Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Food Res Int ; 192: 114828, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147517

ABSTRACT

To enhance the drying quality of potato slices, this investigation employed a microwave heating (MH) combined with ethanol osmotic dehydration (EOD) pretreatment strategy to improve the quality of explosion puffing drying (EPD). This paper systematically investigated the effects of different pretreatment methods (no treatment, HAD, MH, EOD, MH+EOD) on the quality and physicochemical properties of potato slices subjected to CO2-EPD. The results showed that after MH and EOD pretreatments, the internal pores of the potato slices exhibited a uniform porous structure. The MH+EOD+CO2-EPD treatment demonstrated superior expansion, crispness, hardness, and color, with higher retention rates of vitamin C and protein. The measurements were an expansion ratio of 2.15, hardness of 1290.01 g, crispness of 745.94 g, ΔE of 6.54, protein content of 1.99 g/100 g, and VC content of 17.33 mg/100 g. Additionally, the study explored the effects of microwave power, microwave drying time, ethanol concentration, and ethanol soaking time on the expansion ratio, hardness, crispness, protein content, VC content, and color. MH+EOD+CO2-EPD is an environmentally sustainable and efficient solution with potential for widespread industrial application to enhance processing quality and economic benefits.


Subject(s)
Carbon Dioxide , Desiccation , Ethanol , Food Handling , Microwaves , Solanum tuberosum , Solanum tuberosum/chemistry , Carbon Dioxide/analysis , Desiccation/methods , Food Handling/methods , Color , Ascorbic Acid/analysis , Hardness , Plant Tubers/chemistry , Plant Tubers/radiation effects
2.
Curr Microbiol ; 81(10): 320, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39174841

ABSTRACT

The presence of different mycotoxins in 232 tuber samples exhibiting dry rot symptoms and their associated Fusarium strains from two production sites in Algeria was investigated. LC-MS/MS was used to simultaneously detect and quantify 14 mycotoxins, including trichothecenes and non-trichothecenes. A total of 49 tubers were contaminated with at least one mycotoxins, including T-2, HT-2, Diacetoxyscirpenol (DAS), 15-acetoxyscirpenol (15-AS) and Beauvericin (BEA). Positive samples from the Bouira region had a significantly higher level of toxin contamination compared to Ain Defla (56.34% and 5.59%, respectively). A total of 283 Fusarium strains were isolated: 155 from Bouira and 128 from Ain Defla. These strains were evaluated for their ability to produce the targeted mycotoxins. The results showed that 61.29% and 53.9% of strains originate from Bouira and Ain Defla regions were able to produce Nivalenol, Fusarenone-X, DAS, 15-AS, Neosolaniol, BEA and Zearalenone. The phylogenetic analysis of the conserved ribosomal internal transcribed spacer (ITS) sequences of 29 Fusarium strains, representative of the recorded mycotoxins profiles, was distributed into 5 Fusarium species complexes (SC): F. incarnatum-equiseti SC (FIESC), F. sambucinum SC (FSAMSC), F. oxysporum SC (FOSC), F. tricinctum SC (FTSC) and F. redolens SC (FRSC). This is the first study determining multiple occurrences of mycotoxins contamination associated to Fusarium dry rot of potato in Algeria and highlights fungal potential for producing trichothecene and non-trichothecens mycotoxins.


Subject(s)
Fusarium , Mycotoxins , Plant Diseases , Plant Tubers , Solanum tuberosum , Fusarium/metabolism , Fusarium/genetics , Fusarium/classification , Fusarium/isolation & purification , Fusarium/chemistry , Algeria , Mycotoxins/metabolism , Mycotoxins/analysis , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Plant Tubers/microbiology , Tandem Mass Spectrometry , Chromatography, Liquid , Phylogeny
3.
Funct Plant Biol ; 512024 Aug.
Article in English | MEDLINE | ID: mdl-39163498

ABSTRACT

The synthesis and differential allocation of reserve compounds is an important adaptive mechanism that enables species to resprout in fire-prone ecosystems. The analysis of compound allocation dynamics (differential accumulation of compounds between plant organs) provides insights into plant responses to disturbances. The aim was to quantify reserves in eight legume species from Cerrado open savannas with high fire frequency in order to investigate the patterns of allocation and distribution of compounds between leaves and underground organs, drawing ecophysiological inferences. The species were collected in 'campo sujo' areas of the Cerrado. Leaves and underground organs (xylopodium, taproot tubers) were subjected to physiological analyses. Overall, underground organs were characterised by greater deposits of carbohydrates, mainly soluble sugars, and also with the accumulation of proteins and amino acids. This suggests that nitrogen reserves, as well as carbohydrates, may have an ecophysiological function in response to fire, being allocated to the underground organs. Phenols were mainly evident in leaves, but a morphophysiological pattern was identified, where the two species with taproot tubers tended to concentrate more phenols in the underground portion compared to species with xylopodium, possibly due to functional differences between these organs. Such data allow inferring relevant ecophysiological dynamics in legumes from open savannas.


Subject(s)
Fabaceae , Plant Leaves , Fabaceae/metabolism , Plant Leaves/metabolism , Fires , Grassland , Brazil , Phenols/metabolism , Plant Roots/metabolism , Amino Acids/metabolism , Plant Tubers/metabolism
4.
Physiol Plant ; 176(4): e14481, 2024.
Article in English | MEDLINE | ID: mdl-39164920

ABSTRACT

Potatoes (Solanum tuberosum L.) are one of the world's major staple crops. In stored potatoes, Pectobacterium carotovorum subsp carotovorum causes soft rot. As a result of the rapid spread of the disease during post-harvest storage, potato production suffers huge losses. By detecting disease early and controlling it promptly, losses can be minimized. The profile of volatiles of plants can be altered by phytopathogens. Identifying unique volatile organic compounds (VOCs) as biomarkers for early disease detection has attracted considerable research attention. This study compared the VOC profiles of healthy and soft rot inoculated potatoes (cv. "Kufri Pukhraj") over a time course using gas chromatography-mass spectrometry (GC-MS). It was found that there was a differential emission of 27 VOCs between healthy non-inoculated potatoes and soft rot inoculated potatoes. Among 27 VOCs, only five (1-octen-3-ol, 2-methylisoborneol, 3-octanone, 1,4-dimethyladamantane, and 2-methyl-2-bornene) were found exclusively in soft rot inoculated potatoes, suggesting them potential biomarker for non-destructive prediction of soft rot disease in potatoes. Reactive oxygen species (H2O2) and phytohormone methyl-jasmonate (MeJa) levels increased transiently on infection with soft rot. The analysis of the primary metabolism of soft rot infected tubers at three different stages suggests metabolic reprogramming that occurs at the early stage of infection, possibly leading to biomarker volatile emission. Based on these results, it appears that the initial potato-soft rot bacteria interaction initiates metabolic reprogramming mainly through H2O2 and the MeJa signalling pathway. In asymptomatic potatoes, these biomarkers may be promising candidates for non-destructive detection of soft rot at an early stage. These biomarkers can be used to develop an e-nose sensor to predict soft rot in the future.


Subject(s)
Biomarkers , Plant Diseases , Plant Growth Regulators , Solanum tuberosum , Volatile Organic Compounds , Solanum tuberosum/microbiology , Solanum tuberosum/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Plant Diseases/microbiology , Biomarkers/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/analysis , Gas Chromatography-Mass Spectrometry/methods , Cyclopentanes/metabolism , Pectobacterium carotovorum/pathogenicity , Pectobacterium carotovorum/physiology , Oxylipins/metabolism , Oxylipins/analysis , Plant Tubers/microbiology , Plant Tubers/metabolism
5.
Planta ; 260(3): 74, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153022

ABSTRACT

MAIN CONCLUSION: Transcriptome analysis in potato varieties revealed genes associated with tuber yield-related traits and developed gene expression markers. This study aimed to identify genes involved in high tuber yield and its component traits in test potato varieties (Kufri Frysona, Kufri Khyati, and Kufri Mohan) compared to control (Kufri Sutlej). The aeroponic evaluation showed significant differences in yield-related traits in the varieties. Total RNA sequencing was performed using tuber and leaf tissues on the Illumina platform. The high-quality reads (QV > 25) mapping with the reference potato genomes revealed statistically significant (P < 0.05) differentially expressed genes (DEGs) into two categories: up-regulated (> 2 Log2 fold change) and down-regulated (< -2 Log2 fold change). DEGs were characterized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Collectively, we identified genes participating in sugar metabolism, stress response, transcription factors, phytohormones, kinase proteins, and other genes greatly affecting tuber yield and its related traits. A few selected genes were UDP-glucose glucosyltransferase, glutathion S-transferase, GDSL esterase/lipase, transcription factors (MYB, WRKY, bHLH63, and BURP), phytohormones (auxin-induced protein X10A, and GA20 oxidase), kinase proteins (Kunitz-type tuber invertase inhibitor, BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1) and laccase. Based on the selected 17 peptide sequences representing 13 genes, a phylogeny tree and motifs were analyzed. Real time-quantitative polymerase chain reaction (RT-qPCR) analysis was used to validate the RNA-seq results. RT-qPCR based gene expression markers were developed for the genes such as 101 kDa heat shock protein, catechol oxidase B chloroplastic, cysteine protease inhibitor 1, Kunitz-type tuber invertase inhibitor, and laccase to identify high yielding potato genotypes. Thus, our study paved the path for potential genes associated with tuber yield traits in potato under aeroponics.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Phenotype , Plant Tubers , Solanum tuberosum , Transcriptome , Solanum tuberosum/genetics , Solanum tuberosum/growth & development , Plant Tubers/genetics , Plant Tubers/growth & development , Gene Ontology , Sequence Analysis, RNA , Genes, Plant/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Genetic Markers/genetics
6.
PeerJ ; 12: e17831, 2024.
Article in English | MEDLINE | ID: mdl-39131626

ABSTRACT

Browning is a common problem that occurs during potato processing; it is typically resolved by adding chemicals during the production process. However, there is a need to develop potato varieties that are resistant to browning due to a growing consumer interest in healthier diets. This study initially identified 275 potato varieties that are resistant to browning; these were narrowed down to eight varieties, with four of them being highly resistant. A hybrid population was developed by crossing the highly resistant CIP395109.29 with the easily browned Kexin 23. Bulked segregant analysis (BSA) was conducted, which identified 21 potato genes associated with anti-browning properties through sequencing data analysis and organization. The findings of this study lay a solid groundwork for future research on breeding potatoes with anti-browning traits, offer molecular markers for identifying anti-browning varieties, and serve as a valuable reference for further investigations into potato browning mechanisms.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Genes, Plant , Plant Breeding/methods , Maillard Reaction , Plant Tubers/genetics
7.
BMC Plant Biol ; 24(1): 754, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107692

ABSTRACT

BACKGROUND: This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. RESULTS: The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. CONCLUSIONS: According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes.


Subject(s)
Agricultural Irrigation , Plant Leaves , Salicylic Acid , Solanum tuberosum , Wastewater , Solanum tuberosum/drug effects , Solanum tuberosum/growth & development , Salicylic Acid/pharmacology , Plant Leaves/drug effects , Agricultural Irrigation/methods , Plant Tubers/drug effects , Plant Tubers/growth & development , Plant Tubers/anatomy & histology , Antioxidants/metabolism
8.
Acta Cir Bras ; 39: e395324, 2024.
Article in English | MEDLINE | ID: mdl-39109782

ABSTRACT

PURPOSE: To assess the effect of Amorphophallus campanulatus tuber (Ac) extract in the protection of diabetic nephropathy in streptozotocin (STZ) induced diabetic nephropathy (DN) rat model. METHODS: Diabetes was induced with STZ (60 mg/kg, i.p.), and DN was confirmed after six weeks of STZ administration with the estimation of kidney function test. Further rats were treated with Ac 250 and 500 mg/kg p.o. for next four week. Oxidative stress and level of inflammatory cytokines were estimated in the kidney tissue of DN rats. Histopathology of kidney tissue was performed using hematoxylin and eosin staining. RESULTS: There was improvement in the body weight of Ac treated groups than DN group of rats. Blood glucose level was observed to be reduced in Ac treated groups than DN group on 42nd and 70th day of protocol. Treatment with Ac ameliorated the altered level of kidney function tests (creatinine and BUN), enzymes of liver function (aspartate aminotransferase and alanine aminotransferase), and lipid profile in the serum of DN rats. Oxidative stress parameters (malondialdehyde and reactive oxygen species enhances and reduction in the level of glutathione and superoxide dismutase) and inflammatory cytokines such as interleukin-6, tumour necrosis factor-α, and monocyte chemoattractant protein-1 reduces in the tissue of Ac treated group than DN group. Treatment with Ac also attenuates the altered histopathological changes in the kidney tissue of DN rats. CONCLUSIONS: The report suggests that Ac protects renal injury in DN rats by regulating inflammatory cytokines and oxidative stress.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Oxidative Stress , Plant Extracts , Tumor Necrosis Factor-alpha , Animals , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Male , Streptozocin , Rats , Rats, Wistar , Kidney/drug effects , Kidney/pathology , Blood Glucose/drug effects , Blood Glucose/analysis , Disease Models, Animal , Reproducibility of Results , Plant Tubers/chemistry
9.
Mol Biol Rep ; 51(1): 882, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088099

ABSTRACT

BACKGROUND: Macrophomina phaseolina is a pathogen that causes an opportunistic disease that spreads by soil and seeds and affects more than 500 different plant species, like fruits, trees, and row crops. Mycotoxins, such as phaseolinic acid, and phaseolinone, are produced by M. phaseolina isolates in previous investigations; however, the production of these mycotoxins seems to vary depending on the host and the region. METHODS AND RESULTS: In this study, Macrophomina phaseolina strain 3 A was isolated from rotten cassava tuber and identified using the analysis of the sequences of the internal transcribed spacer region. The isolate was inoculated on a fresh healthy cassava tuber at 25 °C and tuber-rotting potential was monitored for 4 weeks. Virulence genes MPH_06603, MPH_06955, and MPH_01521 were determined with designed primers, and secondary metabolites were characterized by FTIR and GCMS. The rotten tuber effect was observed from the 2nd week of the experiment with severe tuber rot and weight reduction. The PCR showed the presence of MPH_06603 virulence gene. The GCMS showed N-Methylpivalamide (115.0 m/z), Butane, 1,4-dimethoxy- (119.0 m/z), and 5-Hydroxymethylfurfural (126.0 m/z) were the predominant metabolites produced by the pathogen. The compounds in the metabolites inhibit CYP3A4 enzymes, cause eye irritation, and Human Ether-a-go-go-related gene inhibition. CONCLUSION: This study revealed that M. phaseolina was responsible for the cassava tuber rot which leads to a lower yield of farm produce. The metabolites produced are toxic and unsafe for human consumption. It is suggested that farmers should destroy any cassava affected by this pathogen to prevent its toxic effects on humans and animals.


Subject(s)
Ascomycota , Manihot , Plant Diseases , Plant Tubers , Manihot/microbiology , Manihot/genetics , Nigeria , Plant Tubers/microbiology , Virulence/genetics , Ascomycota/pathogenicity , Ascomycota/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Farms , Virulence Factors/genetics , Virulence Factors/metabolism , Phylogeny
10.
Methods Mol Biol ; 2827: 189-196, 2024.
Article in English | MEDLINE | ID: mdl-38985271

ABSTRACT

The aquatic monocot, Aponogeton ulvaceus Baker, is endemic to Madagascar and is a commercially valuable ornamental aquarium plant. Members of the genus Aponogeton contain a spectrum of phytochemicals associated with a broad range of biological activities. However, much remains to be known about this genus, and the A. ulvaceus population is declining due to anthropogenic activities and climate change. To address these challenges, adopting plant tissue culture technology will be a viable solution for the sustainable production of pest- and pathogen-free plants to meet the demands of the ornamental aquatic plant trade, for conservation and research purposes. A simple micropropagation protocol for A. ulvaceus is described here, starting with seeds to establish sterile stock plants, from which immature tubers were acquired as explants for indirect organogenesis.


Subject(s)
Plant Tubers , Tissue Culture Techniques , Plant Tubers/growth & development , Tissue Culture Techniques/methods , Seeds/growth & development , Acclimatization
11.
PLoS One ; 19(7): e0305667, 2024.
Article in English | MEDLINE | ID: mdl-39028725

ABSTRACT

In eastern India, the tubers of Pueraria tuberosa (Willd.) DC. are used by the ethnic communities for its wide range of medicinal and nutritional value, especially to rejuvenate livestock health and to treat helminthiasis. The study is aimed to evaluate the ethnoveterinary medicinal importance of P. tuberosa as anthelmintic, to verify its nontoxic nature and identify the most potent phytoconstituents aided by in silico molecular docking technique. Ethnomedicinal data collected from 185 informants were quantitatively analyzed employing eight quantitative indices to highlight the use diversity and most frequently used part of the plant. High scores of certain indices employed, such as Use Value (UV = 0.52), Fidelity Level (FL = 68.42%) and Tissue Importance Value (TIV = 1) clearly illustrate an ethnomedicinal lead regarding medico-nutritional benefits of the tuber part used against intestinal helminthic diseases of veterinary animals. Based on this ethno-guided lead, root tuber has been investigated for its chemical profiling by the estimation of total phenolics, flavonoids, tannins and alkaloids, along with HPLC and GC-MS analyses. Anthelmintic property was evaluated with the tuber extracts by in vitro studies on some helminths of livestock and poultry birds, and it showed promising results against the tested parasites namely Cotylophoron cotylophorum, Raillietina tetragona and Setaria cervi. Toxicity assessments of tuber extract through in vitro and in vivo methods were performed using Vero cells and BALB/c mice. Nontoxic nature of the studied tuber extract was observed even in higher experimental doses. Out of 12 phytocompounds identified by GC-MS analysis, one compound [Morphinan-4,5-epoxy-3,6-di-ol,6- (7-nitrobenzofurazan-4-yl) amino-] exhibited the best binding conformations in cost of the lowest binding energy values with six target proteins that include one anti-inflammatory, one antioxidant, and four anthelmintic proteins. The findings of our study are found very encouraging to evaluate this tuber drug furthermore intensively towards the development of anthelmintic veterinary medicine.


Subject(s)
Livestock , Plant Extracts , Pueraria , Animals , Pueraria/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Livestock/parasitology , Mice , Plant Tubers/chemistry , Molecular Docking Simulation , Ethnopharmacology , Humans , Anthelmintics/pharmacology , Chlorocebus aethiops , Vero Cells , Antiparasitic Agents/pharmacology , Phytochemicals/pharmacology , Phytochemicals/analysis , Phytochemicals/chemistry , Female , Male , India
12.
Compr Rev Food Sci Food Saf ; 23(4): e13400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030813

ABSTRACT

During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.


Subject(s)
Dietary Supplements , Ipomoea batatas , Nutritive Value , Phytochemicals , Ipomoea batatas/chemistry , Dietary Supplements/analysis , Phytochemicals/chemistry , Phytochemicals/analysis , Food Handling/methods , Plant Tubers/chemistry
13.
PLoS One ; 19(7): e0305910, 2024.
Article in English | MEDLINE | ID: mdl-38976654

ABSTRACT

This study quantified the fatty acid profile and total chlorogenic acid content of various Ethiopian cultivars of the Plectranthus edulis tuber, traditionally known as 'Agew Dinich'. Lipid extraction utilized the Folch method and the acid-catalyzed derivatization method to derivatize the fatty acids into fatty acid methyl ester (FAME) were used. Whereas maceration was used to extract chlorogenic acid from the fresh and freeze- dried tuber samples. Analysis revealed a total of thirteen fatty acids in all P. edulis samples, with nine classified as saturated and four as unsaturated. Palmitic acid was the most abundant fatty acid in P. edulis and accounted for 40.57%-50.21% of the total fatty acid content. The second and third most abundant fatty acids in the P. edulis sample were stearic and linoleic acids, which accounted for 8.38%-12.92% and 8.12%-11.28%, respectively. We reported chlorogenic acid for the first time in this potato species and found it to contain a concentration of 211± 4.2-300±24.7 mg/100g of dry weight basis when the determination was made using fresh samples. On the other hand, these samples yielded a chlorogenic acid concentration ranging from 115 ±8.6 mg/100g-175±3.9 mg/100g of freeze-dried powder samples. These findings suggest that P. edulis tubers could represent a significant dietary source of both chlorogenic acid and fatty acids.


Subject(s)
Chlorogenic Acid , Fatty Acids , Plant Tubers , Plectranthus , Chlorogenic Acid/analysis , Fatty Acids/analysis , Plant Tubers/chemistry , Plant Tubers/metabolism , Plectranthus/chemistry , Plant Roots/chemistry , Plant Roots/metabolism
14.
Int J Food Microbiol ; 423: 110843, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39068861

ABSTRACT

Black dot and silver scurf caused by Colletotrichum coccodes and Helminthosporium solani, respectively, are tuber blemish diseases affecting quality in the fresh and pre-pack potato industry. In the last 20 years, the importance of high-quality tuber appearance has increased considerably due to the growing demand for washed and pre-packed potatoes in the UK. Changing climate characterised by rising temperatures and wetter summers is a threat as this will favour the development of pathogens such as C. coccodes in the soil increasing the risk of food spoilage. Moreover, both diseases can develop not only in the field but also after harvest, with postharvest storage temperatures being a crucial factor in controlling fungal growth. Furthermore, anecdotal evidence showed differences on the aggressiveness of black dot depending on its origin (i.e. England and Scotland) on potato tubers. Silver scurf and black dot are difficult to differentiate as they present similar phenotypes characterised by silvery lesions making it challenging for managers to take the necessary corrective action during storage. Hence, the aim of this study was to give a general insight into the ecological conditions affecting the establishment of the causal agent of potato black dot in the field, and black dot and silver scurf during the supply chain. Therefore, invitro experiments were designed to study the growth rate and lag times simulating both scenarios respectively: on soil extract agar (SEA) media at different temperatures (4, 11, 15 °C) and matric potentials (control [unmodified] and - 1.4 MPa [modified]); and on natural potato dextrose agar (NPDA) for different temperatures (4, 11, 15 and 20 °C) at 99 % relative humidity (RH) for 25 days. When simulating the field environment, drier conditions (matric potential = -1.4 MPa) reduced fungal growth for both isolates by 0.1 cm day-1 at the temperature of 15 °C, suggesting temperature as the main limiting factor for the growth of C. coccodes in the soil. The causal agent of black dot exhibited a faster growth rate under retailer-like conditions (i.e., 15 °C) compared to H. solani. Understanding the environmental influence on both the pathogen and the crop is vital for proper disease management to help reduce food loss and waste.


Subject(s)
Colletotrichum , Plant Tubers , Solanum tuberosum , Temperature , Solanum tuberosum/microbiology , Colletotrichum/growth & development , Colletotrichum/isolation & purification , Plant Tubers/microbiology , Plant Tubers/growth & development , United Kingdom , Plant Diseases/microbiology , Plant Diseases/prevention & control , Food Microbiology , Soil Microbiology
15.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3484-3492, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041120

ABSTRACT

This study aims to reveal the differences in the species and relative content of metabolites in the leaf and root tuber of Fallopia multiflora and improve the comprehensive utilization rate of F. multiflora resources. The metabolites in the root tubers and leaves of F. multiflora were detected by widely targeted metabolomics based on ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). The principal component analysis, hierarchical cluster analysis, and orthogonal partial least squares-discriminant analysis were carried out to screen the differential metabolites between the leaf and root tuber of F. multiflora. The result showed that a total of 1 942 metabolites in 15 categories were detected in the leaf and root tuber of F. multiflora, including 1 861 metabolites in the root tuber, 1 901 metabolites in the leaf, and 1 820 metabolites in both. The metabolites were mainly phenolic acids, flavonoids, amino acids and derivatives, and alkaloids. A total of 1 200 differential metabolites were screened out, accounting for 65.9% of the total metabolites. Among these differential metabolites, 813 and 387 showed higher content in the leaf and root tuber, respectively. Flavonoids were the metabolites with the largest number and the most significant differences between the leaf and root tuber, and stilbenes and anthraquinones as the main active compounds mainly existed in the root tuber. The KEGG enrichment results suggested that the differential metabolites were mainly enriched in flavonoid and flavonol biosynthesis pathways and linoleic acid metabolism pathway. This study discovered abundant metabolites in F. multiflora. The metabolites were similar but had great differences in the content between the leaf and root tuber. The research results provide theoretical guidance for the development and utilization of F. multiflora resources.


Subject(s)
Fallopia multiflora , Metabolomics , Plant Leaves , Plant Roots , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Roots/metabolism , Plant Roots/chemistry , Chromatography, High Pressure Liquid , Fallopia multiflora/chemistry , Fallopia multiflora/metabolism , Plant Tubers/metabolism , Plant Tubers/chemistry , Tandem Mass Spectrometry , Flavonoids/metabolism , Flavonoids/analysis
16.
J Agric Food Chem ; 72(28): 15449-15462, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970497

ABSTRACT

Potato (Solanum tuberosum) is a major agricultural crop cultivated worldwide. To meet market demand, breeding programs focus on enhancing important agricultural traits such as disease resistance and improvement of tuber palatability. However, while potato tubers get a lot of attention from research, potato berries are mostly overlooked due to their level of toxicity and lack of usefulness for the food production sector. Generally, they remain unused in the production fields after harvesting the tuber. These berries are toxic due to high levels of glycoalkaloids, which might confer some interesting bioactivities. Berries of various solanaceous species contain bioactive secondary metabolites, suggesting that potato berries might contain similarly valuable metabolites. Therefore, possible applications of potato berries, e.g., in the protection of plants against pests and pathogens, as well as the medical exploitation of their anti-inflammatory, anticarcinogenic, and antifungal properties, are plausible. The presence of valuable compounds in potato berries could also contribute to the bioeconomy by providing a novel use for otherwise discarded agricultural side streams. Here we review the potential use of these berries for the extraction of compounds that can be exploited to produce pharmaceuticals and plant protection products.


Subject(s)
Crop Protection , Fruit , Solanum tuberosum , Solanum tuberosum/chemistry , Solanum tuberosum/metabolism , Fruit/chemistry , Crop Protection/methods , Plant Extracts/chemistry , Plant Tubers/chemistry , Plant Tubers/metabolism , Animals , Humans
17.
Microbiol Res ; 287: 127855, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39079269

ABSTRACT

Potato is an important crop due to its high contents of starch, protein, and various vitamins and minerals. Biofertilizers are composed of plant growth promoting microbes (PGPMs) which are essential for improving the growth and resistance of potato. However, little information has focused on the modes of inoculation of biofertilizers on plant growth and microecology. This study aims to reveal the response mechanism of the potato to three modes of inoculation of biofertilizers all containing PGPM Bacillus amyloliquefaciens EZ99, i.e. scattered mode of 5 kg/ha biofertilizer (M5), soaking seed tubers with dissolved 5 kg/ha biofertilizer (MZG), and scattered mode of 3 kg/ha biofertilizer + 2 kg/ha sucrose (MY34) in alkaline loess field through multi-omics analysis of transcriptome, metabolome and microbiome. The physiological result revealed that two application modes of equal amount of biofertilizer M5 and MZG significantly improved the growth and yield of potatoes. Furthermore, the transcriptome of potato exhibited sets of differentially expressed genes enriched in photosynthesis, sugar metabolism, and phenylpropanoid biosynthesis among the three modes, with the M5 mode exhibiting overall up-regulation of 828 genes. Based on the untargeted metabolomic analysis of potato tuber, M5 mode significantly accumulated sucrose, while MZG and MY34 mode significantly accumulated the stress metabolites euchrenone b6 and mannobiose, respectively. Besides, the microbial structure of potato rhizosphere showed that the diversity of bacteria and fungi was similar in all soils, but their abundances varied significantly. Specifically, beneficial Penicillium was enriched in M5 and MZG soils, whereas MY34 soil accumulated potential pathogens Plectosphaerella and saccharophilic Mortierella. Collectively, these e findings highlight that MZG is the most effective mode to promote potato growth and stimulate rhizosphere effect. The present study not only encourages sustainable agriculture through agroecological practices, but also provides broad prospects for the application of PGPM biofertilizer in staple foods.


Subject(s)
Fertilizers , Soil Microbiology , Solanum tuberosum , Solanum tuberosum/microbiology , Solanum tuberosum/growth & development , Fertilizers/analysis , Bacillus amyloliquefaciens/growth & development , Transcriptome , Plant Tubers/microbiology , Plant Tubers/growth & development , Microbiota , Soil/chemistry , Metabolome , Rhizosphere , Sucrose/metabolism , Plant Development , Metabolomics/methods , Multiomics
18.
J Sep Sci ; 47(12): e2400118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031866

ABSTRACT

Tubers of Gymnadenia conopsea (L.) R. Br. (Orchidaceae), a traditional medicine and food homologous plant, has a broad application and development prospect in the food and drug industries. Benzylester glucosides, the main effective active components in this plant, are difficult to separate due to their similar structures and high polarity. In this study, linear gradient counter-current chromatography was used to separate benzylester glucosides and derivatives, combined with elution-extrusion mode. The main separation parameters were optimized, including the ratio of mobile phase and sample loading. Finally, seven compounds were successfully separated, including 4-hydroxybenzyl alcohol (1), 4-hydroxybenzaldehyde (2), dactylorhin B (3), loroglossin (4), dactylorhin A (5), 4-(ethoxymethyl) phenol (6), and militarine (7). The structures were analyzed by mass spectrometry and nuclear magnetic resonance spectrometry. According to our findings, the established method was an efficient approach to separate benzylester glucosides and derivatives from tubers of G. conopsea. The established strategy could be applied to purify other similar high-polarity compounds from complex natural products.


Subject(s)
Countercurrent Distribution , Glucosides , Orchidaceae , Plant Tubers , Plant Tubers/chemistry , Orchidaceae/chemistry , Glucosides/isolation & purification , Glucosides/chemistry , Molecular Structure , Esters/chemistry , Esters/isolation & purification
19.
Ecotoxicol Environ Saf ; 282: 116728, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39029218

ABSTRACT

To find a high-efficiency and environment-friendly biogenic molluscicide against Oncomelania hupensis, and prevent aquatic ecosystem from being contaminated by chemical molluscicides and being toxic. We extracted and purified raphides from the tubers of Arisaema erubescent, and determined the active constituents and molluscicidal activity of the raphides, detoxification enzyme activity, and liver damage. The results showed that the raphides had a strong molluscicidal activity. O. hupensis snails were exposed to the lethal concentration (LC50) of 70.95 mg/L and 44.25 mg/L for treatment with raphides for 48 h and 72 h, respectively. The raphides of molluscicidal activity of the main constituents was as follows: intact raphides > calcium oxalate crystals > AEL (Arisaema erubescens Lectin). The activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) in the snail livers increased significantly at the early stage of treatment (24 h), but decreased sharply in the later stage (120 h), compared with that in the control group. The results indicated that after treatment with 1/2 LC50 raphides for 120 h, the activities of POD, SOD, and CAT in the snail livers decreased by 82.5 %, 62.9 %, and 84.7 %, respectively. In addition, electron micrographs have shown that the raphides were needle-shaped crystals and tended to be sharp at both ends (with a groove down both sides) and some were barbed, which caused damage to the snail livers to different extent. Overall, our results indicate that the mechanism of toxicity of raphides against O. hupensis may be that the calcium oxalate crystals pricked the liver surface of snail and produced mechanical damage; and then the harmful protease AEL in the raphides was injected into the liver, which reduced the activities of detoxification enzymes, produced severe toxic reactions and eventually killed the O. hupensis snails.


Subject(s)
Catalase , Molluscacides , Snails , Animals , Molluscacides/toxicity , Snails/drug effects , Catalase/metabolism , Liver/drug effects , Superoxide Dismutase/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/toxicity , Peroxidase/metabolism , Plant Tubers/chemistry , Lethal Dose 50
20.
Molecules ; 29(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999145

ABSTRACT

Codonopsis convolvulacea is a highly valued Chinese medicinal plant containing diverse bioactive compounds. While roots/tubers have been the main medicinal parts used in practice, leaves and stems may also harbor valuable phytochemicals. However, research comparing volatiles across tissues is lacking. This study performed metabolomic profiling of leaves, stems, and tubers of C. convolvulacea to elucidate tissue-specific accumulation patterns of volatile metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry identified 302 compounds, belonging to 14 classes. Multivariate analysis clearly differentiated the metabolic profiles of the three tissues. Numerous differentially accumulated metabolites (DAMs) were detected, especially terpenoids and esters. The leaves contained more terpenoids, ester, and alcohol. The stems accumulated higher levels of terpenoids, heterocyclics, and alkaloids with pharmaceutical potential. The tubers were enriched with carbohydrates like sugars and starch, befitting their storage role, but still retained reasonable amounts of valuable volatiles. The characterization of tissue-specific metabolic signatures provides a foundation for the selective utilization of C. convolvulacea parts. Key metabolites identified include niacinamide, p-cymene, tridecanal, benzeneacetic acid, benzene, and carveol. Leaves, stems, and tubers could be targeted for antioxidants, drug development, and tonics/nutraceuticals, respectively. The metabolomic insights can also guide breeding strategies to enhance the bioactive compound content in specific tissues. This study demonstrates the value of tissue-specific metabolite profiling for informing the phytochemical exploitation and genetic improvement of medicinal plants.


Subject(s)
Codonopsis , Metabolomics , Phytochemicals , Plant Leaves , Plant Stems , Plant Tubers , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Stems/chemistry , Plant Stems/metabolism , Metabolomics/methods , Phytochemicals/analysis , Phytochemicals/metabolism , Plant Tubers/chemistry , Plant Tubers/metabolism , Codonopsis/chemistry , Codonopsis/metabolism , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Metabolome , Terpenes/metabolism , Terpenes/analysis , Plants, Medicinal/metabolism , Plants, Medicinal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL