix/growth & development , Chlorophyll/metabolism , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Roots/metabolism , Hydrogen-Ion Concentration , Water/metabolism , Plant Transpiration/physiology
4.
Nat Commun ; 15(1): 4826, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844502

ABSTRACT

During extensive periods without rain, known as dry-downs, decreasing soil moisture (SM) induces plant water stress at the point when it limits evapotranspiration, defining a critical SM threshold (θcrit). Better quantification of θcrit is needed for improving future projections of climate and water resources, food production, and ecosystem vulnerability. Here, we combine systematic satellite observations of the diurnal amplitude of land surface temperature (dLST) and SM during dry-downs, corroborated by in-situ data from flux towers, to generate the observation-based global map of θcrit. We find an average global θcrit of 0.19 m3/m3, varying from 0.12 m3/m3 in arid ecosystems to 0.26 m3/m3 in humid ecosystems. θcrit simulated by Earth System Models is overestimated in dry areas and underestimated in wet areas. The global observed pattern of θcrit reflects plant adaptation to soil available water and atmospheric demand. Using explainable machine learning, we show that aridity index, leaf area and soil texture are the most influential drivers. Moreover, we show that the annual fraction of days with water stress, when SM stays below θcrit, has increased in the past four decades. Our results have important implications for understanding the inception of water stress in models and identifying SM tipping points.


Subject(s)
Ecosystem , Soil , Water , Soil/chemistry , Water/metabolism , Temperature , Plant Transpiration/physiology , Plants/metabolism , Dehydration , Plant Leaves/physiology , Climate , Rain , Machine Learning
5.
STAR Protoc ; 5(2): 103124, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38870017

ABSTRACT

Global warming will change the photosynthesis and transpiration of plants greatly and ultimately affect water use efficiency (WUE). Here, we present a protocol to investigate the response of maize WUE to the coupling effect of CO2 and temperature at ear stage using a specialized designed gradient. We describe steps for plant culture, parameter measurements, model fitting, and statistical analysis. This protocol holds potential for studying the response of WUE and CO2 adaptation across various plant species. For complete details on the use and execution of this protocol, please refer to Sun et al.1.


Subject(s)
Carbon Dioxide , Photosynthesis , Temperature , Zea mays , Zea mays/physiology , Carbon Dioxide/metabolism , Photosynthesis/physiology , Water/metabolism , Plant Transpiration/physiology
6.
Physiol Plant ; 176(3): e14360, 2024.
Article in English | MEDLINE | ID: mdl-38797869

ABSTRACT

Potassium (K+) is an essential macronutrient for appropriate plant development and physiology. However, little is known about the mechanisms involved in the regulation of leaf water relations by K under water deficit. A pot experiment with two K supplies of 0.45 and 0 g K2O per pot (3 kg soil per pot) and two watering conditions (well-watered and water-deficit) was conducted to explore the effects of K deficiency on canopy transpiration characteristics, leaf water status, photosynthesis, and hydraulic traits in two rice genotypes with contrasting resistance to drought. The results showed that K deficiency reduced canopy transpiration rate by decreasing stomatal conductance, which led to higher canopy temperatures, resulting in limited water deficit tolerance in rice. In addition, K deficiency led to further substantial reductions in leaf relative water content and water potential under water deficit, which increased the imbalance in leaf water relations under water deficit. Notably, K deficiency limited leaf gas exchange by reducing leaf hydraulic conductance, but decreased the intrinsic water use efficiency under water deficit, especially for the drought-resistant cultivar. Further analysis of the underlying process of leaf hydraulic resistance revealed that the key limiting factor of leaf hydraulic conductance under K deficiency was the outside-xylem hydraulic conductance rather than the xylem hydraulic conductance. Overall, our results provide a comprehensive perspective for assessing leaf water relations under K deficiency, water deficit, and their combined stresses, which will be useful for optimal rice fertilization strategies.


Subject(s)
Droughts , Oryza , Plant Leaves , Plant Transpiration , Potassium , Water , Oryza/physiology , Oryza/genetics , Oryza/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism , Water/metabolism , Plant Transpiration/physiology , Potassium/metabolism , Photosynthesis/physiology , Plant Stomata/physiology , Xylem/physiology , Xylem/metabolism
7.
Plant Cell Environ ; 47(8): 3147-3165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38693776

ABSTRACT

Partial root-zone drying irrigation (PRD) can improve water-use efficiency (WUE) without reductions in photosynthesis; however, the mechanism by which this is attained is unclear. To amend that, PRD conditions were simulated by polyethylene glycol 6000 in a root-splitting system and the effects of PRD on cotton growth were studied. Results showed that PRD decreased stomatal conductance (gs) but increased mesophyll conductance (gm). Due to the contrasting effects on gs and gm, net photosynthetic rate (AN) remained unaffected, while the enhanced gm/gs ratio facilitated a larger intrinsic WUE. Further analyses indicated that PRD-induced reduction of gs was related to decreased stomatal size and stomatal pore area in adaxial and abaxial surface which was ascribed to lower pore length and width. PRD-induced variation of gm was ascribed to the reduced liquid-phase resistance, due to increases in chloroplast area facing to intercellular airspaces and the ratio of chloroplast surface area to total mesophyll cell area exposed to intercellular airspaces, as well as to decreases in the distance between cell wall and chloroplast, and between adjacent chloroplasts. The above results demonstrate that PRD, through alterations to stomatal and mesophyll structures, decoupled gs and gm responses, which ultimately increased intrinsic WUE and maintained AN.


Subject(s)
Agricultural Irrigation , Gossypium , Mesophyll Cells , Photosynthesis , Plant Leaves , Plant Roots , Plant Stomata , Water , Gossypium/physiology , Gossypium/metabolism , Plant Stomata/physiology , Mesophyll Cells/metabolism , Mesophyll Cells/physiology , Water/metabolism , Plant Roots/physiology , Plant Roots/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Transpiration/physiology , Chloroplasts/metabolism , Desiccation
8.
Plant Cell Environ ; 47(8): 3166-3180, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38693830

ABSTRACT

Urban trees possess different capacities to mitigate ozone (O3) pollution through stomatal uptake. Stomatal closure protects trees from oxidative damage but limits their growth. To date, it is unclear how plant hydraulic function affect stomatal behaviour and determine O3 resistance. We assessed gas exchange and hydraulic traits in three subtropical urban tree species, Celtis sinensis, Quercus acutissima, and Q. nuttallii, under nonfiltered ambient air (NF) and elevated O3 (NF60). NF60 decreased photosynthetic rate (An) and stomatal conductance (gs) only in Q. acutissima and Q. nuttallii. Maintained An in C. sinensis suggested high O3 resistance and was attributed to higher leaf capacitance at the full turgor. However, this species exhibited a reduced stomatal sensitivity to vapour pressure deficit and an increased minimal gs under NF60. Such stomatal dysfunction did not decrease intrinsic water use efficiency (WUE) due to a tight coupling of An and gs. Conversely, Q. acutissima and Q. nuttallii showed maintained stomatal sensitivity and increased WUE, primarily correlated with gs and leaf water relations, including relative water content and osmotic potential at turgor loss point. Our findings highlight a trade-off between O3 resistance and stomatal functionality, with efficient stomatal control reducing the risk of hydraulic failure under combined stresses.


Subject(s)
Ozone , Photosynthesis , Plant Leaves , Plant Stomata , Quercus , Trees , Water , Ozone/pharmacology , Plant Stomata/physiology , Plant Stomata/drug effects , Water/metabolism , Water/physiology , Trees/physiology , Trees/drug effects , Plant Leaves/physiology , Plant Leaves/drug effects , Plant Leaves/metabolism , Quercus/physiology , Quercus/drug effects , Photosynthesis/drug effects , Plant Transpiration/physiology , Plant Transpiration/drug effects
9.
New Phytol ; 243(2): 648-661, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757766

ABSTRACT

Elevated air temperature (Tair) and vapour pressure deficit (VPDair) significantly influence plant functioning, yet their relative impacts are difficult to disentangle. We examined the effects of elevated Tair (+6°C) and VPDair (+0.7 kPa) on the growth and physiology of six tropical tree species. Saplings were grown under well-watered conditions in climate-controlled glasshouses for 6 months under three treatments: (1) low Tair and low VPDair, (2) high Tair and low VPDair, and (3) high Tair and high VPDair. To assess acclimation, physiological parameters were measured at a set temperature. Warm-grown plants grown under elevated VPDair had significantly reduced stomatal conductance and increased instantaneous water use efficiency compared to plants grown under low VPDair. Photosynthetic biochemistry and thermal tolerance (Tcrit) were unaffected by VPDair, but elevated Tair caused Jmax25 to decrease and Tcrit to increase. Sapling biomass accumulation for all species responded positively to an increase in Tair, but elevated VPDair limited growth. This study shows that stomatal limitation caused by even moderate increases in VPDair can decrease productivity and growth rates in tropical species independently from Tair and has important implications for modelling the impacts of climate change on tropical forests.


Subject(s)
Plant Leaves , Plant Stomata , Rainforest , Temperature , Trees , Vapor Pressure , Trees/physiology , Trees/growth & development , Plant Leaves/physiology , Plant Leaves/growth & development , Plant Stomata/physiology , Tropical Climate , Photosynthesis , Species Specificity , Water/metabolism , Plant Transpiration/physiology , Biomass , Gases/metabolism
10.
New Phytol ; 243(2): 567-579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38812270

ABSTRACT

Aerosols could significantly influence ecosystem carbon and water fluxes, potentially altering their interconnected dynamics, typically characterized by water-use efficiency (WUE). However, our understanding of the underlying ecophysiological mechanisms remains limited due to insufficient field observations. We conducted 4-yr measurements of leaf photosynthesis and transpiration, as well as 3-yr measurements of stem growth (SG) and sap flow of poplar trees exposed to natural aerosol fluctuation, to elucidate aerosol's impact on plant WUE. We found that aerosol improved sun leaf WUE mainly because a sharp decline in photosynthetically active radiation (PAR) inhibited its transpiration, while photosynthesis was less affected, as the negative effect induced by declined PAR was offset by the positive effect induced by low leaf vapor pressure deficit (VPDleaf). Conversely, diffuse radiation fertilization (DRF) effect stimulated shade leaf photosynthesis with minimal impact on transpiration, leading to an improved WUE. The responses were further verified by a strong DRF on SG and a decrease in sap flow due to the suppresses in total radiation and VPD. Our field observations indicate that, contrary to the commonly assumed coupling response, carbon uptake and water use exhibited dissimilar reactions to aerosol pollution, ultimately enhancing WUE at the leaf and canopy level.


Subject(s)
Aerosols , Carbon , Photosynthesis , Plant Leaves , Plant Transpiration , Populus , Water , Water/metabolism , Photosynthesis/radiation effects , Photosynthesis/drug effects , Carbon/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Leaves/drug effects , Plant Transpiration/physiology , Plant Transpiration/radiation effects , Populus/physiology , Populus/radiation effects , Populus/drug effects , Plant Stems/radiation effects , Plant Stems/drug effects , Plant Stems/physiology
11.
Tree Physiol ; 44(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38700996

ABSTRACT

Cloud forests are unique biomes that thrive in foggy environments for a substantial part of the season. Fog in cloud forests plays two critical roles: it reduces incoming radiation and creates a humid environment, leading to the wetting of the canopy. This paper aims to investigate the combined effect of both radiation and wetness on Myrica faya Wilbur-a cloud forest species present in subtropical regions-both directly in plants and through simulations. Experiments consisted of a controlled environment with two levels of radiation and leaf wetness: low radiation/wet conditions, and high radiation/no-wetness; and three treatments: continuous low radiation and wetness, continuous high radiation and no wetness and alternate high low radiation and alternate wetness. The results revealed that a combination of low radiation and leaf wetness significantly improves leaf stomata conductance and increases the specific leaf area (SLA). Changes in SLA were driven by leaf size changes. However, the minimum leaf conductance (gmin) did not respond to any of the treatments. The simulations focused on exploring the impact of radiation and canopy wetness on transpiration efficiency (TE), i.e. the ratio between photosynthesis (An) and transpiration (Tc). The simulations demonstrated that TE increased exponentially as the canopy was gradually wetted, regardless of the radiation environment. This increase in TE results from Tc approaching zero while An maintains positive values. Overall, this study provides an integrated understanding of how fog alters M. faya functioning and, potentially, other cloud forest tree species.


Subject(s)
Forests , Plant Leaves , Plant Transpiration , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Transpiration/physiology , Plant Transpiration/radiation effects , Myrica/physiology , Photosynthesis/physiology , Trees/physiology , Trees/radiation effects
12.
Photosynth Res ; 160(2-3): 97-109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702531

ABSTRACT

In this study, the morphological (plant height, leaf length and width, stem diameter and leaf number), anatomical (epidermal cell density and thickness, Stomatal length and width), photosynthetic (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, relative humidity, leaf temperature and chlorophyll fluorescence parameters) and biochemical parameters (the content of soluble sugar, soluble protein, proline, malondialdehyde and electrical conductivity) of Cypripedium macranthos Sw. in Changbai Mountain were determined under different light conditions (L10, L30, L50, L100). The results showed that morphological values including plant height, leaf area, stem diameter and leaf number of C. macranthos were smaller under the condition of full light at L100. The epidermal cell density and epidermal thickness of C. macranthos were the highest under L30 and L50 treatments, respectively. It had the highest net photosynthetic rate (Pn) and chlorophyll content under L50 treatment. Meanwhile, correlation analysis indicated that photosynthetically active radiation (PAR) and water use efficiency (WUE) were the main factors influencing Pn. C. macranthos accumulated more soluble sugars and soluble proteins under L100 treatment, while the degree of membrane peroxidation was the highest and the plant was severely damaged. In summary, the adaptability of C. macranthos to light conditions is ranked as follows L50 > L30 > L10 > L100. Appropriate light conditions for C. macranthos are 30%-50% of full light, which should be taken into account in protection and cultivation.


Subject(s)
Chlorophyll , Light , Photosynthesis , Photosynthesis/physiology , Chlorophyll/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Leaves/metabolism , Plant Stomata/physiology , Plant Stomata/radiation effects , Malondialdehyde/metabolism , Plant Transpiration/physiology
13.
Physiol Plant ; 176(3): e14326, 2024.
Article in English | MEDLINE | ID: mdl-38708565

ABSTRACT

Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.


Subject(s)
Climate Change , Droughts , Plant Leaves , Trees , Tropical Climate , Water , Water/metabolism , Water/physiology , Trees/physiology , Trees/growth & development , Plant Leaves/physiology , Plant Stomata/physiology , Acclimatization/physiology , Plant Transpiration/physiology , Temperature
14.
Plant Physiol ; 195(4): 2668-2682, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38748559

ABSTRACT

Species mixture is promoted as a crucial management option to adapt forests to climate change. However, there is little consensus on how tree diversity affects tree water stress, and the underlying mechanisms remain elusive. By using a greenhouse experiment and a soil-plant-atmosphere hydraulic model, we explored whether and why mixing the isohydric Aleppo pine (Pinus halepensis, drought avoidant) and the anisohydric holm oak (Quercus ilex, drought tolerant) affects tree water stress during extreme drought. Our experiment showed that the intimate mixture strongly alleviated Q. ilex water stress while it marginally impacted P. halepensis water stress. Three mechanistic explanations for this pattern are supported by our modeling analysis. First, the difference in stomatal regulation between species allowed Q. ilex trees to benefit from additional soil water in mixture, thereby maintaining higher water potentials and sustaining gas exchange. By contrast, P. halepensis exhibited earlier water stress and stomatal regulation. Second, P. halepensis trees showed stable water potential during drought, although soil water potential strongly decreased, even when grown in a mixture. Model simulations suggested that hydraulic isolation of the root from the soil associated with decreased leaf cuticular conductance was a plausible explanation for this pattern. Third, the higher predawn water potentials for a given soil water potential observed for Q. ilex in mixture can-according to model simulations-be explained by increased soil-to-root conductance, resulting from higher fine root length. This study brings insights into the mechanisms involved in improved drought resistance of mixed species forests.


Subject(s)
Droughts , Pinus , Plant Stomata , Quercus , Soil , Trees , Water , Quercus/physiology , Pinus/physiology , Water/metabolism , Trees/physiology , Plant Stomata/physiology , Soil/chemistry , Plant Roots/physiology , Plant Leaves/physiology , Plant Transpiration/physiology , Models, Biological , Species Specificity , Dehydration
15.
Tree Physiol ; 44(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38676920

ABSTRACT

In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system where trees have been submitted to amplified drought (AD) (~-30% of annual precipitation) since April 2012 and compared them with trees under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs), transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49% drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.


Subject(s)
Droughts , Forests , Plant Leaves , Quercus , Quercus/physiology , Quercus/anatomy & histology , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Rain , Plant Transpiration/physiology , Trees/physiology , Trees/anatomy & histology , Climate Change , Plant Stomata/physiology , Plant Stomata/anatomy & histology
16.
Tree Physiol ; 44(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38606678

ABSTRACT

Worldwide, forests are increasingly exposed to extreme droughts causing tree mortality. Because of the complex nature of the mechanisms involved, various traits have been linked to tree drought responses with contrasting results. This may be due to species-specific strategies in regulating water potential, a process that unfolds in two distinct phases: a first phase until stomatal closure, and a second phase until reaching lethal xylem hydraulic thresholds. We conducted dry-down experiments with five broadleaved temperate tree species differing in their degree of isohydry to estimate the time to stomatal closure (tsc) and subsequent time to critical hydraulic failure (tcrit). We measured various traits linked to tree drought responses, such as the water potentials at turgor loss point (Ptlp), stomatal closure (Pgs90), and 12%, 50% and 88% loss of xylem hydraulic conductance (P12, P50, P88), hydraulic capacitance (C), minimum leaf conductance (gmin), hydroscape area (HSA) and hydraulic safety margins (HSM). We found that Pgs90 followed previously recorded patterns of isohydry and was associated with HSA. Species ranked from more to less isohydric in the sequence Acer pseudoplatanus < Betula pendula < Tilia cordata < Sorbus aucuparia < Fagus sylvatica. Their degree of isohydry was associated with leaf safety (Ptlp and gmin), drought avoidance (C) and tsc, but decoupled from xylem safety (HSM and P88) and tcrit. Regardless of their stomatal stringency, species with wider HSM and lower P88 reached critical hydraulic failure later. We conclude that the duration of the first phase is determined by stomatal regulation, while the duration of the second phase is associated with xylem safety. Isohydry is thus linked to water use rather than to drought survival strategies, confirming the proposed use of HSA as a complement to HSM for describing plant drought responses before and after stomatal closure.


Subject(s)
Plant Stomata , Trees , Water , Xylem , Plant Stomata/physiology , Trees/physiology , Xylem/physiology , Water/metabolism , Water/physiology , Droughts , Species Specificity , Plant Transpiration/physiology
17.
New Phytol ; 242(5): 1932-1943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641865

ABSTRACT

Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.


Subject(s)
Carbon , Eucalyptus , Photosynthesis , Trees , Water , Wood , Eucalyptus/physiology , Eucalyptus/metabolism , Carbon/metabolism , Trees/physiology , Trees/metabolism , Water/metabolism , Wood/physiology , Plant Transpiration/physiology , Models, Biological
18.
Methods Mol Biol ; 2790: 213-226, 2024.
Article in English | MEDLINE | ID: mdl-38649573

ABSTRACT

Canopy photosynthesis (Ac), rather than leaf photosynthesis, is critical to gaining higher biomass production in the field because the daily or seasonal integrals of Ac correlate with the daily or seasonal integrals of biomass production. The canopy photosynthesis and transpiration measurement system (CAPTS) was developed to enable measurement of canopy photosynthetic CO2 uptake, transpiration, and respiration rates. CAPTS continuously records the CO2 concentration, water vapor concentration, air temperature, air pressure, air relative humidity, and photosynthetic photon flux density (PPFD) inside the chamber, which can be used to derive CO2 and H2O fluxes of a canopy covered by the chamber. This system can also be used to measure the fluxes of greenhouse gases when integrating with CH4 and N2O analyzers. Here, we describe the protocol for using CAPTS to perform experiments on rice (Oryza sativa L.) in paddy field, wheat (Triticum aestivum L.) in upland field, and tobacco (Nicotiana tabacum L.) in pots.


Subject(s)
Carbon Dioxide , Oryza , Photosynthesis , Plant Leaves , Plant Transpiration , Photosynthesis/physiology , Plant Transpiration/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Oryza/growth & development , Oryza/physiology , Oryza/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Leaves/growth & development , Nicotiana/physiology , Nicotiana/metabolism , Nicotiana/growth & development , Triticum/growth & development , Triticum/physiology , Triticum/metabolism , Water/metabolism
19.
Methods Mol Biol ; 2787: 55-68, 2024.
Article in English | MEDLINE | ID: mdl-38656481

ABSTRACT

This chapter presents the application of Plantarray, a high-throughput platform commercially available for noninvasive monitoring of plant functional physiology phenotyping (FPP). The platform continuously measures water flux in the soil-plant-atmosphere for each plant in dynamic environments. To better interpret the massive phenotypic data acquired with FPP, several quantitative analysis methods were demonstrated for various types of data. Simple mathematical models were utilized to fit characteristic parameters of plant transpiration response to drought stress. Additionally, ecophysiological models were employed to quantify the sensitivity of transpiration to radiation and vapor pressure deficit (VPD) as component traits and predict more complex higher-order traits. The established protocols provide a tangible tool for integrating FPP and model analysis to address complex traits.


Subject(s)
Phenotype , Plant Physiological Phenomena , Plant Transpiration/physiology , Droughts , Water , Stress, Physiological
20.
J Plant Res ; 137(4): 627-640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38517654

ABSTRACT

Shading is an environmental factor that has been little investigated regarding its effects on emergent aquatic plants. Typha domingensis Pers. is an emergent macrophyte that demonstrates some plasticity for self-shading, and as it can shade other species in the same area, the effect of shading on its traits deserves further investigation. The objective of the present study was to evaluate the gas exchange, leaf anatomy, and growth of T. domingensis cultivated under increasing shading intensities. The plants were collected and propagated in a greenhouse, and the clones were subjected to four shading intensities: 0% (unshaded), 35%, 73%, and 83% shading created by black nets. Growth traits, clonal production, photosynthesis, transpiration, and leaf anatomy were evaluated. The 73% and 83% shading promoted the death of all plants, but all plants survived in the 35% and unshaded treatments. Compared with the unshaded treatment, the 35% shading treatment promoted a higher photosynthetic rate and greater transpiration, supporting increased growth and production of clones. The increase in the photosynthetic rate in the 35% shading was related to the increase in leaf area which increased the photosynthesis of the whole plant. The 73% and 83% treatments inhibited the development of photosynthetic parenchyma and stomata in T. domingensis, leading to a drastic reduction in photosynthesis and energy depletion. Therefore, T. domingensis does not tolerate intense shading, but its photosynthetic characteristics and growth are favored by mild shading, a factor that may be of great importance for its competitiveness and invasive behavior.


Subject(s)
Photosynthesis , Plant Leaves , Typhaceae , Photosynthesis/physiology , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Plant Leaves/radiation effects , Plant Leaves/growth & development , Typhaceae/physiology , Plant Transpiration/physiology , Sunlight , Plant Stomata/physiology , Plant Stomata/radiation effects , Plant Stomata/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL