Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
1.
Arch Microbiol ; 206(8): 340, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960981

ABSTRACT

Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.


Subject(s)
Endophytes , Fungi , Secologanin Tryptamine Alkaloids , Endophytes/metabolism , Endophytes/genetics , Fungi/metabolism , Fungi/genetics , Secologanin Tryptamine Alkaloids/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Biosynthetic Pathways , Plants, Medicinal/microbiology , Plants, Medicinal/metabolism , Biological Products/metabolism
2.
Metabolomics ; 20(4): 75, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980562

ABSTRACT

INTRODUCTION: Microbial communities affect several aspects of the earth's ecosystem through their metabolic interaction. The dynamics of this interaction emerge from complex multilevel networks of crosstalk. Elucidation of this interaction could help us to maintain the balance for a sustainable future. OBJECTIVES: To investigate the chemical language among highly abundant microbial genera in the rhizospheres of medicinal plants based on the metabolomic analysis at the interaction level. METHODS: Coculturing experiments involving three microbial species: Aspergillus (A), Trichoderma (T), and Bacillus (B), representing fungi (A, T) and bacteria (B), respectively. These experiments encompassed various interaction levels, including dual cultures (AB, AT, TB) and triple cultures (ATB). Metabolic profiling by LC-QTOFMS revealed the effect of interaction level on the productivity and diversity of microbial specialized metabolites. RESULTS: The ATB interaction had the richest profile, while the bacterial profile in the monoculture condition had the lowest. Two native compounds of the Aspergillus genus, aspergillic acid and the dipeptide asperopiperazine B, exhibited decreased levels in the presence of the AT interaction and were undetectable in the presence of bacteria during the interaction. Trichodermarin N and Trichodermatide D isolated from Trichoderma species exclusively detected during coexistence with bacteria (TB and ATB). These findings indicate that the presence of Bacillus activates cryptic biosynthetic gene clusters in Trichoderma. The antibacterial activity of mixed culture extracts was stronger than that of the monoculture extracts. The TB extract exhibited strong antifungal activity compared to the monoculture extract and other mixed culture treatments. CONCLUSION: The elucidation of medicinal plant microbiome interaction chemistry and its effect on the environment will also be of great interest in the context of medicinal plant health Additionally, it sheds light on the content of bioactive constituents, and facilitating the discovery of novel antimicrobials.


Subject(s)
Microbial Interactions , Plants, Medicinal , Rhizosphere , Plants, Medicinal/metabolism , Plants, Medicinal/microbiology , Aspergillus/metabolism , Bacteria/metabolism , Trichoderma/metabolism , Bacillus/metabolism , Fungi/metabolism , Metabolomics , Coculture Techniques , Soil Microbiology
3.
Environ Geochem Health ; 46(8): 272, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958785

ABSTRACT

Mycotoxin contamination poses a significant problem in developing countries, particularly in northern Pakistan's fluctuating climate. This study aimed to assess aflatoxin contamination in medicinal and condiment plants in Upper Dir (dry-temperate) and Upper Swat (moist-temperate) districts. Plant samples were collected and screened for mycotoxins (Aflatoxin-B1 and Aflatoxin-B-2). Results showed high levels of AFB-1 (11,505.42 ± 188.82) as compared to AFB-2 (846 ± 241.56). The maximum contamination of AFB-1 in Coriandrum sativum (1154.5 ± 13.43 ng to 3328 ± 9.9 ng) followed by F. vulgare (883 ± 9.89 ng to 2483 ± 8.4 ng), T. ammi (815 ± 11.31 ng to 2316 ± 7.1 ng), and C. longa (935.5 ± 2.12 ng to 2009 ± 4.2 ng) while the minimum was reported in C. cyminum (671 ± 9.91 ng to 1995 ± 5.7 ng). Antifungal tests indicated potential resistance in certain plant species (C. cyminum) while A. flavus as the most toxins contributing species due to high resistance below 80% (54.2 ± 0.55 to 79.5 ± 2.02). HPLC analysis revealed hydroxyl benzoic acid (5136 amu) as the dominant average phytochemical followed by phloroglucinol (4144.31 amu) with individual contribution of 8542.08 amu and 12,181.5 amu from C. cyaminum. The comparison of average phytochemicals revealed the maximum concentration in C. cyminum (2885.95) followed by C. longa (1892.73). The findings revealed a statistically significant and robust negative correlation (y = - 2.7239 × + 5141.9; r = - 0.8136; p < 0.05) between average mycotoxins and phytochemical concentrations. Temperature positively correlated with aflatoxin levels (p < 0.01), while humidity had a weaker correlation. Elevation showed a negative correlation (p < 0.05), while geographical factors (latitude and longitude) had mixed correlations (p < 0.05). Specific regions exhibited increasing aflatoxin trends due to climatic and geographic factors.


Subject(s)
Aflatoxins , Phytochemicals , Pakistan , Aflatoxins/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Plants, Medicinal/chemistry , Plants, Medicinal/microbiology , Climate
4.
Toxins (Basel) ; 16(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38787081

ABSTRACT

Herbal medicines are widely used for clinical purposes worldwide. These herbs are susceptible to phytopathogenic fungal invasion during the culturing, harvesting, storage, and processing stages. The threat of fungal and mycotoxin contamination requires the evaluation of the health risks associated with these herbal medicines. In this study, we collected 138 samples of 23 commonly used herbs from 20 regions in China, from which we isolated a total of 200 phytopathogenic fungi. Through morphological observation and ITS sequencing, 173 fungal isolates were identified and classified into 24 genera, of which the predominant genera were Fusarium (27.74%) and Alternaria (20.81%), followed by Epicoccum (11.56%), Nigrospora (7.51%), and Trichocladium (6.84%). Quantitative analysis of the abundance of both Fusarium and Alternaria in herbal medicines via RT-qPCR revealed that the most abundant fungi were found on the herb Taraxacum mongolicum, reaching 300,000 copies/µL for Fusarium and 700 copies/µL for Alternaria. The in vitro mycotoxin productivities of the isolated Fusarium and Alternaria strains were evaluated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it was found that the Fusarium species mainly produced the acetyl forms of deoxynivalenol, while Alternaria species mainly produced altertoxins. These findings revealed widely distributed fungal contamination in herbal medicines and thus raise concerns for the sake of the quality and safety of herbal medicines.


Subject(s)
Drug Contamination , Fungi , Mycotoxins , China , Fungi/isolation & purification , Fungi/genetics , Fungi/classification , Mycotoxins/analysis , Plants, Medicinal/microbiology , Fusarium/isolation & purification , Fusarium/genetics , Drugs, Chinese Herbal , Alternaria/isolation & purification , Alternaria/genetics , Tandem Mass Spectrometry
5.
Microbiol Spectr ; 12(6): e0403123, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38738925

ABSTRACT

STW 5, a blend of nine medicinal plant extracts, exhibits promising efficacy in treating functional gastrointestinal disorders, notably irritable bowel syndrome (IBS). Nonetheless, its effects on the gastrointestinal microbiome and the role of microbiota on the conversion of its constituents are still largely unexplored. This study employed an experimental ex vivo model to investigate STW 5's differential effects on fecal microbial communities and metabolite production in samples from individuals with and without IBS. Using 560 fecal microcosms (IBS patients, n = 6; healthy controls, n = 10), we evaluated the influence of pre-digested STW 5 and controls on microbial and metabolite composition at time points 0, 0.5, 4, and 24 h. Our findings demonstrate the potential of this ex vivo platform to analyze herbal medicine turnover within 4 h with minimal microbiome shifts due to abiotic factors. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products, such as 18ß-glycyrrhetinic acid, davidigenin, herniarin, 3-(3-hydroxyphenyl)propanoic acid, and 3-(2-hydroxy-4-methoxyphenyl)propanoic acid occurred. For davidigenin, 3-(3-hydroxyphenyl)propanoic acid and 18ß-glycyrrhetinic acid, anti-inflammatory, cytoprotective, or spasmolytic activities have been previously described. Notably, the microbiome-driven metabolic transformation did not induce a global microbiome shift, and the detected metabolites were minimally linked to specific taxa. Observed biotransformations were independent of IBS diagnosis, suggesting potential benefits for IBS patients from biotransformation products of STW 5. IMPORTANCE: STW 5 is an herbal medicinal product with proven clinical efficacy in the treatment of functional gastrointestinal disorders, like functional dyspepsia and irritable bowel syndrome (IBS). The effects of STW 5 on fecal microbial communities and metabolite production effects have been studied in an experimental model with fecal samples from individuals with and without IBS. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products with reported anti-inflammatory, cytoprotective, or spasmolytic activities was observed, which may be relevant for the pharmacological activity of STW 5.


Subject(s)
Biotransformation , Feces , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Plant Extracts , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/drug therapy , Gastrointestinal Microbiome/drug effects , Humans , Feces/microbiology , Adult , Plant Extracts/metabolism , Plant Extracts/pharmacology , Male , Female , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Middle Aged , Plants, Medicinal/microbiology , Plants, Medicinal/chemistry
6.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2128-2137, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812228

ABSTRACT

The rhizosphere is an important place for material exchange between medicinal plants and soil. Root exudates are the medium of material and signal exchange between plants and soil and are the key factors in the regulation of rhizosphere microecology. Rhizosphere microorganisms are an important part of the rhizosphere microecology of medicinal plants, and the interaction between root exudates and rhizosphere microorganisms has an important influence on the growth and quality formation of medicinal plants. Rational utilization of the interaction between root exudates and rhizosphere microorganisms of medicinal plants is one of the important ways to ensure the healthy growth of medicinal plants and promote the development of ecological planting of Chinese medicinal materials. In the paper, the research status of root exudates and rhizosphere microorganisms of medicinal plants in recent years was summarized. The interaction mechanism between root exudates and rhizosphere microorganisms of medicinal plants, as well as the influence of rhizosphere microorganisms on the growth of medicinal plants, were analyzed. In addition, the advantages and promoting effects of intercropping ecological planting mode on rhizosphere microecology of medicinal plants and quality improvement of Chinese medicinal materials were explained, providing a good basis for the study of the interaction among medicinal plants, microorganisms, and soil. Furthermore, it could produce important theoretical and practical significance for the ecological planting and sustainable utilization of medicinal plants.


Subject(s)
Plant Roots , Plants, Medicinal , Rhizosphere , Soil Microbiology , Plants, Medicinal/metabolism , Plants, Medicinal/microbiology , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Bacteria/metabolism , Bacteria/classification , Plant Exudates/metabolism , Plant Exudates/chemistry
7.
Curr Microbiol ; 81(7): 192, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801460

ABSTRACT

The plant-colonized microbial communities have closely micro-ecological effects on host plant growth and health. There are many medicinal plants in the genus Hedyotis, but it is yet unclear about the shoot-assembled bacterial and fungal communities (SBFC) of Hedyotis plants. Hence, eight plant populations of Hedyotis diffusa (HD) and H. corymbosa (HC) were evaluated with 16S rRNA gene and ITS sequences, for comparing the types, abundance, or/and potential functions of SBFC at plant species- and population levels. In tested HD- and HC-SBFC, 682 fungal operational taxonomic units and 1,329 bacterial zero-radius operational taxonomic units were identified, with rich species compositions and varied alpha diversities. Notably, the SBFC compositions of HD and HC plant populations were exhibited with partly different types and abundances at phylum and genus levels but without significantly different beta diversities at plant species and population levels. Typically, the SBFC of HD and HC plant populations were presented with abundance-different biomarkers, such as Frankiaceae and Bryobacteraceae, and with similar micro-ecological functions of microbial metabolisms of lipids, terpenoids,and xenobiotics. Taken together, HD- and HC-SBFC possessed with varied rich compositions, conservative taxonomic structures, and similar metabolic functions, but with small-scale type and abundance differences at plant species- and population- levels.


Subject(s)
Bacteria , Fungi , Hedyotis , Microbiota , RNA, Ribosomal, 16S , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , RNA, Ribosomal, 16S/genetics , Hedyotis/chemistry , Hedyotis/genetics , Plant Shoots/microbiology , Plants, Medicinal/microbiology , Phylogeny , Biodiversity
8.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38467396

ABSTRACT

Endophytic microorganisms associated with medicinal plants are of particular interest as they are a potential source of new bioactive chemicals effective against novel emerging and drug-resistant pathogens. Agave americana is a tropical medicinal plant with antibacterial, antifungal, and anticancer properties. We studied the biodiversity of fungal endophytes of A. americana and their antimicrobial production potential. Isolated endophytic fungi were classified into 32 morphotypes (15 from stem and 17 from leaf) based on their cultural and morphological characteristics. Among the fungal crude extracts tested, 82% of isolates from the leaves and 80% of the isolates from the stem showed antibacterial activity against the bacterial strains (Escherichia coli ATTC 25902, Staphylococcus aureus ATTC 14775, and Bacillus subtilis NRRL 5109) tested. Extracts from four fungal isolates from leaves showed antifungal activity against at least one of the fungal strains (Candida albicans ATTC 10231 and Aspergillus fumigatus NRRL 5109) tested. Crude extracts of seven fungal isolates showed a zone of inhibition of more than 11 mm at 10 mgml-1 against both Gram-positive and Gram-negative bacteria tested. Penicillium, Colletotrichum, Curvularia, Pleosporales, Dothideomycetes, and Pleurotus are the main endophytes responsible for bioactive potential. These results indicate that A. americana harbors endophytes capable of producing antimicrobial metabolites.


Subject(s)
Agave , Anti-Infective Agents , Ascomycota , Plants, Medicinal , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Anti-Bacterial Agents/pharmacology , Plants, Medicinal/microbiology , Gram-Negative Bacteria , Microbial Sensitivity Tests , Gram-Positive Bacteria , Fungi , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Endophytes , Complex Mixtures/metabolism , Complex Mixtures/pharmacology
9.
Microb Biotechnol ; 17(2): e14382, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345183

ABSTRACT

Among the plant-associated microorganisms, the so-called endophytes continue to attract much attention because of their ability not only to protect host plants from biotic and abiotic stress factors, but also the potential to produce bioactive secondary metabolites. The latter property can elicit growth-promoting effects on plants, as well as boost the production of plant-specific secondary metabolites with valuable pharmacological properties. In addition, endophyte-derived secondary metabolites may be a rich source for the discovery of drugs to treat various diseases, including infections and cancer. However, the full potential of endophytes to produce bioactive secondary metabolites is often not revealed upon conventional cultivation in the laboratory. New advances in genomics and metabolic engineering offer exciting opportunities for the exploration and exploitation of endophytes' biosynthetic potential. This review focuses on bacterial endophytes of medicinal plants, some of their secondary metabolites and recent advances in deciphering their biosynthesis. The latter may assist in genetic engineering efforts aimed at the discovery of novel bioactive compounds with the potential to be developed into drugs.


Subject(s)
Plants, Medicinal , Plants, Medicinal/microbiology , Endophytes/metabolism , Drug Discovery , Bacteria/genetics
10.
BMC Complement Med Ther ; 24(1): 2, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166914

ABSTRACT

INTRODUCTION: Herbal medicine is a medical system based on the utilization of plants or plant extracts for therapy. The continual increase in global consumption and the trade of herbal medicine has raised safety concerns in many regions. These concerns are mainly linked to microbial contamination, which could spread infections with multi-resistant bacteria in the community, and heavy metal contamination that may lead to cancers or internal organs' toxicity. METHODS: This study was performed using an experimental design. A total of 47 samples, herbal medicine products sold in local stores in Qassim region, were used in the experiments. They were tested for bacterial contamination, alongside 32 samples for heavy metal analysis. Bacterial contamination was determined by the streak plate method and further processed to determine their antimicrobial susceptibility patterns using MicroScan WalkAway96 pulse; heavy metals were determined using a spectrometer instrument. RESULTS: A total of 58 microorganisms were isolated. All samples were found to be contaminated with at least one organism except three samples. The majority of the isolated bacterial species were gram negative bacteria, such as Klebsiella spp., Pseudomonas spp. and E. coli., which could be of fecal origin and may lead to pneumonia, skin, or internal infections. Furthermore, most of the gram-positive bacteria were found to be multi-drug resistant. Moreover, for heavy metals, all samples had levels exceeding the regulatory limits. CONCLUSION: This study demonstrated the presence of bacteria and heavy metals in samples of herbal medicines. Using these contaminated products may spread resistant infections, metal toxicities, or even cancers in the community.


Subject(s)
Metals, Heavy , Neoplasms , Plants, Medicinal , Herbal Medicine , Prospective Studies , Saudi Arabia , Escherichia coli , Metals, Heavy/analysis , Plants, Medicinal/microbiology , Bacteria , Plant Extracts , Neoplasms/drug therapy
11.
BMC Plant Biol ; 23(1): 597, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017446

ABSTRACT

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with various terrestrial plants and have attracted considerable interest as biofertilizers for improving the quality and yield of medicinal plants. Despite the widespread distribution of AMFs in Salvia miltiorrhiza Bunge's roots, research on the impact of multiple AMFs on biomass and active ingredient accumulations has not been conducted. In this study, the effects of five native AMFs (Glomus formosanum, Septoglomus constrictum, Rhizophagus manihotis, Acaulospora laevis, and Ambispora gerdemannii) and twenty-six communities on the root biomass and active ingredient concentrations of S. miltiorrhiza were assessed using the total factor design method. RESULTS: Thirty-one treatment groups formed symbiotic relationships with S. miltiorrhiza based on the pot culture results, and the colonization rate ranged from 54.83% to 89.97%. AMF communities had higher colonization rates and total phenolic acid concentration than single AMF, and communities also appeared to have higher root fresh weight, dry weight, and total phenolic acid concentration than single inoculations. As AMF richness increased, there was a rising trend in root biomass and total tanshinone accumulations (ATTS), while total phenolic acid accumulations (ATP) showed a decreasing trend. This suggests that plant productivity was influenced by the AMF richness, with higher inoculation benefits observed when the communities contained three or four AMFs. Additionally, the affinities of AMF members were also connected to plant productivity. The inoculation effect of closely related AMFs within the same family, such as G. formosanum, S. constrictum, and R. manihotis, consistently yielded lower than that of mono-inoculation when any combinations were applied. The co-inoculation of S. miltiorrhiza with nearby or distant AMFs from two families, such as G. formosanum, R. manihotis, and Ac. laevis or Am. gerdemannii resulted in an increase of ATP and ATTS by more than 50%. AMF communities appear to be more beneficial to the yield of bioactive constituents than the single AMF, but overall community inoculation effects are related to the composition of AMFs and the relationship between members. CONCLUSION: This study reveals that the AMF community has great potential to improve the productivity and the accumulation of bioactive constituents in S. miltiorrhiza, indicating that it is an effective way to achieve sustainable agricultural development through using the AMF community.


Subject(s)
Mycorrhizae , Plants, Medicinal , Salvia miltiorrhiza , Humans , Plants, Medicinal/microbiology , Plant Roots , Fungi , Adenosine Triphosphate
12.
J Appl Microbiol ; 134(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37055367

ABSTRACT

During the last few decades, endophytes have attracted increased attention due to their ability to produce a plethora of bioactive secondary metabolites. These compounds not only help the endophytes to outcompete other plant-associated microbes or pathogens through quorum sensing, but also enable them to surmount the plant immune system. However, only a very few studies have described the interlink between various biochemical and molecular factors of host-microbe interactions involved in the production of these pharmacological metabolites. The peculiar mechanisms by which endophytes modulate plant physiology and metabolism through elicitors, as well as how they use transitional compounds of primary and secondary metabolism as nutrients and precursors for the synthesis of new compounds or enhancing existing metabolites, are still less understood. This study thus attempts to address the aspects of synthesis of such metabolites used in therapeutics by the endophytes in the light of their ecological significance, adaptation, and intercommunity interactions. Our study explores how endophytes adapt to the specific host environment, especially in medicinal plants that produce metabolites with pharmacological potential and simultaneously modulate host gene expression for the biosynthesis of these metabolites. We also discuss the differential interactions of fungal and bacterial endophytes with their hosts.


Subject(s)
Plants, Medicinal , Plants, Medicinal/microbiology , Endophytes/physiology , Secondary Metabolism , Adaptation, Physiological , Quorum Sensing , Fungi/metabolism
13.
Braz J Microbiol ; 54(2): 827-839, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36899290

ABSTRACT

Nyctanthes arbor-tristis is one of India's valuable and populous medicinal plants which belongs to the family Oleaceae, and widely recognize as night jasmine. Over the years till date, different parts of the plant are used to treat or cure different ailments via various means of traditional medicine. Endophytes are organisms that live in the cell or body of other organisms with no apparent negative impact on the host which they inhabit and are of great source of novel bioactive compounds possessing important economic value. Secondary metabolites were identified in the aqueous extract of Cronobactersakazakii through quantitative phytochemical and GC-MS analysis. Antibacterial activity of the extract against clinical and ATCC strains of E. coli was assessed. Biological activity spectra of these compounds were predicted and categorized either as probably active (Pa) or probably inactive (Pi). Drug-likeness of bioactive compounds was determined as well as their ability to target protein (CTXM-15) responsible for antibiotic resistance in Gram-negative bacteria. Results revealed the presence of active compounds with pharmacological activities and considerable pharmacokinetics parameters. In addition, ligand-protein interactions of compounds with CTXM-15 proteins were identified. These results suggest that bioactive compounds of endophytic Cronobactersakazakii could contain novel chemical entities for the development of antibiotics against pathogenic microbes and other drugs for the amelioration of several infections.


Subject(s)
Bacteria , Plants, Medicinal , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria/chemistry , Endophytes/metabolism , Escherichia coli , Microbial Sensitivity Tests , Plants, Medicinal/microbiology
14.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902273

ABSTRACT

Medicinal plants play an important role in the discovery of new bioactive compounds with antimicrobial activity, thanks to their pharmacological properties. However, members of their microbiota can also synthesize bioactive molecules. Among these, strains belonging to the genera Arthrobacter are commonly found associated with the plant's microenvironments, showing plant growth-promoting (PGP) activity and bioremediation properties. However, their role as antimicrobial secondary metabolite producers has not been fully explored. The aim of this work was to characterize the Arthrobacter sp. OVS8 endophytic strain, isolated from the medicinal plant Origanum vulgare L., from molecular and phenotypic viewpoints to evaluate its adaptation and influence on the plant internal microenvironments and its potential as a producer of antibacterial volatile molecules (VOCs). Results obtained from the phenotypic and genomic characterization highlight its ability to produce volatile antimicrobials effective against multidrug-resistant (MDR) human pathogens and its putative PGP role as a producer of siderophores and degrader of organic and inorganic pollutants. The outcomes presented in this work identify Arthrobacter sp. OVS8 as an excellent starting point toward the exploitation of bacterial endophytes as antibiotics sources.


Subject(s)
Arthrobacter , Oils, Volatile , Origanum , Plants, Medicinal , Humans , Oils, Volatile/pharmacology , Plants, Medicinal/microbiology , Anti-Bacterial Agents/pharmacology , Endophytes/metabolism , Genomics
15.
Fitoterapia ; 167: 105496, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990291

ABSTRACT

Geophila repens (L.) I.M. Johnst (Rubiaceae) is a traditional medicinal plant used in Sri Lanka for the treatment of bacterial infections. Due to its rich endophytic fungi content, it was postulated that endophytically-produced specialized metabolites may be responsible for its purported antibacterial effects. To test this hypothesis, eight pure endophytic fungal cultures were isolated from G. repens then extracted and screened for antibacterial activity in a disc diffusion assay against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Large scale culturing, extraction, and purification of the most active fungal extract, obtained from Xylaria feejeensis, led to the isolation of 6',7'-didehydrointegric acid (1), 13-carboxyintegric acid (2), and four known compounds including integric acid (3). Compound 3 was isolated as the key antibacterial component (MIC = 16 µg/mL against Bacillus subtilis, 64 µg/mL against Methicillin-Resistant S. aureus). Compound 3 and its analogues were devoid of hemolytic activity up to the highest tested concentration of 45 µg/mL. This study demonstrates that specialized metabolites produced by endophytic fungi may contribute to the biological activity of some medicinal plants. Endophytic fungi should be evaluated as a potential source of antibiotics, especially from unexplored medicinal plants traditionally used for the treatment of bacterial infections.


Subject(s)
Ascomycota , Methicillin-Resistant Staphylococcus aureus , Plants, Medicinal , Rubiaceae , Sesquiterpenes , Plants, Medicinal/microbiology , Polycyclic Sesquiterpenes , Molecular Structure , Anti-Bacterial Agents/pharmacology , Sesquiterpenes/metabolism , Microbial Sensitivity Tests , Fungi , Endophytes
16.
Int Microbiol ; 26(3): 651-662, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36738364

ABSTRACT

Aconitum heterophyllum is a rare perennial herb from Kashmir Himalayas. Due to its threatened status and dependence on its environment, the plant was examined for any potential endophytes, which is of utmost importance for bioprospection. In the current study, endophytic fungal diversity associated with A. heterophyllum was examined, and 328 fungal isolates were found in the plant's leaf, stem, and root tissues. Twelve (12) endophytic fungal species were identified utilizing, molecular analysis of the nuclear ribosomal DNA Internal Transcribes Spacer (ITS), rLSU, and rSSU sequences. Maximum likelihood analysis was used to determine the phylogenetic connection between each isolate. The genera Arthrinium, Chaetomium, Purpureocillium, Alternaria, Penicillium, Aspergillus, Cladosporium, and Bjerkandera species dominated the ascomycete and basidiomycete fungal endophytes.


Subject(s)
Aconitum , Ascomycota , Plants, Medicinal , Fungi , Plants, Medicinal/microbiology , Aconitum/genetics , Endophytes , Phylogeny
17.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626729

ABSTRACT

AIMS: This study aimed to identify endophytic fungi from Anthemis altissima, Matricaria parthenium, Cichorium intybus, Achillea millefolium, and A. filipendulina with plant-promoting ability on the ZP684 maize hybrid-cultivar. METHODS AND RESULTS: Plants were collected from northeast-Iran and endophytic fungi were isolated and identified using partial large subunit nrDNA, internal transcribed spacer, translation elongation factor, and ß-tubulin genetic markers. Endophytic fungi that improved seed germination were studied under greenhouse conditions. Ninety-seven endophytic fungi were identified. Preussia africana, Bjerkandera adusta, Schizophyllum commune, Alternaria embellisia, Trichaptum biforme, Septoria malagutii, A. consortiale, Verticillium dahliae, Fusarium avenacearum, and Trametes versicolor significantly improved seed-germination. Alternaria consortiale produced the highest level of indole-3-acetic acid-like compounds and maize growth-promoting. CONCLUSIONS: Plant fungal colonization frequency increased with orthometric height. Sampling location Chahar Bagh at 2230 m contained the most endophytic fungi. Fusarium and Alternaria were the most frequently isolated endophytic genera. Therefore, medicinal plants are potential hosts for endophytic fungi that may be suitable biofertilizer agents in agriculture. SIGNIFICANCE AND IMPACT OF THE STUDY: This study helps to better understand the ecosystem functions by investigating of endophytic fungi distribution under different ecological conditions. Finding effective isolates among these microorganisms with a suitable plant-promoting ability on crops may help to reduce the use of chemical fertilizers in an agroecosystem.


Subject(s)
Fusarium , Plants, Medicinal , Zea mays/microbiology , Plants, Medicinal/microbiology , Ecosystem , Trametes , Endophytes , Fungi
18.
Arch Microbiol ; 205(2): 67, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653666

ABSTRACT

Assam, India being the pool for ethnomedicinal plants harbors diverse endophytic fungi constituting major bioactive metabolites. The present study was designed to screen the antioxidant, antibacterial activities along with the chemical constituents of the endophytic fungi isolated from the fruits of Dillenia indica (commonly known as Otenga in Assam). Screening of such metabolic compounds and their antioxidant, antibacterial activities can have tremendous potential in suppressing certain diseases. Agar well diffusion method has been used to carry out the antibacterial assay against three pathogenic bacteria two gram positive [Bacillus subtilis (MTCC No. 441); Staphylococcus aureus (MTCC No. 740)] and one gram negative [Escherichia coli (MTCC No. 739)]. Aspergillus fumigatus of ethyl acetate extract showed a prominent activity against Staphylococcus aureus followed by Aspergillus flavus and Aspergillus niger. Antioxidants have the potential to neutralize and inhibit the action of free radicals. The highest scavenging activity was exhibited by ethyl acetate extract of Aspergillus fumigatus in DPPH assay. Furthermore, the phytochemical screening revealed the presence of flavonoids, alkaloids, terpenoids and saponins. Result showed that ethyl acetate extract of Aspergillus fumigatus showed the highest phenolic content (236.81 ± 0.2 mg.g-1) and least was shown by Aspergillus flavus (92.12 ± 1.4 mg.g-1). Total flavonoids content for Aspergillus fumigatus (39.08 ± 0.2 mg.g-1) was found to be highest compared to other isolates. Molecular identification of the endophytic fungus showing highest activity was done based on 18S rRNA. The sequenced was submitted in Genbank with accession number MH540721 showing high similarities with Aspergillus fumigatus strain 3,162,954. A. fumigatus strain is subjected to GC/MS analysis that revealed the chemical constituents 2-isopropyl-5-methyl-1-heptanol, dodecane, 1-fluoro-pentanoic acid, 2-ethylhexyl ester, 1-octanol, 2-butyl-1-dodecanol. Thus, the present work reveals that endophytic fungi colonizing in ethnomedicinal plant Dillenia indica could be a promising source for antioxidant and antibacterial activity. Further work is needed to add value in various therapeutic and pharmaceutical fields.


Subject(s)
Dilleniaceae , Plants, Medicinal , Antioxidants/pharmacology , Antioxidants/chemistry , Plants, Medicinal/microbiology , Fungi , Anti-Bacterial Agents/metabolism , Aspergillus fumigatus , Aspergillus niger , Flavonoids/metabolism
19.
Arch Razi Inst ; 78(5): 1638-1646, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38590676

ABSTRACT

Antibiotic resistance is rising dramatically worldwide, and thus the production of new antibiotics is indispensable. Recent scientific initiatives have focused on the bioprospecting of microorganisms' secondary metabolites, with a particular focus on the look for natural products with antimicrobial properties derived from endophytes. All plant species, regardless of their type, are thought to anchor endophytic bacteria (EB). There are many potential uses for the natural therapeutic compounds made by EB in medicine, agriculture, and the pharmaceutical industry. To investigate antibacterial properties in this study, Actinomycetota (formerly, Actinobacteria) were isolated from Anthemis pseudocotula Boiss., identified, and underwent bioprospecting by morphological and molecular methods. Samples were collected from Ilam, Iran, and then divided into roots, leaves, stems, and flowers. After disinfection, they were cut into 2 mm pieces, cultured on casein agar culture medium, and incubated at 28ºC for up to four weeks. Actinomycetota was identified using the polymerase chain reaction method targeting the 16S rRNA gene. To evaluate the antibacterial properties of the isolated Actinomycetota, the agar diffusion method was used. In parallel, the frequencies of biosynthetic gene clusters, including polyketide synthase (PKS-I and PKS-II) and nonribosomal peptide synthetase (NRPS) genes, were determined in the isolated Actinomycetota. Ninety bacteria were isolated from different parts of Anthemis flowers. Thirty-eight (42.2%) of these bacteria belonged to the phylum Actinomycetota, and out of these 38, 15 isolates (39.5%) had antibacterial properties. Of these, 11 isolates (73.3%) exhibited antibacterial effects against Staphylococcus aureus, 2 (13.3%) against Pseudomonas aeruginosa, 3 (20%) against Escherichia coli, and two isolates (13.3%) against Salmonella enterica sub-species of enterica serovar Typhimurium. The results of the molecular analysis of PKS-I, PKS-II, and NRPS genes showed that out of 38 isolated Actinomycetota strains, 23 isolates (60.5%) carried PKS-I gene, 6 (15.8%) harbored PKS-II gene, and 20 isolates (52.6%) had NRPS gene. This study indicates that Anthemis pseudocotula Boiss. has a number of active Actinomycetota that produce secondary metabolites with antibacterial properties.


Subject(s)
Anthemis , Plants, Medicinal , Animals , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Plants, Medicinal/microbiology , Anthemis/metabolism , RNA, Ribosomal, 16S , Agar , Bacteria/genetics , Anti-Bacterial Agents/pharmacology
20.
J Nat Prod ; 85(11): 2667-2674, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36346918

ABSTRACT

Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 µM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 µM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.


Subject(s)
Alternaria , Anti-Inflammatory Agents , Antiviral Agents , Atriplex , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Perylene , Plants, Medicinal , Quinones , Humans , Alternaria/chemistry , Alternaria/isolation & purification , Atriplex/microbiology , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/drug effects , Molecular Structure , Perylene/chemistry , Perylene/isolation & purification , Perylene/pharmacology , Plants, Medicinal/microbiology , Quinones/chemistry , Quinones/isolation & purification , Quinones/pharmacology , Tenuazonic Acid/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...